
HAL Id: hal-03892040
https://u-bourgogne.hal.science/hal-03892040

Submitted on 17 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-level optimization of the canonical polyadic tensor
decomposition at large-scale: Application to the
stratification of social networks through deflation

Annabelle Gillet, Éric Leclercq, Nadine Cullot

To cite this version:
Annabelle Gillet, Éric Leclercq, Nadine Cullot. Multi-level optimization of the canonical polyadic ten-
sor decomposition at large-scale: Application to the stratification of social networks through deflation.
Information Systems, 2023, 112, pp.102142. �10.1016/j.is.2022.102142�. �hal-03892040�

https://u-bourgogne.hal.science/hal-03892040
https://hal.archives-ouvertes.fr

Multi-level optimization of the canonical polyadic tensor decomposition
at large-scale: Application to the stratification of social networks through

deflation

Annabelle Gillet, Éric Leclercq, Nadine Cullot

LIB EA 7534
University of Burgundy Franche Comté

Dijon, France

Abstract

Tensors are multi-dimensional mathematical objects that allow to model complex relationships and to
perform decompositions for analytical purpose. They are used in a wide range of data mining applications.
In social network analysis, tensor decompositions give interesting insights by taking into consideration
multiple characteristics of data. However, the power-law distribution of such data forces the decomposition
to reveal only the strong signals that hide information of interest having a lighter intensity. To reveal hidden
information, we propose a method to stratify the signal, by gathering clusters of similar intensity in each
stratum. It is an iterative process, in which the CANDECOMP/PARAFAC (CP) decomposition is applied
and its result is used to deflate the tensor, i.e., by removing from the tensor the clusters found with the
decomposition. As the CP decomposition is computationally demanding, it is also necessary to optimize its
algorithm, to apply it on large-scale data with a reasonable execution time, even with the several executions
needed by the iterative process of the stratification. Therefore, we propose an algorithm that uses both
dense and sparse data structures and that leverages coarse and fine grained optimizations in addition to
incremental computations in order to achieve large scale CP tensor decomposition. Our implementation
outperforms the baseline of large-scale CP decomposition libraries by several orders of magnitude. We
validate our stratification method and our optimized algorithm on a Twitter dataset about COVID vaccines.

Keywords: Tensor decomposition, Data mining, Multi-dimensional analytics

1. Introduction

Tensors are powerful mathematical objects, which bring capabilities to model multi-dimensional data [1].
They are used in multiple analytics frameworks, such as Tensorflow [2], PyTorch [3], Theano [4], Ten-
sorLy [5], where their ability to represent various models is a great advantage. Furthermore, associated
with powerful decompositions, they can be used as data mining tools to reveal the hidden value of Big5

Data. Tensor decompositions are used for various purposes such as dimensionality reduction, noise elim-
ination, identification of latent factors, pattern discovery, ranking, recommendation and data completion.
They are applied in a wide range of applications, including genomics [6], analysis of health records [7] and
graph mining [8]. Papalexakis et al. in [9] review major usages of tensor decompositions in data mining
applications.10

The analysis of social networks benefits also greatly from tensor decompositions [10, 11]. For example,
it can serve as a tool to detect communities, while including several characteristics such as a temporal

Email address: annabelle.gillet@u-bourgogne.fr, eric.leclercq@u-bourgogne.fr, nadine.cullot@u-bourgogne.fr
(Annabelle Gillet, Éric Leclercq, Nadine Cullot)

Preprint submitted to Journal of Information Systems August 17, 2023

dimension or the use of keywords. However, the power-law distribution of most of the social network
interactions [12] leads analytics algorithms to often extract strong signals that hide other information of
interest. Indeed, some short-lasting subjects or some opinions that are discussed by a small group of users15

might be undetected when using traditional analytics techniques, if the group is smaller than the groups
discussing of the major topics. So, algorithms have to be adapted to tackle this issue.

Furthermore, as tensors model multi-dimensional data, their global size varies exponentially depending
on the number and size of their dimensions, making them sensitive to large-scale issues. Most of tensor
libraries that include decompositions work with tensors of limited size, and do not consider the large-scale20

challenge. For example, some intermediate structures needed in the algorithms produce a data explosion,
such as the Khatri-Rao product in the CANDECOMP/PARAFAC decomposition [13] (CP, also called canon-
ical polyadic decomposition). Thus, analyzing Big Data with tensors requires optimization techniques and
suitable implementations, able to scale up. These optimizations are directed towards different computa-
tional aspects, such as the memory consumption, the execution time or the scaling capabilities, and can25

follow different principles, such as coarse grained optimizations, fine grained optimizations or incremental
computations.

In this article, we focus on the CP decomposition that allows to factorize a tensor into smaller and more
usable sets of vectors [14], and which is largely adopted in exploratory analyzes. We propose to extend
the CP decomposition with a stratification method, that reveals interesting signals of lighter intensity.30

To do so, we rely on deflation [15], that consists in removing from the original tensor the strong signals
found by the decomposition, and reitering the process with the new tensor. We validate our stratification
method on a real world Twitter dataset on COVID-19. Nevertheless, as it requires multiple executions of
the decomposition, the efficiency of the algorithm used is critical.

To cope with the need of performance, we also propose an optimized algorithm to achieve large scale35

CP decomposition, that uses dense or sparse data structures depending on what suits best each step, and
that leverages incremental computation, coarse and fine grained optimizations to improve the algorithm.
We provide an implementation, named MuLOT1, in Scala using Spark 3.0 that outperforms the state of the
art of large-scale tensor CP decomposition libraries.

The rest of the article is organized as follows: section 2 presents an overview of tensors including the40

CP decomposition and an empirical study of the behavior of the CP decomposition, section 3 introduces
a state of the art of uses of CP decomposition and tensor manipulation libraries, section 4 describes our
stratification method based on deflation, section 5 describes our scalable and optimized algorithm, as well as
the experiments we ran to compare our algorithm to other large-scale CP decomposition libraries, section 6
presents a study on real data performed with our stratification method and finally section 7 concludes.45

2. Overview of tensors and CP decomposition

In this section, we present the notion of tensor along with major operators used in the CP decomposition,
and we perform an empirical study in order to intuit how the decomposition works and how the results
can be interpreted.

2.1. Background of tensors50

Tensors are general abstract mathematical objects which can be considered according to various points
of view such as a multi-linear application, or as the generalization of matrices to multiple dimensions.
We will use the definition of a tensor as an element of the set of the functions from the product of N sets
In,n = 1, . . . ,N to R : X ∈ RI1×I2×···×IN , where N is the number of dimensions of the tensor or its order or its
mode. Table 1 summarizes the notations used in this article. We adopt the notations of [1].55

Tensor operations, by analogy with operations on matrices and vectors, are multiplications, transposi-
tions, matricizations (or unfolding) and decompositions (also named factorizations). We only highlight the

1The implementation is open source and available on Github, along with experimental evaluations to validate its efficiency
especially at large scale : https://github.com/AnnabelleGillet/MuLOT

2

https://github.com/AnnabelleGillet/MuLOT

most significant operators on tensors which are used in our algorithm. The reader can consult [14, 1] for an
overview of the major operators.

Symbol Definition Symbol Definition
X A tensor ◦ Outer product
M A matrix ⊗ Kronecker product
v A column vector �∗ Hadamard product
a A scalar � Hadamard division

mi The ith column vector of the ma-
trix M

� Khatri-Rao product
† Pseudo inverse

mi, j The element of the matrix M at
the ith line and jth column

X(n) Matricization of the tensor X on
mode-n

xi1,...,iN The element of the N-order ten-
sor X at the indexes (i1, . . . , iN)

Table 1: Symbols and operators used

The mode-n matricization of a tensor X ∈ RI1×I2×···×IN noted X(n) produces a matrix M ∈ RIn×Π j,nI j , where:

min, j = xi1,...,in,...,iN with j = 1 +

N∑
k=1
k,n

(ik − 1)
k−1∏
m=1
m,n

Im

The outer product between a tensor Y ∈ RI1×I2×···×IN and another tensor X ∈ RJ1×J2×···×JM noted Y ◦ X
produces a tensor Z ∈ RI1×I2×···×IN×J1×J2×···×JM in which the elements are equal to:

zi1,i2,...,iN , j1, j2,..., jM = yi1,i2,...,iN x j1, j2,..., jM

The Hadamard product between two matrices of same size A ∈ RI×J and B ∈ RI×J noted A �∗ B is an
element-wise multiplication that produces a matrix C ∈ RI×J:

ci, j = ai, jbi, j

The Kronecker product between two matrices A ∈ RI×J and B ∈ RK×L noted A ⊗ B produces a matrix
C ∈ R(IK)×(JL), in which every elements of A are multiplied by the matrix B:

cm,n = ai, jbk,l where m = k + (i − 1)K and n = l + (j − 1)L

The Khatri-Rao product between two matrices having the same number of columns A ∈ RI×J and
B ∈ RK×J is noted A�B and performs the column-wise Knrocker product that results in a matrix C ∈ R(IK)×J.
The elements are computed by:

cm, j = ai, jbk, j where m = k + (i − 1)K

The pseudo inverse of a matrix A = UΣVT is A† = VΣ†UT, in which U represents the left singular60

vectors, V represents the right singular vectors, and Σ has the singular values on its diagonal. Σ† can be
obtained by replacing each singular value σk of Σ by 1/σk.

The canonical polyadic decomposition allows to factorize a tensor into smaller and more exploitable
sets of vectors [16, 17]. Given a N-order tensor X ∈ RI1×I2×···×IN and a rank R ∈ N, the CP decomposition
factorizes the tensor X into N column-normalized factor matrices A(i)

∈ RIi×R for i = 1, . . . ,N with their
scaling factors λ ∈ RR as follows:

X ' ~λ,A(1),A(2), . . . ,A(N)� =

R∑
r=1

λra
(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r

3

Algorithm 1 CP-ALS

Require: Tensor X ∈ RI1×I2×···×IN and target rank R
1: Initialize A(1), . . . ,A(N), with A(n)

∈ RIn×R

2: repeat
3: for n = 1, . . . ,N do
4: V← A(1)TA(1) �∗ . . . �∗ A(n−1)TA(n−1) �∗ A(n+1)TA(n+1) �∗ . . . �∗ A(N)TA(N)

5: A(n)
← X(n)(A(N)

� · · · �A(n+1)
�A(n−1)

� · · · �A(1))V†

6: normalize columns of A(n)

7: λ← norms of A(n)

8: end for
9: until < convergence >

where a(i)
r are columns of A(i).

Several algorithms have been proposed to compute the CP decomposition [18], we focus on the alter-
nating least squares (ALS) one (algorithm 1). At line 1, the initialization can be done by randomly filling65

the factor matrices. Then, the iterative phase of the algorithm begins until a convergence criterion is met
(lines 2 to 9). During the iterative phase, two major steps are repeated for each dimension n: 1) V ∈ RR×R is
computed by multiplying the transpose of each factor matrix by the same factor matrix except for the factor
matrix of the dimension n, and by performing the Hadamard product on all these results of multiplication
(line 4); and 2) updating the factor matrix corresponding to the dimension n by multiplying the matricized70

tensor X by the result of the Khatri-Rao product between all the factor matrices except the one of the
dimension n and by the pseudo inverse of V (line 5). The columns of the updated factor matrix are then
normalized and stored in λ (lines 6 and 7).

The Matricized Tensor Times Khatri-Rao Product (MTTKRP, line 5 of the algorithm 1) is often the target
of optimizations, because it involves the tensor matricized of sizeRIn×J, with J =

∏
j,n I j, as well as the result75

of the Khatri-Rao product of size RJ×R. It is thus computationally demanding and uses a lot of memory
to store the dense temporary matrix resulting of the Khatri-Rao product [19]. For example, by considering
that a value is stored as a double on 1 byte, for a tensor X ∈ R10 000×5 000×2 000×10 with a sparsity of 10−7 that
could represent the users, the hashtags they use, a temporal dimension and the country of the users, the
tensor can be stored with 10 000 × 5 000 × 2 000 × 10 × 10−7 = 100 000B = 100kB. However, as the factor80

matrices are dense, the Khatri-Rao product produces a dense matrix of size R10 000×100 000 000 for the first
dimension (for the other dimensions the number of lines and columns changes but the overall size stays
the same) that needs 10 000 × 100 000 000 = 1 000 000 000 000B = 1 000GB of storage.

2.2. Empirical study
In order to better understand the capabilities and the limits of the CP decomposition, we conduct an85

empirical study on simple tensors to illustrate its behavior on an interpretable result.
We build a 3-order tensor X of size 60 × 60 × 60, that contains three clusters that do not overlap: one

of size 30 × 30 × 30, the second of size 20 × 20 × 20 and the last one of size 10 × 10 × 10. We run the CP
decomposition on this tensor, with rank-2 and -3. The results of A(1) are shown in figure 1, in which the
highest values represent the elements that participate the most to the rank (only the results for the first90

dimension are drawn, but they are identical for the other dimensions given the shape of the clusters). They
allow to deduce that the optimal rank is two, because the third rank does not bring more information than
the two previous ranks.

The third cluster is not found: even if its values are the same as for the other clusters, its smaller size
leads to a lower participation in the signal of the global tensor. We try to reveal it by first applying a95

deflation technique. A tensor deflation consists in removing some elements of it, often depending on the
result of a decomposition. We remove the cluster of size 30 × 30 × 30 to reduce the global intensity of the
signal, and execute a rank-2 decomposition on the deflated tensor (figure 2). The third cluster is now taken
into consideration by the decomposition.

4

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Index

va
lu

e

(a) Rank-2

0 10 20 30 40 50 60
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

Index

va
lu

e

(b) Rank-3

Figure 1: CP decomposition on a tensor of size 60 × 60 × 60 with three clusters, the x-axis represents the indexes of the elements, the
y-axis represents the value of each element and each line corresponds to a rank of the decomposition

Another interesting behaviour of the decomposition is the probability of a rank-1 decomposition to100

find a given cluster among others of different signal intensity. To better understand this, we build a 3-
order tensor of size 60 × 60 × 60 with three non-overlapping clusters of size 20 × 20 × 20, one with each
element having 5 as value, the second with each element having 10 as value and the last with each element
having 15 as value. All of these clusters are detected by a rank-3 CP decomposition. We execute a rank-1
CP decomposition 1000 times on the tensor, and record which cluster is found at each run (table 2). The105

weight of the cluster in the tensor seems to play a role in its probability of finding it among the others with
a rank-1 CP decomposition.

Value of elements in the cluster Apparition frequency
15 62%
10 32%
5 6%

Table 2: Probability of apparition of each cluster with a rank-1 CP decomposition

Based on these phenomena, we can assume that: 1) a deflation can be necessary to find clusters that
are also valuable but hidden by some strong signals; and 2) when the rank of the decomposition is not
high enough, it will find some of the existing clusters and most of the time it will be clusters with a high110

signal intensity in the tensor. By taking into consideration these observations, we propose a stratification
method that consists in progressively revealing clusters of lighter signal intensity, in order to find hidden
but interesting information in data.

3. State of the art

This section first reviews the use of the CP decomposition as analytics tool, as well as extension of the115

CP decomposition to apply it on particular use cases. The second part of the section describes major tensor
libraries, in order to identify what is missing to execute the CP decomposition at large scale.

5

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Index

va
lu

e

Figure 2: Rank-2 CP decomposition on a deflated tensor of size 60 × 60 × 60 with two clusters

3.1. The CANDECOMP/PARAFAC decomposition as analytics tool
The CP decomposition is a useful tool in data analytics. Gauvin et al. [20] applied it on a primary

school dataset that contains the interactions among the students. They were able to reveal clusters that120

gather students of a same class thanks to the decomposition, and to get a temporal signature of these
clusters. Indeed, the results also showed clusters containing students of different classes, and the temporal
signature helped to see that these clusters appeared only during the break and lunch hours, when students
mixed themselves with each other. Similar experiments have been conducted on the Enron dataset [21] that
contains email interactions among employees, the MovieLens or the DARPA1998 [22] datasets, that contains125

respectively movies watched by users and network traffic information. The experiment on DARPA1998 aims
to detect anomalies (e.g., network attacks). Fernandes el al. [11] recently described different applications
of tensor decompositions on social network data, including clustering and anomaly detection. They also
detailed some methods based on the CP decomposition that aim to extend it.

Some works are based on the CP decomposition, and extend it to try to improve its results in given130

use cases. Araujo et al. with Com2 [15] seek to find comet communities in social networks, namely
communities that appear during a period of time and that can appear again later. To do so, they compute
a rank-1 CP decomposition, they evaluate the consistency of the community with a Minimum Description
Length (MDL) measure and they deflate the tensor from the found community to repeat the process. Their
goal is to avoid having to choose a rank to perform the decomposition by computing successive rank-1135

decomposition, but, as seen in the section 2.2, this method reveals clusters that would not have been found
in an initial decomposition with the perfect rank, and it is hard to detect when the clusters have little or
no importance. Sheikholeslami and Giannakis propose EgoTen [23]. It relies on a special modeling of the
network in the tensor, by storing the adjacency matrix of each user rather than the interactions among the
users. By doing so, they focus on discovering communities than can be overlapping, and each user has a140

membership proportion for its different communities. However, with this method it is hard to add some
contextual information, as for example the keywords used by the users.

The CP decomposition has already proven its usefulness to analyze social network data, especially to
find communities. Nevertheless, methods often detect the major communities and neglect those of lighter
signal intensity that can be hidden due to the power law distribution of such data. Thus, it is necessary to145

propose a method that can reveal hidden clusters that can present an interest for the analyzes. However,

6

the performance of the algorithm to do so must be taken into consideration, in order to be able to process
large amount of data.

3.2. Tensor libraries
Several tensor libraries have been proposed. They can be classified in three categories: 1) the mathe-150

matical libraries; 2) the libraries which use tensors to convey data among tasks; and 3) specialized libraries,
which implement few tensorial operators. Only the most representative libraries are presented in this
section, Psarras et al. [24] have recently published a wider overview.

Mathematical libraries are often written in Matlab or R, and aim to make available tensorial operators.
However, they have often limited performances when the size of the tensors increases. rTensor2 provides155

users with standard operators to manipulate tensors in R language including tensor decompositions,
but does not support sparse tensors. Tensor Algebra COmpiler (TACO) [25] provides optimized tensor
operators in C++, from vector multiplication to MTTKRP, by relying on compressed formats such as
Compressed Sparse Row (CSR) or Compressed Sparse Fiber (CSF). High-Performance Tensor Transpose [26]
is a C++ library only for tensor transpositions, thus it lacks lots of useful operators. It uses micro-kernels160

to parallelize operations. TensorToolbox3 is a Matlab library relying on Kolda’s work. It proposes several
tensorial operators including Tucker and CP decomposition.

Libraries that use tensors to convey data among tasks of a workflow are often used in machine learning
applications. TensorFlow [2] and PyTorch [3] are two Python libraries, that are used in machine learning
and deep learning contexts. But these libraries have only few tensorial operators, and mostly focus on165

developing classic methods of machine learning. NumPy [27] is another Python library, that proposes
multi-dimensional arrays manipulation operators. TensorLy [5] allows to switch its backend library (such
as TensorFlow or PyTorch), but is closer to the mathematical libraries because it includes more tensorial
operators than its backend libraries alone, including tensor decompositions.

Specialized libraries implement only a specific operator or algorithm. Some of these libraries can be170

used at large scale. We focus on those that implement tensor decompositions. HaTen2 [13] is a Hadoop im-
plementation of the CP and Tucker decompositions using the map-reduce paradigm. It was later improved
with BigTensor [22]. It was one of the first library allowing to perform decompositions at large scale, but
the use of Hadoop requires to store data as files in HDFS, and thus forces to preprocess data before being
able to run the decomposition and before manipulating the results. SamBaTen [28] proposes an incremental175

CP decomposition for evolving tensors. The authors developed a Matlab and a Spark implementations.
However, it can only compute the decomposition on 3-order tensors, and the first computation of the
decomposition is a costly operation. Gudibanda et al. in [29] developed a CP decomposition for coupled
tensors using Spark (i.e., different tensors having a dimension in common). ParCube [30] is a parallel
Matlab implementation of the CP decomposition. However it can only take 3- or 4-order tensors, and180

cannot distribute operations. CSTF [31] is based on Spark and proposes a distributed CP decomposition.
Nevertheless, it relies mainly on sparse structures, thus it limits the applicable optimizations.

As a conclusion, the study of the state of the art shows some limitations of the proposed solutions. The
mathematical libraries often take into consideration only small tensors. The libraries that use tensors to
convey data among tasks have a limited vision of tensors (i.e., only as multi-dimensional arrays), and do185

not support all the functionalities of tensors. Specialized libraries are often only prototypes.
More generally, libraries focus on a specific type of optimization, and use only sparse structures to

handle the sparsity of large tensors. This is a bottleneck to performance, as they do not consider all the
characteristics of the algorithm (i.e., the factor matrices are dense). Furthermore, they are not really data
centric, as they manipulate tensors only with integer indexes, for dimensions and for values of dimensions.190

Thus it reduces greatly the user-friendliness as the mapping between meaningful values (e.g., user name

2http://jamesyili.github.io/rTensor/
3https://www.tensortoolbox.org/

7

http://jamesyili.github.io/rTensor/
https://www.tensortoolbox.org/

or timestamp) and indexes has to be supported by users. The Hadoop implementations need a particular
input format, thus necessitate data transformations to execute the decomposition and to interpret the results,
leading to laborious prerequisites and increasing the risk of mistakes when working with the results. Table 3
summarizes the characteristics of specialized libraries able to handle large scale tensors, and compares them195

with ours.

4. Stratification of social network data through tensor deflation

As demonstrated in the section 2.2, the CP decomposition will only find clusters that produce a strong
signal in a tensor. However, with social network data and their power-law distribution, the most important
clusters produce a signal strong enough to hide many other clusters of interest, but with a lighter intensity.200

So, the objective of our stratification method is to find these hidden clusters, by producing several strata that
gather clusters with a similar signal intensity. Each new stratum reveals clusters with a signal lighter than
those of the previous stratum. To do so, the method can be summarized in two steps: 1) computing the CP
decomposition on the tensor to find the clusters; and 2) deflating the tensor to remove the strongest signal
found by the decomposition. These two steps are repeated, and the resulting clusters of each iteration are205

gathered into a stratum (figure 3). We detail these steps below.

dim
en

sio
n 1

di
m

en
si

on
2

dimension 3

Apply CP Stratum 1
◦

a(1)
1

a(2)
1

a(3)
1

C1
1

◦

a(1)
2

a(2)
2

a(3)
2

C1
2

dim
en

sio
n 1

di
m

en
si

on
2

dimension 3

Apply CP Stratum 2

Deflation
(remove clusters found)

◦

a(1)
1

a(2)
1

a(3)
1

C2
1

◦

a(1)
2

a(2)
2

a(3)
2

C2
2

◦

a(1)
3

a(2)
3

a(3)
3

C2
3

Deflation
(remove clusters found)

. . .

Figure 3: The stratification method (the black blocks represent the clusters removed from the tensor with the deflation, the red part of
each vector are the elements of Ds,n

r)

The first step of the stratification method, applied on a N-order tensor X , consists in executing the CP
decomposition on the tensor. To choose the rank of the decomposition, the CORe CONsistency DIAgnostic
(CORCONDIA) [32] can be used. It evaluates if increasing the rank will bring new information or not. The
result of a rank-Rs CP decomposition on a tensor X s is used to create a stratum Ss

Rs , such as:210

8

Li
br

ar
y

La
ng

ua
ge

/
Fr

am
ew

or
k

N
um

be
r

of
di

m
en

si
on

s
In

pu
tf

or
m

at
In

de
xe

s
of

di
m

en
si

on
s

O
pt

im
iz

at
io

n
C

od
e

av
ai

la
bl

e
H

aT
en

2
[1

3]
Ja

va
/H

ad
oo

p
n

C
SV

st
or

ed
in

H
D

FS
In

te
ge

r
U

se
of

sp
ar

si
ty

X
Bi

gT
en

so
r

[2
2]

Ja
va

/H
ad

oo
p

n
C

SV
st

or
ed

in
H

D
FS

In
te

ge
r

U
se

of
sp

ar
si

ty
X

Sa
m

Ba
Te

n
[2

8]
Sc

al
a/

Sp
ar

k
2.

2
3

Sp
ec

ifi
c

Sp
ar

k
st

ru
ct

ur
e

In
te

ge
r

U
se

of
sp

ar
si

ty
X

C
ST

F
[3

1]
Sc

al
a/

Sp
ar

k
1.

5
3

C
SV

fil
e

In
te

ge
r

U
se

of
sp

ar
si

ty
X

Pa
rC

ub
e

[3
0]

M
at

la
b

3
or

4
Te

ns
or

fr
om

Te
ns

or
To

ol
bo

x
In

te
ge

r
U

se
of

sp
ar

si
ty

,
pa

ra
lle

lo
nl

y
X

[2
9]

Sp
ar

k
no

t
sp

ec
i-

fie
d

no
ts

pe
ci

fie
d

In
te

ge
r

U
se

of
sp

ar
si

ty

T
hi

s
pa

pe
r

Sc
al

a/
Sp

ar
k

3.
0

n
Sp

ar
k

D
at

af
ra

m
e

M
ea

ni
ng

fu
l

va
lu

es
(S

tr
in

g,
In

-
te

ge
r,

et
c.

)

U
se

of
sp

ar
si

ty
,

de
ns

it
y

an
d

in
-

cr
em

en
ta

l
co

m
-

pu
ta

ti
on

s

X

Ta
bl

e
3:

C
om

pa
ri

so
n

of
la

rg
e

sc
al

e
te

ns
or

lib
ra

ri
es

to
co

m
pu

te
th

e
C

P
de

co
m

po
si

ti
on

9

Ss
Rs = (X s, {Cs

r for r = 1 . . .Rs
})

with s the index of the stratum. As the stratification method is an iterative process, the first execution of
the decomposition is done on the input tensor, so X 1 = X .

The Rs clusters Cs
r that compose a stratum contain, for each dimension, a set Ds,n

r of the indices of the
elements of the dimension n that contribute to the cluster. A cluster is defined by:

Cs
r = (Ds,1

r , . . . ,D
s,N
r)

And a set Ds,n
r is defined by:215

Ds,n
r = {i such as i ∈ [1, In] and a(n)

i,r ≥ f (a(n)
r) with A(n)

∈ CPRs (X s)}

CPRs (X s) indicates the execution of the CP decomposition with rank-Rs on a tensor X s. The function f is
used to evaluate if the value of an element given by the decomposition is high enough to consider that
the element contributes to the cluster. For example, by relying on the null hypothesis that if all elements
contributed equally to the cluster they would all have the same value in the vector, the function can be the
average of the vector.220

The first stratum is created from the input tensor. In order to discover other strata, the tensor must
be deflated to remove the clusters having a strong signal intensity. To do so, the clusters of the stratum
obtained at the previous iteration are used. The values of the tensor that are indexed on all the dimensions
by elements that are part of a same cluster in the previous stratum are removed from the tensor such as:

X s+1
i1,...,iN =

0, if i1 ∈ Ds,1
r , . . . , iN ∈ Ds,N

r with r ∈ [1,Rs]
X s

i1,...,iN
, otherwise

The deflation step allows to reduce the maximal signal intensity of the tensor, and thus to reveal clusters225

having a lighter signal intensity when executing a CP decomposition on the deflated tensor. The first
stratum shows the obvious clusters contained in data, and the latter stratum reveals clusters that are harder
to detect but that still present an interest to better understand the content of the data. However, as the
stratification method is an iterative process that can be executed on large real data (e.g., social network data,
biological networks), the CP decomposition must be optimized to produce a result within an acceptable230

execution time.

5. Distributed, scalable and optimized ALS for Apache Spark

Optimizing the ALS algorithm for the CP tensor decomposition induces several challenges, that gain
importance proportionally to the size of the data.

First, the data explosion of the MTTKRP is a serious computational bottleneck (line 5 of algorithm 1),235

that can overflow memory, and prohibit to work with large tensors, even if they are extremely sparse.
Indeed, the matrix produced by the Khatri-Rao has J × R non-zero elements, with J = Π j,nI j, for an input
tensor of size RI1×I2×···×IN . We propose to optimize carefully this operation, in order to avoid the data
explosion and to improve significantly the execution time (see algorithm 3).

The main operations in the ALS algorithm, i.e., the updates of the factor matrices, are not themselves240

parallelizable (lines 4 and 5 of algorithm 1). In such a situation, it is profitable to think of other methods to
take advantage of parallelism, that could be applied on fine grained operations. For example, leveraging
parallelism for matrix multiplications is an optimization that can be applied in many situations. This also
eases the reuse of such optimizations, without expecting specific characteristics from the algorithm (see
section 5.2).245

The nature of data structures used in the CP decomposition are mixed: tensors are often sparse, while
factor matrices are dense. Their needs to be efficiently implemented diverge, so rather than sticking globally

10

to sparse data structures to match the sparsity of tensors, each structure should take advantage of their
particularities to improve the whole execution (see section 5.1). To the best of our knowledge, this strategy
has not been explored by others.250

The stopping criterion can also be a bottleneck. In distributed implementations of the CP ALS, the
main solutions used to stop the algorithm are to repeat the 3 main steps (lines 4 to 7) for a fixed number
of iterations, or to compute the Frobenius norm on the difference between the input tensor and the tensor
reconstructed from the factor matrices. The first solution severely lacks in precision, and the second is
computationally demanding as it involves outer products between all the factor matrices. However, an255

other option is available to check the convergence, and consists in measuring the similarity of the factor
matrices between two iterations, as suggested in [1, 14]. It is a very efficient solution at large-scale, as it
combines precision and light computations (see section 5.3).

Finally, the implementation should facilitate the data loading, and should avoid data transformations
only needed to fit the expected input of the algorithm. It should also produce easily interpretable results,260

and minimize the risk of errors induced by laborious data manipulations (see section 5.4). The study of the
state of the art of tensor libraries showed that tensors are often used as multi-dimensional arrays, that are
manipulated through their indexes, even if they represent real world data. The mapping between indexes
and values is delegated to the user, although being an error-prone step. As it is a common task, it should
be handled by the library.265

To tackle these challenges, we leverage three optimization principles to develop an efficient decompo-
sition: coarse grained optimization, fine grained optimization, and incremental computation. The coarse
grained one relies on specific data structures and capabilities of Spark to efficiently distribute operations.
The incremental computation is used to avoid to compute the whole Hadamard product at each iteration.
The fine grained optimization is applied on the MTTKRP to reduce the storage of large amount of data and270

costly computations. For this, we have extended Spark’s matrices with the operations needed for the CP
decomposition. In addition, we choose to use an adapted converging criteria, efficient at large-scale. For
the implementation of the algorithm, we take a data centric point of view to facilitate the loading of data
and the interpretation of the results. By doing so, our CP decomposition implementation is able to process
tensors with billions of elements (i.e., non zero entries) on a mid-range server, and small and medium size275

tensors can be processed in a short time on a low-end personal computer.

5.1. Distributed and scalable matrix data structures
A simple but efficient sparse matrix storage structure is COO (COOrdinate storage) [33, 34]. The

CoordinateMatrix, available in the mllib package of Spark [35], is one of these structures, that stores only
the coordinates and the value of each existing element in a RDD (Resilient Distributed Datasets). It is well280

suited to process sparse matrices, such as a matricized tensor.

X

Figure 4: Blocks mapping for a multiplication between two BlockMatrix

Another useful structure is the BlockMatrix. It is composed of multiple blocks containing each a
fragment of the global matrix. Operations can be parallelized by executing it on each sub-matrix. For
binary operations such as multiplication, only blocks from each BlockMatrix that will be associated are
sent to each other, and the result is then aggregated if needed (see figure 4). It is thus an efficient structure285

for dense matrices, such as the factor matrices, and allows distributed computations to process all blocks.

11

Unfortunately, only some basic operations are available for BlockMatrix, as for example the multi-
plication or addition. The more complex ones, including the Hadamard and Khatri-Rao products, are
missing. We have extended Spark BlockMatrix with more advanced operations, that keep the coarse
grained optimization logic of the multiplication. We also added new operations, that involve BlockMatrix290

and CoordinateMatrix to take advantage of the both structures for our optimized MTTKRP (see below).

5.2. Mixing three principles of optimization
Tensors have generally a high level of sparsity. In the CP decomposition, they only appear under

their matricized form, thus they are naturally manipulated as a CoordinateMatrix data structure in our
implementation. On the other hand, the factor matrices A of the CP decomposition are dense, because295

they hold information for each index of each dimension. They greatly benefit from the capabilities of the
extended BlockMatrix we developed. By using the most suitable structure for each part of the algorithm,
we leverage specific optimizations that can speed up the whole algorithm.

Algorithm 2 CP-ALS adapted to Spark

Require: Tensor X ∈ RI1×I2×···×IN and target rank R
1: Initialize A(1), . . . ,A(N), with A(n)

∈ RIn×R

2: V← A(1)TA(1) �∗ . . . �∗ A(N)TA(N)

3: repeat
4: for n = 1, . . . ,N do
5: V← V �A(n)TA(n)

6: A(n)
←MTTKRP(X(n), (A(N), . . . ,A(n+1),A(n−1), . . . ,A(1)))V†

7: V← V �∗ A(n)TA(n)

8: normalize columns of A(n)

9: λ← norms of A(n)

10: end for
11: until < convergence >

Besides using and improving Spark’s matrices according to the specificities of data, we also have
introduced fine grained optimization and incremental computation into the algorithm to avoid costly300

operations in terms of memory and execution time. These improvements are synthesized in algorithm 2
and explained below.

First, to avoid computing V completely at each iteration for each dimension, we propose to do it
incrementally. Before iterating, we calculate the Hadamard product for all A (line 2 of the algorithm 2).
At the beginning of the iteration, A(n)TA(n) is element-wise divided from V, giving the expected result at305

this step (line 5 of the algorithm 2). At the end of the iteration, the Hadamard product between the new
A(n)TA(n) and V prepares V for the next iteration (line 7 of the algorithm 2).

The MTTKRP part (line 6 of the algorithm 2) is sensitive to improvement, as stated in section 2. Indeed,
by focusing on the elements of the result rather than on the operation, it can be easily reordered. For
example, if we multiply a 3-order tensor matricized on dimension 1 with the result of A(3)

� A(2), we can310

notice that, in the result, the indexes of the dimensions in the tensor X correspond directly to those in the
matrices A(3) and A(2). This behavior is represented below in an example simplified with only one rank:

[
x1,1,1 x1,2,1 x1,1,2 x1,2,2
x2,1,1 x2,2,1 x2,1,2 x2,2,2

]
×


a(2)

1,1a(3)
1,1

a(2)
2,1a(3)

1,1

a(2)
1,1a(3)

2,1

a(2)
2,1a(3)

2,1

 =

x1,1,1a(2)
1,1a(3)

1,1 + x1,2,1a(2)
2,1a(3)

1,1 + x1,1,2a(2)
1,1a(3)

2,1 + x1,2,2a(2)
2,1a(3)

2,1

x2,1,1a(2)
1,1a(3)

1,1 + x2,2,1a(2)
2,1a(3)

1,1 + x2,1,2a(2)
1,1a(3)

2,1 + x2,2,2a(2)
2,1a(3)

2,1


12

Thus, rather than computing the full Khatri-Rao product and performing the multiplication with the
matricized tensor, we apply a fine grained optimization that takes advantage of the mapping of indexes,
and that anticipates the construction of the final matrix. For each entry of the CoordinateMatrix of the315

matricized tensor (i.e., all non-zero values), we select in each factor matrix A which element will be used,
and compute elements of the final matrix (algorithm 3). As this optimization allows to skip the temporary
storage of the dense result of the Khatri-Rao product of size RIn×J with J =

∏
j,n I j, it is a major gain in

memory space.

Algorithm 3 Detail of the MTTKRP

Require: The index of the factor matrix n, the matricized tensor X(n) ∈ RIn×J with J = Π j,nI j and
A(1), . . . ,A(n−1),A(n+1), . . . ,A(N), with A(i)

∈ RIi×R

1: Initialize A(n) with zeros, with A(n)
∈ RIn×R

2: for each (x, y, v) in X(n) with x, y the coordinates and v the value do
3: for r = 1, . . . ,R do
4: value← v
5: for each A(i) with i , n do
6: c← extract A(i) coordinate from y
7: value← value × a(i)

c,r
8: end for
9: a(n)

x,r ← a(n)
x,r + value

10: end for
11: end for

5.3. Stopping criterion320

To evaluate the convergence of the algorithm and decide when to stop iterating, a majority of CP
decomposition implementations uses the Frobenius norm on the difference between the original tensor
and the reconstructed tensor from the factor matrices. However, at large-scale the reconstruction of the
tensor from the factor matrices is an expensive computation, even more than the naive MTTKRP. Waiting
for a predetermined number of iterations is not very effective to avoid unnecessary iterations. Thus, other
stopping criteria such as the evaluation of the difference between the factor matrices with those of the
previous iteration [1, 14] are much more interesting, as they work on smaller chunks of data. To this end,
we use the Factor Match Score (FMS) [36] to measure the difference between factor matrices of the current
iteration (~λ,A(1),A(2), . . . ,A(N)�) and those of the previous iteration (~λ̂, Â(1), Â(2), . . . , Â(N)�). The FMS is
defined as follows:

FMS =
1
R

R∑
r=1

(
1 −

ξ − ξ̂

max(ξ, ξ̂)

) N∏
n=1

a(n)T
r â(n)

r

‖a(n)
r ‖.‖â

(n)
r ‖

where ξ = λr
∏N

n=1 ‖a
(n)
r ‖ and ξ̂ = λ̂r

∏N
n=1 ‖â

(n)
r ‖.

The use of the FMS allows us to significantly improve the performance of the decomposition on large
tensors, without sacrificing precision.

5.4. Data centric implementation
Our implementation of the CP decomposition, in addition to being able to run with any number of325

dimensions, is data centric: it takes a Spark DataFrame as input to execute the CP directly on real data.
Thus, it benefits from Spark capabilities to retrieve data directly from various datasources, as most of DBMS
are supported as well as file formats.

A specific column of the DataFrame contains the values of the tensor and all the other columns contain
the values for each dimension. The CP operators returns a map associating the original names of the330

dimensions to a new DataFrame with three columns for each dimension: the dimension’s values, the rank,

13

and the value computed by the CP decomposition. By using a DataFrame as input, we allow the use of any
type as dimensions’ values. For example, users could create a DataFrame with four columns: username,
hashtag, time and value, with username and hashtag being of type String in order to easily interpret the
decomposition result. This avoids having to handle an intermediate data structure containing the mapping335

between indexes and real values, and thus reduces the risk of mistakes when transforming data.

5.5. Performance study
To validate our algorithm, we have run experiments4 on tensors produced by varying the size of

dimensions and the sparsity, on a Dell PowerEdge R740 server (Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz,
20 cores, 256GB RAM). We compare our execution time to those of the baseline of distributed CP tensor340

decomposition libraries available: HaTen2 [13], BigTensor [22], SamBaTen [28] and CSTF [31]. Hadoop
2.6.0 was used to execute HaTen and BigTensor. TensorLy [5] is used as reference of non-distributed library,
with its default backend (NumPy). The measured times do not include the loading of data to be as neutral
as possible, as for some libraries it requires the creation of a specific file to perform the decomposition.

Figure 5: Execution time for tensors with 3 dimensions of size 100 (top-left), 1 000 (top-right), 10 000 (bottom-left) and 100 000 (bottom-
right). CSTF produces an Out Of Memory exception for tensors with 1B elements, and TensorLy cannot load data with dimensions of
size 10 000 and 100 000

Tensors were created randomly with 3 dimensions of the same size, from 100 to 100k. The sparsity345

ranges from 10−1 to 10−9, and tensors were created only if the number of non-zero elements is superior to
3× size and inferior or equal to 1B (with dimensions of size 100 and 1 000, tensors can only have respectively
106 and 109 non-zero elements at most, with a sparsity up to 10−1 they cannot reach 1B elements, but
respectively 105 and 108 non-zero elements). As the libraries do not use the same convergence criteria, we
used a fixed number of iterations. We have run the CP decomposition for 5 iterations, and have measured350

the execution time. Results are shown in figure 5.
Our implementation clearly outperforms the state of the art, with speed-up reaching several orders

of magnitude. CSTF keeps up concerning the execution time of small tensors, but is no match for large

4The source code of the experiments and the tool used to create tensors are available at https://github.com/AnnabelleGillet/
MuLOT/tree/main/experiments

14

https://github.com/AnnabelleGillet/MuLOT/tree/main/experiments
https://github.com/AnnabelleGillet/MuLOT/tree/main/experiments

tensors, and cannot compute the decomposition for tensors with 1B elements. Execution times of MuLOT
are nearly linear following the number of non-zero elements. The optimization techniques applied show355

efficient results even for very large tensors of billion elements, with a maximum execution time for a 3-order
tensor with dimensions of size 100k of 62 minutes, while the closest, BigTensor, takes 547 minutes. The
execution time for small tensors with dimensions of size 100 is acceptable as it takes less than 10 seconds, but
compared to TensorLy it could be improved with a non-distributed implementation. However, TensorLy
does not take into consideration the sparsity of the tensors as shown by the execution time on tensors with360

dimensions of size 1 000, and it cannot process tensors with dimensions of size 10 000 or greater.
The differences of result with the CSTF library are interesting to study. As we both use Spark, it allows

to see the benefits of our algorithm. Even if the Spark version of CSTF is older (1.5 for CSTF and 3.0 for our
implementation), it was already depending on efficient math libraries (breeze5, that itself depends on BLAS,
LAPACK and ARPACK), thus the improved execution time comes mainly from our optimized algorithm.365

Indeed, CSTF does not use a dense structure for the factor matrices, and cannot apply operations that
would benefit from dense structures. Furthermore, CSTF recomputes the V at each iteration, while we do
it incrementally. It also uses the Frobenius norm as stopping criterion, that is less efficient than the Factor
Match Score that we use.

6. Analysis of the Twitter dataset related to COVID vaccines370

We have experimented our stratification method in the context of Cocktail6, an interdisciplinary research
project aiming to study trends and weak signals in discourses about food and health on Twitter. We focus
on french tweets revolving around COVID-19 vaccines, harvested with Hydre, a high performance system
to collect, store and analyze tweets [37]. The corpus contains 55 315 877 tweets from the period of December
1st 2020 to October 30th 2021. The code and the anonymized dataset are available7.375

To apply the stratification method, we have built a 3-order tensor UHT , with one dimension containing
the users, one the hashtags, and one the time with a granularity of 1 day. The values of the tensor represent
the number of tweets produced by a given user, that contained a given hashtag at a given day. Only the
tweets that have been retweeted at least 10 times are kept. The most representative ranks of each stratum
are shown in figure 6 (stratum 1), figure 7 (stratum 2) and figure 8 (stratum 3). In these figures, the 20 users380

and hashtags that have the highest values in the rank are shown (the users have been anonymized), and
the time is plotted for the whole period.

In a rank of the stratum 1, we can see a strong concern for the vaccination topic in general, with hashtags
such as ”Astrazeneca”, ”Vaccination” or ”Pfizer”. It is present almost at anytime of the corpus, with a spike
in March/April, when the vaccination started in France.385

In a rank of the stratum 2, we can detect a topic about long COVID, in which we can find the hashtags
”ApresJ20” (after day 20), ”UnDonPourLeCovidLong” (a donation for the long COVID) or ”CovidLon-
gEnfants” (kids long COVID). Although being an important topic, it is not as present in the dataset as the
vaccination discourse.

In the last stratum, we can find a rank about the evaluation of the BTS (the french equivalent of the Higher390

National Diploma), that has been switched from final tests to continuous assessment. It was a temporary
issue that appeared during the exam period, around May 2021. Another rank is close to a conspiracy
discourse about the origin of COVID, with hashtags such as ”CCPVirus”, ”UnrestrictedBioWeapon” or
”CCP Is Terrorist”. It can be seen as an isolated discourse that is not propagated into the dataset.

To conclude this experiment, the stratification method is able to reveal interesting signals that have395

lighter intensity in each new stratum. In the stratum 3, it even shows topics that can be considered as weak
signals given the volume and the extended time period of the dataset. These results have been validated
by social scientists of the Cocktail project.

5https://github.com/scalanlp/breeze
6https://projet-cocktail.fr/
7https://github.com/AnnabelleGillet/MuLOT/tree/main/experiments/Stratification

15

https://github.com/scalanlp/breeze
https://projet-cocktail.fr/
https://github.com/AnnabelleGillet/MuLOT/tree/main/experiments/Stratification

Figure 6: Stratum 1 of the stratification

Figure 7: Stratum 2 of the stratification

7. Conclusion

We have proposed a stratification method based on tensor deflation, allowing to find hidden signals400

in data while keeping information about the level of intensity of the signal. Furthermore, as this method
requires several execution of the CP decomposition, we have also proposed an optimized algorithm to
execute the CP decomposition at large-scale. We have validated this algorithm with a Spark implementation,
and showed that it outperforms the state of the art by several orders of magnitude. We applied our
stratification method along with our CP algorithm on a Twitter dataset about COVID vaccines, in which405

we found discourses of different intensity, including some that could be qualified as weak signal.
We plan to continue our work on tensor decompositions by 1) developing other tensor decompositions

such as Tucker, HOSVD or DEDICOM; and 2) studying the impact of the choice of the norm for the scaling

16

Figure 8: Stratum 3 of the stratification

of the factor matrices.

Acknowledgments This work is supported by ISITE-BFC (ANR-15-IDEX-0003) coordinated by G. Brachotte,410

CIMEOS Laboratory (EA 4177), University of Burgundy.

References

[1] A. Cichocki, R. Zdunek, A. H. Phan, S. Amari, Nonnegative matrix and tensor factorizations: applications to exploratory
multi-way data analysis and blind source separation, John Wiley & Sons, 2009.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., Tensorflow: A415

system for large-scale machine learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation, 2016,
pp. 265–283.

[3] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., PyTorch: An
imperative style, high-performance deep learning library, in: Advances in Neural Information Processing Systems, 2019, pp.
8024–8035.420

17

[4] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, et al.,
Theano: A Python framework for fast computation of mathematical expressions, arXiv:1605.02688.

[5] J. Kossaifi, Y. Panagakis, A. Anandkumar, M. Pantic, Tensorly: Tensor learning in python, The Journal of Machine Learning
Research 20 (1) (2019) 925–930.

[6] V. Hore, A. Viñuela, A. Buil, J. Knight, M. I. McCarthy, K. Small, J. Marchini, Tensor decomposition for multiple-tissue gene425

expression experiments, Nature genetics 48 (9) (2016) 1094–1100.
[7] K. Yang, X. Li, H. Liu, J. Mei, G. Xie, J. Zhao, B. Xie, F. Wang, Tagited: Predictive task guided tensor decomposition for

representation learning from electronic health records, in: Proc. of the Thirty-First AAAI Conference on Artificial Intelligence,
2017.

[8] J. Sun, D. Tao, C. Faloutsos, Beyond streams and graphs: dynamic tensor analysis, in: ACM SIGKDD International Conference430

on Knowledge Discovery and Data mining, ACM, 2006, pp. 374–383.
[9] E. E. Papalexakis, C. Faloutsos, N. D. Sidiropoulos, Tensors for data mining and data fusion: Models, applications, and scalable

algorithms, Transactions on Intelligent Systems and Technology (TIST) 8 (2) (2016) 16.
[10] E. E. Papalexakis, L. Akoglu, D. Ience, Do more views of a graph help? community detection and clustering in multi-graphs, in:

International Conference on Information Fusion, IEEE, 2013, pp. 899–905.435

[11] S. Fernandes, H. Fanaee-T, J. Gama, Tensor decomposition for analysing time-evolving social networks: An overview, Artificial
Intelligence Review 54 (4) (2021) 2891–2916.

[12] L. A. Adamic, B. A. Huberman, A. Barabási, R. Albert, H. Jeong, G. Bianconi, Power-law distribution of the world wide web,
science 287 (5461) (2000) 2115–2115.

[13] I. Jeon, E. E. Papalexakis, U. Kang, C. Faloutsos, Haten2: Billion-scale tensor decompositions, in: International Conference on440

Data Engineering, IEEE, 2015, pp. 1047–1058.
[14] T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM review 51 (3) (2009) 455–500.
[15] M. Araujo, S. Papadimitriou, S. Günnemann, C. Faloutsos, P. Basu, A. Swami, E. E. Papalexakis, D. Koutra, Com2: fast automatic

discovery of temporal (‘comet’) communities, in: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Springer,
2014, pp. 271–283.445

[16] R. A. Harshman, et al., Foundations of the PARAFAC procedure: Models and conditions for an” explanatory” multimodal factor
analysis, Tech. rep. (1970).

[17] S. Rabanser, O. Shchur, S. Günnemann, Introduction to tensor decompositions and their applications in machine learning, arXiv
preprint arXiv:1711.10781.

[18] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, C. Faloutsos, Tensor decomposition for signal processing450

and machine learning, Transactions on Signal Processing 65 (13) (2017) 3551–3582.
[19] A.-H. Phan, P. Tichavskỳ, A. Cichocki, Fast alternating ls algorithms for high order candecomp/parafac tensor factorizations,

Transactions on Signal Processing 61 (19) (2013) 4834–4846.
[20] L. Gauvin, A. Panisson, C. Cattuto, Detecting the community structure and activity patterns of temporal networks: a non-negative

tensor factorization approach, PloS one 9 (1) (2014) e86028.455

[21] E. E. Papalexakis, C. Faloutsos, N. D. Sidiropoulos, Parcube: Sparse parallelizable tensor decompositions, in: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2012, pp. 521–536.

[22] N. Park, B. Jeon, J. Lee, U. Kang, Bigtensor: Mining billion-scale tensor made easy, in: ACM International on Conference on
Information and Knowledge Management, 2016, pp. 2457–2460.

[23] F. Sheikholeslami, G. B. Giannakis, Identification of overlapping communities via constrained egonet tensor decomposition, IEEE460

Transactions on Signal Processing 66 (21) (2018) 5730–5745.
[24] C. Psarras, L. Karlsson, J. Li, P. Bientinesi, The landscape of software for tensor computations, arXiv preprint arXiv:2103.13756.
[25] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, S. Amarasinghe, The tensor algebra compiler, OOPSLA (2017) 1–29.
[26] P. Springer, T. Su, P. Bientinesi, Hptt: a high-performance tensor transposition c++ library, in: ACM SIGPLAN International

Workshop on Libraries, Languages, and Compilers for Array Programming, 2017, pp. 56–62.465

[27] S. Van Der Walt, S. C. Colbert, G. Varoquaux, The NumPy array: a structure for efficient numerical computation, Computing in
Science & Engineering 13 (2) (2011) 22.

[28] E. Gujral, R. Pasricha, E. E. Papalexakis, Sambaten: Sampling-based batch incremental tensor decomposition, in: International
Conference on Data Mining, SIAM, 2018, pp. 387–395.

[29] A. Gudibanda, T. Henretty, M. Baskaran, J. Ezick, R. Lethin, All-at-once decomposition of coupled billion-scale tensors in apache470

spark, in: High Performance extreme Computing Conference, IEEE, 2018, pp. 1–8.
[30] E. E. Papalexakis, C. Faloutsos, N. D. Sidiropoulos, ParCube: Sparse parallelizable CANDECOMP-PARAFAC tensor decompo-

sition, ACM Transactions on Knowledge Discovery from Data (TKDD) 10 (1) (2015) 1–25.
[31] Z. Blanco, B. Liu, M. M. Dehnavi, Cstf: Large-scale sparse tensor factorizations on distributed platforms, in: Proceedings of the

47th International Conference on Parallel Processing, 2018, pp. 1–10.475

[32] R. Bro, H. A. Kiers, A new efficient method for determining the number of components in parafac models, Journal of Chemo-
metrics: A Journal of the Chemometrics Society 17 (5) (2003) 274–286.

[33] N. Ahmed, N. Mateev, K. Pingali, P. Stodghill, A framework for sparse matrix code synthesis from high-level specifications, in:
SC’00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, IEEE, 2000, pp. 58–58.

[34] N. Goharian, A. Jain, Q. Sun, Comparative analysis of sparse matrix algorithms for information retrieval, computer 2 (2003) 0–4.480

[35] R. Bosagh Zadeh, X. Meng, A. Ulanov, B. Yavuz, L. Pu, S. Venkataraman, E. Sparks, A. Staple, M. Zaharia, Matrix computations
and optimization in apache spark, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016, pp. 31–38.

[36] E. C. Chi, T. G. Kolda, On tensors, sparsity, and nonnegative factorizations, SIAM Journal on Matrix Analysis and Applications
33 (4) (2012) 1272–1299.485

18

[37] A. Gillet, É. Leclercq, N. Cullot, Lambda+, the renewal of the lambda architecture: Category theory to the rescue, in: International
Conference on Advanced Information Systems Engineering (CAiSE), Springer, 2021, pp. 381–396.

19

	Introduction
	Overview of tensors and CP decomposition
	Background of tensors
	Empirical study

	State of the art
	The CANDECOMP/PARAFAC decomposition as analytics tool
	Tensor libraries

	Stratification of social network data through tensor deflation
	Distributed, scalable and optimized ALS for Apache Spark
	Distributed and scalable matrix data structures
	Mixing three principles of optimization
	Stopping criterion
	Data centric implementation
	Performance study

	Analysis of the Twitter dataset related to COVID vaccines
	Conclusion

