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ABSTRACT
Tensors are powerful multi-dimensional mathematical objects, that
easily embed various data models such as relational, graph, time
series, etc. Furthermore, tensor decomposition operators are of
great utility to reveal hidden patterns and complex relationships in
data. In this article, we propose to study the analytical capabilities
of the Tucker decomposition, as well as the differences brought by
its major algorithms. We demonstrate these differences through
practical examples on several datasets having a ground truth. It is
a preliminary work to add the Tucker decomposition to the Tensor
Data Model, a model aiming to make tensors data-centric, and to
optimize operators in order to enable the manipulation of large
tensors.
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1 INTRODUCTION
From a general point of view, data analysis is a complex process
that requires the selection and retrieval of data as well as the appli-
cation of one or several algorithms. This leads to two major issues:
data must be transformed to fit the selected algorithms, and the
output results must be interpretable. Furthermore, data analysis
often requires to take into account multiple characteristics or fea-
tures in algorithms to fully reveal and understand hidden value in
data. For example, the study of community structures in social net-
works needs the possibility to discover overlapping communities
as well as adding a temporal context for each community, i.e., over
which period of time the community is active. Unfortunately, most
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algorithms do not take into consideration this kind of needs, and in-
tegrating them might require heavy modifications to the algorithm
and/or produce a limited solution. To continue with the previous
example, when using snapshots to detect communities their fixed
size does not necessary correspond to the temporal activity of all
the communities, and thus this can hide some information.

In this context, tensors are a valuable solution [2]. Indeed, their
multi-dimensional nature allows to embed easily different data
models. Graphs can be represented as adjacency matrices, that are
2-order tensors. In addition, when dealing with labelled graphs, the
2-order tensor can be extended to a (2 +𝑛)-order tensor, with 𝑛 the
number of types of labels. This includes temporal graphs, in which
the temporality can be seen as a specific label, and they can be used
for example to represent social network data [1]. Time series can
be modeled as vectors in which each entry is the value at the time 𝑡 .
Vectors are 1-order tensors, so time series are directly embedded
into tensors. Dimensions can be added to include more contextual
information, as for example, in an IoT application, the sensor that
took the measures and its localization. Other models such as rela-
tional, OLAP data cubes or key-value can also be represented by
tensors.

Furthermore, tensors have powerful analytical operators: the
decompositions. Tensor decompositions are used for various pur-
poses such as dimensionality reduction, noise elimination, identifi-
cation of latent factors, pattern discovery, ranking, recommendation
or data completion. They are applied in a wide range of applica-
tions, including genomics [6], analysis of health records [21], graph
mining [19] and identification and evolution of communities in
social networks [1, 10]. Papalexakis et al. in [11] review major us-
ages of tensor decompositions in data mining applications. One
of these decomposition is Tucker, that factorizes a tensor with 𝑁
dimensions into a smaller core tensor and a set of 𝑁 factor ma-
trices, i.e., one for each dimension. However, the results of the
Tucker decompositon can be tricky to interpret, especially com-
pared to more straightforward decompositions such as the CANDE-
COMP/PARAFAC [16]. Nevertheless, the core tensor, missing from
the CANDECOMP/PARAFAC decomposition, provides additional
insights concerning the relationships among the dimensions.

Our contributions are the following. We propose to study the
Tucker decomposition, its two major algorithms and its uses in data
analysis. We also identify the key points that can impact or reduce
the processing of massive data, and conduct an experimentation
of the algorithms on two real datasets with ground truth to show
their capabilities and interpretability. It is a preliminary work aim-
ing to incorporate the Tucker decomposition into the Tensor Data
Model [5, 9]. TDM adds the notion of schema and data manipulation
operators to tensors, in order to make them data-centric and to
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avoid technical and functional errors brought by the manipulation
of dimensions and elements of dimensions solely through integer
indexes [14]. It also uses optimization techniques to allow the exe-
cution of operators, including the decompositions, on large-scale
data [4].

The remaining of this article is organized as follow: section 2
gives an overview of tensors and of some main operators, section 3
presents the Tucker decomposition and two major algorithms to
compute it, section 4 relates of experiments that illustrate the dif-
ferent uses of the Tucker decomposition and section 5 concludes
the article and presents perspectives of future works.

2 BACKGROUND OF TENSORS
Tensors are general abstract mathematical objects which can be
considered according to various points of view such as a multi-
linear application, or as the generalization of matrices to multiple
dimensions. We will use the definition of a tensor as an element of
the set of the functions from the product of 𝑁 sets 𝐼 𝑗 , 𝑗 = 1, . . . , 𝑁
to R : 𝒳 ∈ R𝐼1×𝐼2×···×𝐼𝑁 , where 𝑁 is the number of dimensions of
the tensor or its order or its mode. Table 1 summarizes the notations
used in this article.

Tensor operators, by analogy with operations on matrices and
vectors, are multiplications, transpositions, matricizations (or un-
folding) and decompositions (also named factorizations). We only
highlight the most significant operators on tensors and matrices
which are used in Tucker decomposition algorithms. The reader
can consult [2, 8] for an overview of the major operators.

The outer product between a tensor 𝒴 ∈ R𝐼1×𝐼2×···×𝐼𝑁 and
another tensor𝒳 ∈ R𝐽1×𝐽2×···×𝐽𝑀 noted 𝒴 ◦𝒳 produces a tensor
𝒵 ∈ R𝐼1×𝐼2×···×𝐼𝑁 ×𝐽1×𝐽2×···×𝐽𝑀 in which the elements are equal to:

𝑧𝑖1,𝑖2,...,𝑖𝑁 , 𝑗1, 𝑗2,..., 𝑗𝑀 = 𝑦𝑖1,𝑖2,...,𝑖𝑁 𝑥 𝑗1, 𝑗2,..., 𝑗𝑀

The mode-𝑛 product allows to multiply a tensor by a matrix
or a vector. For a tensor 𝒳 ∈ R𝐽1×𝐽2×···×𝐽𝑛×···×𝐽𝑁 and a matrix
M ∈ R𝐼𝑛×𝐽𝑛 , the result of the mode-𝑛 product noted 𝒳 ×𝑛 M is a
new tensor 𝒴 ∈ R𝐽1×𝐽2×···×𝐼𝑛×···×𝐽𝑁 where:

𝑦 𝑗1,..., 𝑗𝑛−1,𝑖𝑛, 𝑗𝑛+1,..., 𝑗𝑁 =

𝐽𝑛∑︁
𝑗𝑛=1

𝑥 𝑗1,..., 𝑗𝑛−1, 𝑗𝑛, 𝑗𝑛+1,..., 𝑗𝑁𝑚𝑖𝑛, 𝑗𝑛

Themode-𝑛 product between a tensor𝒳 ∈ R𝐼1×···×𝐼𝑛−1×𝐼𝑛×𝐼𝑛+1×···×𝐼𝑁
and a vector v ∈ R𝐼𝑛 noted 𝒳 ×𝑛 v produces a tensor 𝒴 ∈
R𝐼1×···×𝐼𝑛−1×𝐼𝑛+1×···×𝐼𝑁 where:

𝑦𝑖1,...,𝑖𝑛−1,𝑖𝑛+1,...,𝑖𝑁 =

𝐼𝑛∑︁
𝑖𝑛=1

𝑥𝑖1,...,𝑖𝑛−1,𝑖𝑛,𝑖𝑛+1,...,𝑖𝑁 v𝑖𝑛

Themode-nmatricization of a tensor𝒳 ∈ R𝐼1×𝐼2×···×𝐼𝑁 noted
𝒳(𝑛) produces a matrixM ∈ R𝐼𝑛×Π 𝑗≠𝑛𝐼 𝑗 , where:

𝑚𝑖𝑛, 𝑗 = 𝑥𝑖1,...,𝑖𝑛,...,𝑖𝑁 with 𝑗 = 1 +
𝑁∑︁
𝑘=1
𝑘≠𝑛

(𝑖𝑘 − 1)
𝑘−1∏
𝑚=1
𝑚≠𝑛

𝐼𝑚

The Kronecker product between two matrices A ∈ R𝐼×𝐽 and
B ∈ R𝐾×𝐿 notedA⊗B produces a matrixC ∈ R(𝐼𝐾)×( 𝐽 𝐿) , in which
every elements of A are multiplied by the matrix B:

𝑐𝑚,𝑛 = 𝑎𝑖, 𝑗𝑏𝑘,𝑙 where𝑚 = 𝑘 + (𝑖 − 1)𝐾 and 𝑛 = 𝑙 + ( 𝑗 − 1)𝐿

3 TUCKER DECOMPOSITION
The Tucker decomposition [20] factorizes a 𝑁 -order tensor 𝒳 ∈
R𝐼1×···×𝐼𝑁 into a core tensor 𝒢 ∈ R𝑅1×···×𝑅𝑁 and 𝑁 factor matrices
A(𝑛) ∈ R𝐼𝑛×𝑅𝑛 (see for example figure 1 for a representation of the
Tucker decomposition on a 3-order tensor). The ranks 𝑅1, . . . , 𝑅𝑁
are input parameters that determine the number of vectors (that
can be seen as different features) for each factor matrix. The input
tensor can be approximated with:

𝒳 ≃ 𝒢 ×1 A(1) · · · ×𝑁 A(𝑁 )

𝒳𝐼1

𝐼2

𝐼3

≃ 𝒢A(1)𝑇

A(2)

A(3)

Figure 1: The Tucker decomposition, with𝒳 ∈ R𝐼1×𝐼2×𝐼3 the
input tensor, 𝒢 ∈ R𝑅1×𝑅2×𝑅3 the core tensor, and A(1) ∈ R𝐼1×𝑅1 ,
A(2) ∈ R𝐼2×𝑅2 and A(3) ∈ R𝐼3×𝑅3 the factor matrices

The order of the elements of the dimensions of the input tensor
does not impact the result of the decomposition. Indeed, changing
it would only reorder the line vectors of the factor matrices, as
each line vector stores the result of the decomposition for a given
element on the dimension corresponding to the factor matrix.

To compute the Tucker decomposition, several algorithms have
been proposed. Each has some advantages, as for example imposing
more easily the orthogonality constraint (that allows a good cluster-
ization of elements) or the non-negativity constraint (that provides
more interpretable results). Two major algorithms are presented
in this section: the Higher-Order Orthogonal Iteration (HOOI) and
the Hierarchical Alternating Least Squares Non-negative Tucker
Decomposition (HALS-NTD).

3.1 Higher-Order Orthogonal Iteration
algorithm

The HOOI algorithm [3] is the most famous one to compute the
Tucker decomposition (algorithm 1). It depends primarily on the
Singular Value Decomposition (SVD), that it extends to cope with
multiple dimensions.

The HOOI starts by initializing the factor matrices, by matriciz-
ing the original tensor on each dimension in order to apply the
SVD and to use the 𝑅𝑛 left singular vectors (matrix U of the result
of the SVD truncated at the 𝑅𝑡ℎ𝑛 column) as factor matrices. During
the iterative phase (lines 2 to 7), each factor matrix is improved.
To do so, a partial core tensor 𝒴 ∈ R𝑅1×···×𝐼𝑛×···×𝑅𝑁 is computed
by performing the mode-𝑛 product on the original tensor and all
the factor matrices except the one being improved. This partial
core tensor is then matricized on the mode corresponding to the
concerned dimension, and the SVD is executed on it. As for the
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Symbol Definition Symbol Definition
𝒳 A tensor ◦ Outer product
X(𝑛) Matricization of a tensor𝒳 on mode-𝑛 ⊗ Kronecker product
𝑎 A scalar A⊗−𝑛 A(𝑁 ) ⊗ · · · ⊗ A(𝑛+1) ⊗ A(𝑛−1) · · · ⊗ A(1)

v A column vector [M]+ Replace negative elements by 0 or small positive value
M A matrix ×𝑛 Mode-n product

𝒳 ×−𝑛 {A} 𝒳 ×1 A(1) · · · ×𝑛−1 A(𝑛−1) ×𝑛+1 A(𝑛+1) · · · ×𝑁 A(𝑁 )

Table 1: Symbols and operators used

initialization step, the 𝑅𝑛 left singular vectors are used as the new
factor matrix. The iterative phase allows to refine the result, as
the partial core tensor takes into consideration the other factor
matrices. So, each factor matrix is improved depending on the other
factor matrices, thus reinforcing the discovering of relationships
among elements of dimensions. When a convergence criteria is
met, the final core tensor is computed from the original core tensor
and all the factor matrices (line 8).

Algorithm 1 Higher-Order Orthogonal Iteration (HOOI)

Require: Tensor 𝒳 ∈ R𝐼1×𝐼2×···×𝐼𝑁 and target ranks 𝑅1, . . . , 𝑅𝑁
Ensure: Core tensor 𝒢 ∈ R𝑅1×𝑅2×···×𝑅𝑁 and factor matrices

U(1) , . . . ,U(𝑁 ) with U(𝑛) ∈ R𝐼𝑛×𝑅𝑛
1: Initialize U(1) , . . . ,U(𝑁 ) , with U(𝑛) ∈ R𝐼𝑛×𝑅𝑛 , U(𝑛) ←
𝑆𝑉𝐷 (X(𝑛) ) .U(:, 1 : 𝑅𝑛)

2: repeat
3: for 𝑛 = 1, . . . , 𝑁 do
4: 𝒴 ← 𝒳×𝑁U(𝑁 )𝑇×𝑛+1U(𝑛+1)𝑇×𝑛−1U(𝑛−1)𝑇 · · ·×1U(1)𝑇

5: U(𝑛) ← 𝑆𝑉𝐷 (Y(𝑛) ).U(:, 1 : 𝑅𝑛)
6: end for
7: until < convergence >
8: 𝒢 ← 𝒳 ×𝑁 U(𝑁 )𝑇 · · · ×1 U(1)𝑇

A simpler version of the HOOI algorithm exists, the Higher-
Order Singular Value Decomposition (HOSVD), that removes the
iterative part of the HOOI algorithm (lines 2 to 7). It is less precise,
as the iterative part allows to refine the result until a convergence
is met.

The HOOI algorithm inherits from the orthogonality constraint
of the SVD for the computation of the factormatrices. Thus, it works
pretty well to cluster elements of a dimension depending on their
behavior on the other dimensions. However, as the SVD produces
matrices with positive and negative values, the HOOI is not well
suited to impose the non-negativity constraint on factor matrices,
as some negative values will be found (and must be removed) at
each iteration.

An advantage of this algorithm is that it can easily be imple-
mented on large tensors. The most costly operation is the computa-
tion of the SVD, that is found at the initialization (line 1) and during
the iteration phase (line 5). During the iteration, as the SVD is exe-
cuted on the mode-𝑛 matricized partial core tensor, that is relatively
small compared to the matricized original tensor, the time and space
complexity is reduced. At the initialization of the algorithm, it can
be replaced with a random one to avoid the computation of the
SVD on a too large matrix.

3.2 Hierarchical Alternating Least Squares
algorithm

The HALS-NTD algorithm [2] uses a different approach than the
HOOI algorithm (algorithm 2), even if the initialization step (line 1)
can be done by using the HOSVD. An alternative version of the
HALS-NTD was later proposed [12].

Algorithm 2 Hierarchical Alternating Least Squares (HALS-NTD)

Require: Tensor 𝒳 ∈ R𝐼1×𝐼2×···×𝐼𝑁 and target ranks 𝑅1, . . . , 𝑅𝑁
Ensure: Core tensor 𝒢 ∈ R𝑅1×𝑅2×···×𝑅𝑁 and factor matrices

A(1) , . . . ,A(𝑁 ) with A(𝑛) ∈ R𝐼𝑛×𝑅𝑛
1: Initialize A(1) , . . . ,A(𝑁 ) with non-negativity constraint
2: ℰ ← 𝒳 − 𝒢 ×1 A(1) · · · ×𝑁 A(𝑁 )

3: repeat
4: for 𝑛 = 1, . . . , 𝑁 do
5: for 𝑟 = 1, . . . , 𝑅𝑛 do
6: X(𝑟 )(𝑛) = E(𝑛) + a

(𝑛)
𝑟

[
G(𝑛)

]
𝑟
A⊗−𝑛𝑇

7: a(𝑛)𝑟 ←
[
X(𝑟 )(𝑛)

[
(𝒢 ×−𝑛 {A}) (𝑛)

]𝑇
𝑟

]
+

8: a(𝑛)𝑟 ← a(𝑛)𝑟 /
a(𝑛)𝑟 

2
9: E(𝑛) ← X(𝑟 )(𝑛) − a

(𝑛)
𝑟

[
G(𝑛)

]
𝑟
A⊗−𝑛𝑇

10: end for
11: end for
12: for 𝑟1 = 1, . . . , 𝑅1, . . . , 𝑟𝑁 = 1, . . . , 𝑅𝑁 do
13: 𝑔𝑟1,...,𝑟𝑁 ← 𝑔𝑟1,...,𝑟𝑁 + ℰ ×1 a

(1)
𝑟1 · · · ×𝑁 a(𝑁 )𝑟𝑁

14: ℰ ← ℰ + Δ𝑔𝑟1,...,𝑟𝑁 a(1)𝑟1 ◦ · · · ◦ a
(𝑁 )
𝑟𝑁

15: end for
16: until < convergence >

The HALS-NTD starts also by initializing the factor matrices
(line 1), but adds a non-negativity constraint to manipulate only
positive values in the remaining of the algorithm. An error tensor
ℰ ∈ R𝐼1×···×𝐼𝑁 (noted E(𝑛) when it is matricized on dimension n),
that stores the difference between the original tensor and the re-
constructed tensor from the core tensor and the factor matrices, is
computed (line 2). The iteration phase (lines 3 to 16) is more com-
plex than the one of the HOOI algorithm. Rather than improving
a whole factor matrix at a time, it improves a vector of a factor
matrix at a time. To do so, at the line 6, the current vector (the
one being improved) is put in relation with all the other factor
matrices associated with the part of the core tensor representing
the strength of the relationships of the current vector regarding the
vectors of the other factor matrices. This result is added to the error
tensor, and stored in X(𝑟 )(𝑛) , that can be seen as a matricized tensor
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representing the contribution of the current vector to the global
result combined to the error tensor. At line 7, the current vector is
improved by multiplying X(𝑟 )(𝑛) with the part of the reconstructed
tensor corresponding to the current vector. The current vector is
then normalized with a 𝑙2 norm (line 8), and the error tensor is
updated (line 9). Once all the vectors of the factor matrices have
been improved, the core tensor is updated from the previous core
tensor, the error tensor and the new vectors of the factor matrices
(line 13), and finally the error tensor is updated to integrate the
changes in the core tensor (line 14).

The major advantage of the HALS-NTD is that it enforces the
non-negativity constraint by imposing it during the initialization
step, and then by improving the result without obtaining (and
without having to eliminate) negative values during the iterative
part (line 3 to 12). Thus, it eases the direct interpretation of the
factor matrices as well as the core tensor.

However, as this algorithm computes the decomposition column
vector by column vector for each factor matrices, it is computa-
tionally demanding, and harder to optimize than the HOOI one.
Furthermore, there is almost no implementation of the HALS-NTD
alogrithm. To the best of our knowledge, only Cichocki and Phan
have provided a Matlab implementation in [2].

3.3 Related work
The Tucker decomposition has been used in several applications.
Due to the lack of implementation for the HALS-NTD algorithm,
the following articles are related mainly to the HOOI algorithm.

Cichocki in his book [2] shows several application of various
decompositions on small tensors, mainly for image analysis. Romeo
et al. [13] used the Tucker decomposition to cluster documents.
Thanks to this decomposition, they were able to process documents
in several languages in the same tensor, in order to find similar-
ities in the whole dataset. Sun et al. [18] used Tucker on social
network data in order to find clusters. They applied it on the En-
ron dataset. They also propose visualization techniques based on
graph to display the result of the decompositon. Huang et al. [7]
compare the Tucker decomposition to the PCA and SVD associated
to k-means. They run experiments on three datasets of images to
show the similarities among these algorithms. Zhou et al. [22] took
a different approach and used the Tucker decomposition as a su-
pervised learning algorithm. They obtained promising results to
cluster images.

As these works only use the HOOI algorithm, they only benefit
from a part of the Tucker decomposition capabilities. They aim
to cluster data, and do not rely on the direct interpretability of
the factor matrices and the core tensor even if it brings valuable
insights.

4 EXPERIMENTS
To better understand the capabilities of the Tucker decomposition
regarding data analysis, we perform some experiments on two
datasets: the database of faces (AT&T) [15] and the primary school
dataset [17]. The full code of the experiments is available online1.

1https://github.com/AnnabelleGillet/Tucker-experiments

4.1 Database of faces experiment
This dataset contains greyscale images of the faces of 40 persons.
Each person has 10 images, so the dataset is composed of 400 images.
The dimensions of the images are 92 × 112. The ground truth is the
person corresponding to an image.

The goal of this experiment is to evaluate the capabilities of the
Tucker decomposition to find clusters in data. To do so, we create
a 3-order tensor of size 92 × 112 × 400, with one dimension for
the vertical pixels, one dimension for the horizontal pixels and one
dimension for the images. The values of the tensor are these of
the corresponding pixel in the images. We then run the Tucker
decomposition with the ranks 3, 4 and 7, with both the HOOI and
the HALS-NTD algorithms.

To cluster the images, we apply a k-means on the factor matrix
corresponding to the dimension of the images. As we know that
there are 40 subjects, we choose 𝑘 = 40. To evaluate the result, we
compute its accuracy with:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
with 𝑇𝑃 = True Positive, 𝑇𝑁 = True Negative, 𝐹𝑃 = False Positive
and 𝐹𝑁 = False Negative.

As the k-means selects random seeds to perform its computa-
tions, we repeat 100 times its execution and summarize in table 2
the results obtained. The confusion matrices of the results can be
found on the Github of the experiments.

Measure HOOI HALS-NTD
Minimum 0.5425 0.2425
Maximum 0.7175 0.38
Mean 0.6122 0.3184
Median 0.61 0.32
Standard deviation 0.0346 0.0209
Variance 0.0012 0.0004

Table 2: Accuracy of the result of the clustering of the images
of the database of faces for each algorithm of the Tucker
decomposition

The HOOI algorithm presents an accuracy score almost twice as
good as the HALS-NTD one. With a mean of 61% as accuracy score,
the HOOI algorithm is promising as an unsupervised classification
tool. Indeed, this kind of task is often realized with supervised
methods in which the algorithm is first trained on known images,
but it comes at the cost of the necessity of having ground truth data
to train the algorithm that also induces a risk of overfitting. With
no training step, the Tucker decomposition avoids this risk.

This experiment highlights the power of the Tucker decomposi-
tion principle, which captures the relationships among dimensions
in factor matrices. Here we used only one factor matrix. Thus, com-
pared to the size of the original tensor, only few information have
to be used to obtain satisfying results without any preprocessing
nor using a image-specialized algorithm.

4.2 Primary school experiment
This dataset contains the interactions among students in a primary
school, along with their teachers. There are 242 persons (including
10 teachers) split into 10 classes. An interaction is recorded if it lasts

https://github.com/AnnabelleGillet/Tucker-experiments
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at least 20 seconds. The recording takes the form (person1, person2,
timestamp in second). The class of each student is the ground truth
of this dataset.

In this experiment, we seek to highlight the capabilities of the
Tucker decomposition to provide meaningful factor matrices. To
do so, we build a 3-order tensor of size 242 × 242 × 208, with two
symmetric dimensions used to represent the persons, and the third
dimension to represent the time, with a granularity of 5 minutes. If
a person has been in contact with another person at a time 𝑡 , then
the value in the tensor indexed by the corresponding dimension
values is 1.

As for the previous experiment, we run the Tucker decomposi-
tion with both algorithms in order to compare the results, with the
empirically chosen ranks 13 (for the first person dimension), 13 (for
the second person dimension) and 4 (for the time dimension).

The factor matrices for the first dimension are shown in figure 2.
Each line represents a rank, and the columns are the persons. The
students are ordered by their class: the first columns are the students
of the class 1A, then 1B, and so on until 5B, and the 10 teachers are
the last 10 columns. The natural non-negativity constraint of the
HALS-NTD is of great help to understand the result. Indeed, we
can distinguish 10 ranks in which each class appears distinctly, and
three heterogeneous ranks. Conversely, the results of the HOOI
algorithm are harder to interpret, and the classes do not appear as
precisely as with the HALS-NTD algorithm.

In this experiment, the role of the core tensor is important: it
gives insights regarding the strength of the relationships of the
ranks among dimensions. For example, the 𝑔1,1,1 value indicates if
the vectors a(1)1 , a(2)1 and a(3)1 are strongly related or not.

To illustrate the usefulness of the core tensor, we can focus on
a particular rank of the first dimension and see how it is related
to the ranks of the other dimensions. The figure 3 represents this
mechanism when fixing the rank of the first dimension to the one
corresponding to the class 1A in the result of the Tucker decompo-
sition performed with the HALS-NTD algorithm.

This figure shows some interesting results. The 1𝑠𝑡 strongest
value of the core tensor indicates that the class 1A has strong
ties with itself, mainly at the break times and before and after the
lunch break (figure 3a). It makes sense because at the breaks the
students move from their classroom and go outside, so it creates
more interactions among students. The 2𝑛𝑑 strongest value of the
core tensor shows again a relationship of the class 1Awith itself, but
this time during the class hours (figure 3b). The 3𝑟𝑑 strongest value
indicates a relationship between the class 1A and 1B during the
breaks, including the lunch one (figure 3c). As the students of these
two classes are of the same age, it is logical that they have more
ties. Finally, the 4𝑡ℎ value of the core tensor shows a relationship
between the class 1A and a heterogeneous cluster that gathers
students from grades 1, 2 and 3, during the breaks (figure 3d).

The advantages of the high interpretable capability of the HALS-
NTD algorithm are twofold: 1) the vectors of the factor matrices
give insights regarding the elements that contribute to the rank;
and 2) the core tensor allows to link the ranks of one factor matrix
to the ranks of the other factor matrices, and thus it gives more
context to the result, as for example in figure 3 where we have the
temporal activity of the different communities.

5 CONCLUSION
To conclude, the Tucker decomposition is a useful data analysis
technique. Its two main algorithms, the HOOI and the HALS-NTD,
have both advantages over the other: the HOOI algorithm shows
promising results to cluster elements of a dimension, while the
HALS-NTD provides interpretable insights about the relationships
of the elements among dimensions.

However, the HALS-NTD algorithm is less known than the HOOI
one, and in consequence it has almost never been implemented. We
plan to integrate these Tucker algorithms to the Tensor Data Model,
and to optimize them in order to allow their execution on large ten-
sors, as we did for the CANDECOMP/PARAFAC decomposition [4].
Indeed, real data can create such tensors, that emphasis the need
for optimized algorithms regarding the space and the execution
time.

From a more applied point of view, we plan to use the Tucker
decomposition to find patterns among birds migration, in order
to prevent the spread of the avian influenza, in the context of the
MOOD project2.
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