
HAL Id: hal-03892104
https://u-bourgogne.hal.science/hal-03892104

Submitted on 9 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lambda+, the renewal of the Lambda Architecture:
Category Theory to the rescue

Annabelle Gillet, Eric Leclercq, Nadine Cullot

To cite this version:
Annabelle Gillet, Eric Leclercq, Nadine Cullot. Lambda+, the renewal of the Lambda Architecture:
Category Theory to the rescue. 37ème Conférence sur la Gestion de Données (BDA), Oct 2021, Paris,
France. �hal-03892104�

https://u-bourgogne.hal.science/hal-03892104
https://hal.archives-ouvertes.fr


Lambda+, the renewal of the Lambda Architecture: Category
Theory to the rescue

Annabelle Gillet
LIB Univ. Bourgogne Franche Comté

Dijon, France
annabelle.gillet@depinfo.u-

bourgogne.fr

Éric Leclercq
LIB Univ. Bourgogne Franche Comté

Dijon, France
eric.leclercq@u-bourgogne.fr

Nadine Cullot
LIB Univ. Bourgogne Franche Comté

Dijon, France
nadine.cullot@u-bourgogne.fr

ABSTRACT
Designing software architectures for Big Data is a complex task
that has to take into consideration multiple parameters, such as
the expected functionalities, the properties that are untradeable,
or the suitable technologies. Patterns are abstractions that guide
the design of architectures to reach the requirements. One of the
famous patterns is the Lambda Architecture, which proposes real-
time computations with correctness and fault-tolerance guarantees.
But the Lambda has also been highly criticized, mostly because of its
complexity and because the real-time and correctness properties are
each effective in a different layer but not in the overall architecture.
Furthermore, its use cases are limited, whereas Big Data need an
adaptive and flexible environment to fully reveal the value of data.
Nevertheless, it proposes some interesting mechanisms. We present
a renewal of the Lambda Architecture: the Lambda+ Architecture,
supporting both exploratory and real-time analyzes on data. We
propose to study the conservation of properties in composition of
components in an architecture using the category theory.

KEYWORDS
Architecture pattern, Category theory, Lambda Architecture

1 INTRODUCTION
All information systems have a common point: they need an archi-
tectural design before being developed and deployed. The archi-
tecture must guarantee some properties and guide the consistency
of the overall structure of the information system. In this context,
architectural styles and patterns are used to build a system hav-
ing the expected characteristics for each of its part as well as for
its entirety, and to state the requirements of the technologies and
programming techniques needed to achieve the goal sought. Thus,
global requirements such as scalability, performance, reliability
must be clearly identified to select the style of architecture, the dif-
ferent components and the interactions among them [6], and then
choose technologies with properties (such as ACID for databases
or micro batch capabilities for stream processing) that fit all of
the previous choices. The absence of coherence in a definition of
an architecture can lead to the dreaded Big Ball of Mud [3], that
reduces greatly the maintenance and evolutivity capabilities of the
system.

© 2021, Copyright is with the authors. Published in the Proceedings of the BDA
2021 Conference (October 25-28, 2021, En ligne, France). Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.
© 2021, Droits restant aux auteurs. Publié dans les actes de la conférence BDA 2021
(25-28 octobre 2021, En ligne, France). Redistribution de cet article autorisée selon les
termes de la licence Creative Commons CC-by-nc-nd 4.0.

Recent researches in software architecture try to formally define
styles and patterns, to anticipate effects of the composition of com-
ponents, and thus knowing beforehand the result of the evolution of
a part of the architecture [1, 5].When architectures evolve and grow,
they can combine several smaller parts of architectures developed
separately. When building a large scale, complex and distributed
architecture, its parts can embed architecture styles on their own.
These different cases can result in compositions of smaller architec-
ture parts with their proper styles and patterns, so formalization
should be able to express and control these compositions. Category
theory [2] is a promising approach for formalization, due to its ease
to represent compositions as it considers morphims and functors
as first class citizens, and to its already existing proximity to the
engineering software world, particularly with functional program-
ming. Moreover, its graphical representation is a visual help to
understand the formalization, and leads to a better comprehension
of the system [9].

We propose the Lambda+ Architecture pattern, an update of the
Lambda Architecture, and a formalization to study the conservation
of properties in compositions of components using the category
theory. For more details on this work, see [4].

2 THE LAMBDA ARCHITECTURE PATTERN
The properties of correctness, low latency and fault-tolerance have
always been a major concern when designing architectures. In [6],
Lampson sketches some suggestions that are still relevant today,
and that can be found, among others, in the Lambda Architecture,
introduced by Marz in 2011 [7, 8]. The objective of the Lambda
is simple: to compute predetermined queries with a very low la-
tency and to ensure the correctness of the processing. To do so,
the Lambda is composed of three layers: the batch layer, that takes
care of storing raw data in the master dataset and of executing the
computations on the batch of data while preserving the correctness
property, the speed layer, that performs the same computations as
the batch layer but with an incremental processing to support the
low latency property but not the correctness one, and the serving
layer, that puts the results to disposal.

With these specifications, the advantages of the Lambda Archi-
tecture are a strong fault-tolerance for machine and human faults, a
guarantee of a correct result with the batch layer and a low latency
with the speed layer. However, the Lambda has also been criticized
a lot, due to its complexity to maintain and to evolve both the speed
and the batch layers, that have to perform the same computations,
but with different paradigms. It also lacks in flexibility, as its goal is
to answer only predetermined queries. Thus, alternative use cases



BDA 2021, 25–28 octobre, 2021, Paris, France A. Gillet et al.

such as exploratory analyzes require to modify the pattern. Fur-
thermore, by delegating the correctness property only to the batch
layer and not to the speed layer, the low latency and the correctness
properties cannot be obtained simultaneously. To clarify this state-
ment, the Lambda has to be replaced in the context of its creation.
At this time, streaming systems were only at their early stages,
and thus did not have all the capabilities that they have today. It
includes the correctness property, that have since been integrated
into the stream processing systems. So, the Lambda can be seen
as a mean to compensate flaws of an emerging technology, rather
than a pattern that fully exploits it.

3 THE LAMBDA+ ARCHITECTURE PATTERN
To improve the Lambda Architecture, the correctness property
should hold for all the components. Furthermore, the fault-tolerance
should be kept, but as the reprocessing of data in a batch fashion is
incompatible with the real-time property, it should be integrated
as an alternative running composition of components, activated
only in case of a technical failure or to satisfy new needs. Use
cases should also gain in flexibility, and the complexity induced by
the development of the same process with different paradigms in
different layers should be avoided.

Master Dataset

Real-time insights

Storage component

Streaming ETLData traffic
controller

New data

New data

New data

Figure 1: Overview of the Lambda+ Architecture

The Lambda+ Architecture (figure 1) is meant to be a renewal of
the Lambda Architecture, by improving the support of the correct-
ness property and by leveraging two main functionalities: 1) storing
data in a way that allows flexible and exploratory data analyzes ;
and 2) computing in real-time predefined queries on data streams
in order to have insights on well-known and identified needs. The
duality between exploratory analyzes and predefined queries is of
primary importance in a Big Data context, where the combination
of volume and variety of data overcomes the capability of finding
all the insights hidden in data. The fault-tolerance mechanism of
the Lambda is kept, but is only activated when needed.

The Lambda+ is composed of a set of components interacting
together asynchronously with messages. This pattern borrows its
principles from the Event-Driven Architecture style, which is well-
suited for achieving performance, scalability and evolutivity. The
trade-offs of this architecture style is a lack of simplicity and the
difficulty of testing the whole architecture, due to the dynamic

nature of the messaging workflow and the chaining of various
processing components.

4 USING THE CATEGORY THEORY TO STUDY
CONSERVATION OF PROPERTIES

In the research field of software engineering for architecture design,
the need for proper theory and formalization has raised importance
in the last decade [1, 5]. Designing, specifying and implementing
software architectures are complex tasks, that require careful spec-
ifications to link and preserve characteristics through all the steps
of creation. The development of theory in this field requests both
practical and theoretical skills, in order to propose a model suited
to the expectations, that takes into consideration the imperfections
of the real-world of engineering.

To fill this need, category theory [2] is a promising approach:
it allows to switch from a model to another or to navigate among
abstraction levels [9]. By focusing on relations (the morphisms)
and compositions, it proposes powerful mechanisms that can be
applied to architectures: the behaviour of functors combined with
preorders allows the study of the conservation or the discarding of
properties in compositions of components.

5 CONCLUSION
Weproposed the Lambda+Architecture pattern, the successor of the
Lambda Architecture, that gets rid of its flaws and fits more various
use cases by handling both exploratory and real-time analyzes. We
used the category theory to study the conservation of properties in
compositions of components.

For future work, we plan to develop our formalization to study
more various aspects of architectures: 1) to navigate among ab-
straction levels (i.e., the level of detail of the representation of the
architecture) ; 2) to verify if an architecture follows a given style or
pattern by using full functors (i.e., surjective functors) ; and 3) to
extend the property description, including numerical values (e.g.,
the execution time to deduce if it can be considered as real-time).

ACKNOWLEDGMENTS
This work is supported by ISITE-BFC (ANR-15-IDEX-0003) coordi-
nated by G. Brachotte, CIMEOS Laboratory (EA 4177), University
of Burgundy.

REFERENCES
[1] Manfred Broy. 2011. Can practitioners neglect theory and theoreticians neglect

practice? Computer 44, 10 (2011), 19–24.
[2] Samuel Eilenberg and Saunders MacLane. 1945. General theory of natural equiva-

lences. Trans. Amer. Math. Soc. 58, 2 (1945), 231–294.
[3] Brian Foote and Joseph Yoder. 1997. Big ball of mud. Pattern languages of program

design 4 (1997), 654–692.
[4] Annabelle Gillet, Éric Leclercq, and Nadine Cullot. 2021. Lambda+, the Renewal

of the Lambda Architecture: Category Theory to the Rescue. In International
Conference on Advanced Information Systems Engineering. Springer, 381–396.

[5] Pontus Johnson, Mathias Ekstedt, and Ivar Jacobson. 2012. Where’s the theory for
software engineering? IEEE software 29, 5 (2012), 96–96.

[6] Butler W Lampson. 1983. Hints for computer system design. In Proceedings of the
ninth ACM symposium on Operating systems principles. 33–48.

[7] Nathan Marz. 2011. How to beat the CAP theorem. http://nathanmarz.com/blog/
how-to-beat-the-cap-theorem.html

[8] Nathan Marz and James Warren. 2015. Big Data: Principles and best practices of
scalable real-time data systems. Manning.

[9] David I Spivak. 2014. Category theory for the sciences. MIT Press.

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

	Abstract
	1 Introduction
	2 The Lambda Architecture pattern
	3 The Lambda+ Architecture pattern
	4 Using the category theory to study conservation of properties
	5 Conclusion
	Acknowledgments
	References

