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Simple Summary: Neural alterations following the warm-up phase of a physical activity program are
not clearly established with linear-based methods. However, it appears that nonlinear/complexity-
based methods are sensitive enough to detect small and subtle changes in the individuals’ neural
drive. Accordingly, the present exploratory study aimed to apply different complexity-based methods
to surface electromyography (EMG) of hamstring muscles to detect changes in neural activation
after a standardized warm-up and after stretching exercises. Maximal and sub-maximal contractions
were performed before and after these activities. The resultant EMG signal was processed using a
linear analysis (the root mean square) and using nonlinear analyses: sample entropy, the recurrence
quantification analysis and the detrended fluctuation analysis. These methods are well known
to witness the presence of informationally rich variability. Our results revealed an increase in
complexity of the EMG signal after warm-up and stretching during both maximal and sub-maximal
contractions. In contrast, the linear analysis did not show any alteration. We concluded that, as for
neuromuscular fatigue, complexity-based methods are sensitive enough to detect subtle changes in
the EMG signal. The so-observed increase in complexity after warm-up and stretching would suggest
that the neuromuscular system is in an optimized state for subsequent neuromuscular activity.

Abstract: This study aimed to apply different complexity-based methods to surface electromyography
(EMG) in order to detect neuromuscular changes after realistic warm-up procedures that included
stretching exercises. Sixteen volunteers conducted two experimental sessions. They were tested
before, after a standardized warm-up, and after a stretching exercise (static or neuromuscular nerve
gliding technique). Tests included measurements of the knee flexion torque and EMG of biceps
femoris (BF) and semitendinosus (ST) muscles. EMG was analyzed using the root mean square
(RMS), sample entropy (SampEn), percentage of recurrence and determinism following a recurrence
quantification analysis (%Rec and %Det) and a scaling parameter from a detrended fluctuation
analysis. Torque was significantly greater after warm-up as compared to baseline and after stretching.
RMS was not affected by the experimental procedure. In contrast, SampEn was significantly greater
after warm-up and stretching as compared to baseline values. %Rec was not modified but %Det for
BF muscle was significantly greater after stretching as compared to baseline. The a scaling parameter
was significantly lower after warm-up as compared to baseline for ST muscle. From the present
results, complexity-based methods applied to the EMG give additional information than linear-based
methods. They appeared sensitive to detect EMG complexity increases following warm-up.

Keywords: linear analysis; non-linear analysis; detrended fluctuation analysis; entropy; recurrence
plot; root mean square; fractals
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1. Introduction
Most physical activities or sport practices start with a multi-component preparatory

activity commonly called warm-up. Warm-up includes various exercises at low and high-
intensity aiming to improve performance and prevent injuries [1,2]. Part of the beneficial
effects of warm-up relies on temperature-dependent mechanisms such as a decreased
viscous resistance or nerve conduction rate [3]). Other mechanisms, not temperature-
dependent, such as those implied in post-activation potentiation [4], may acutely affect
muscle contractility.

Amongst the various activities conducted during warm-up, stretching exercises are
very popular [5]. They are usually applied to increase joint range of motion, muscle perfor-
mance or reduce activity-related injury risks [5]. These expected effects may have distinct
efficiencies depending on the stretching technique used [6]. For this reason, authors recom-
mended using dynamic stretching rather than static stretching in warm-up routines [7,8].
Indeed, starting from the late 1990s [9], authors have concluded static stretching transiently
decreased muscle strength. However, stretching duration, modality, intensity or the inclu-
sion of stretching inside dynamic activities are well-described key factors that significantly
impact strength or more generally neuromuscular alterations [10–14].

The immediate effects of stretching modalities on the neuromuscular system (and
more particularly of static stretching) are frequently investigated in the literature. Most
techniques target the muscle–tendon complex and less is known on techniques focusing
on the neural tissue. For instance, the neurodynamic nerve gliding is a technique used in
clinical practices that aims to restore the dynamic balance between the relative movement
of neural tissues and the surrounding mechanical interfaces [15]. In a recent study, authors
have demonstrated that the neurodynamic nerve gliding technique had slightly greater
effects on hamstring stiffness than static stretching in physically active men [16]. Similar
or greater increases in range of motion have been observed with acute or chronic use of
nerve-oriented stretching (such as neurodynamic nerve gliding) as compared to the other
techniques [17–20]. The larger effects were likely due to a decreased nerve tension and
increased strain in connective tissues [16]. However, to the best of our knowledge, no study
has explored whether neurodynamic stretching could be included in warm-up routines.

While the immediate mechanical effects of stretching, are often explored, less is known
for neural alterations and conclusions remain equivocal. Depending on the stretching
characteristics, muscle activation could decrease after stretching [21,22] or remain unal-
tered [14,23]. Warm-up effects on muscle activation also remain ambiguous. For instance,
most studies obtained unaltered muscle activation [24,25]. However, neural alterations
could not be excluded since authors suggested some neural modulations during sub-
maximal contractions [26].

Muscle activation is generally investigated by using surface electromyographic (EMG)
activity, an interference signal increasing with the contraction intensity. A time-domain
analysis is generally performed by using the root mean square value. However, EMG
appeared to be non-linear and could be explored using complexity-based methods that
witness the presence of informationally rich variability, independently of the amplitude of
its fluctuation [27–29]. High complexity is known to characterize healthy physiological state
while a loss of complexity corresponds to a sub-optimal state. These analyses are expected
to be more sensitive to classic linear methods and could give additional information.
For instance, in a recent review, authors indicated that some complexity analyses could
be related to motor unit firing rates or may be efficient to reveal early onset of muscle
fatigue [28]. A loss of complexity is generally obtained with muscle fatigue or with high-
speed locomotion [30,31]. However, to the best of our knowledge, no study has attempted
to determine whether complex analyses could be sensitive enough to detect neuromuscular
changes after warm-up and stretching activities.

The aim of the present study was to use different complexity-based methods applied on
the EMG signal to determine their sensitivity to detect neuromuscular changes following
realistic warm-up procedures generally used in athletes that included some stretching



Biology 2022, 11, 1337 3 of 15

exercises. As for fatigue, we hypothesized complexity-based analyses would be sensitive
to differentiate the physiological state of the neuromuscular system following warm-up
and stretching. An increase in complexity was hypothesized following warm-up which
could suggest an optimized neuromuscular state for subsequent performance. A special
interest was given to explore passive and neurodynamic nerve gliding stretching techniques
following a similar comprehensive warm-up.

2. Materials and Methods
2.1. Study Design

This study was a cross-over, randomized and single-blind trial. All volunteers came to
the laboratory on three separate occasions (familiarization, and two experimental sessions)
with seven days between each session. All sessions were performed the same day of the
week, at the same hour of the day. During the total duration of the study, volunteers were
instructed to continue their usual training habits but to refrain from intensive exercise at
least during the two days preceding the experimental testing sessions.

The familiarization session aimed to (i) explain the experimental procedure, (ii) deter-
mine anthropometrics (age, height and body mass), and (iii) familiarize volunteers with
the different tests and warm-up exercises. During the two experimental sessions (Figure 1),
data were collected at three different time points: (i) before, (ii) immediately after a stan-
dardized warm-up, and (iii) immediately after a stretching exercise. Stretching was applied
using either the static modality or neurodynamic nerve gliding technique. Both stretch-
ing modalities were time-matched and randomly presented using www.randomizer.org
(accessed on 2 February 2022) website. Limb dominance was ignored, and tests were
conducted for the right knee flexors on an isokinetic dynamometer (Biodex 4 Quickset,
Biodex Corporation, Shirley, NY, USA). Tests included maximal and sub-maximal knee
flexions in isometric conditions. Two maximal voluntary contractions were performed first
and followed by a single sub-maximal voluntary contraction. Torque and EMG activity
from the long head of biceps femoris (BF) and semitendinosus (ST) muscles were recorded.
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2.2. Participants
Sixteen volunteers (10 men and 6 women) were included for this study. Their mean

age ± standard deviation (SD), height, and body mass were 21.3 ± 2.0 years, 172.3 ± 10.2 cm,
and 64.3 ± 11.3 kg, respectively. All were students from the sport science faculty in Dijon
and all were competitive athletes from track and field, handball and soccer (n = 8, 4, and 4,
respectively) with an average of 7.7 ± 3.6 h training per week. None reported lower limb
injuries or back pain within the last three months or specific injuries located in hamstring
muscles during the past two years (exclusion criteria). Prior to participation, they were
fully informed about the purpose of the study and experimental procedure. All signed
an informed consent form. This study was conducted according to the declaration of
Helsinki. Approval was obtained from the Ethics Committee for sport science research
(CERSTAPS; IRB00012476-2022-15-03-166). The sample size was calculated a priori using
G*Power (version 3.1.9.6, free software available at https://www.psychologie.hhu.de/
arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html (accessed
on 10 October 2019)) with the following criteria: effect size of 0.35, power of 0.8, proba-
bility error of 0.05 with the main outcome being the root mean square. A sample size of
16 individuals was indicated.

2.3. Experimental Sessions
During the two experimental sessions (Figure 1), volunteers had to perform a stan-

dardized warm-up [13]. Warm-up started with 10 min cycling using an indoor ergocyle
(CyclOps 400 Pro equipped with PowerTap, Madison, WI, USA) with saddle and handlebar
settings individually adjusted. A constant power output was chosen (80 W and 100 W for
women and men, respectively). Volunteers then performed submaximal contractions of the
lower limb muscles: 6 concentric knee extensions, 12 lunges, 10 concentric plantar flexions,
10 eccentric plantar flexions, 10 concentric knee flexions and 10 eccentric knee flexions.
These submaximal contractions were followed but athletic drills: 20 rapid high knees and
20 rapid butt kicks. Finally, volunteers performed five maximal jumps (counter movement
jump style using arms).

After this warm-up, volunteers conducted a stretching exercise: either static or neu-
rodynamic nerve gliding according to randomization. Static stretching (6 ⇥ 30 s) was
performed while lying supine on a massage table. It consisted in a passive straight leg
rise on the right side. Briefly, the experimenter placed a hand on the right knee and the
other hand on the ipsilateral foot. Hands aimed to maintain the knee extended and the
ankle in dorsiflexion. Then, the straight leg was slowly and progressively raised until the
discomfort endpoint (but not pain). The position was maintained for 30 s. The lower limb
was then positioned back on the table for 15 s. The passive static stretching was performed
six times. Neurodynamic nerve gliding technique, a type of neural mobilization, used
almost the same configuration. Volunteers were lying supine on a massage table with a
slightly flexed cervical and thoracolumbar spine supported by a cushion as previously
described [16]. The experimenter placed a hand to maintain the right knee extended and
the other hand on the ipsilateral foot. The experimenter slowly and progressively raised
the straight leg until the discomfort endpoint (but not pain). A dorsiflexion was applied
in this position. Then, the volunteer performed a cervical extension concomitantly with
the release of the ankle toward a neutral position. Subsequently, a cervical flexion was
again performed with a concomitant dorsiflexion. This cycle was repeated for 30 s. The
lower limb was then positioned back on the table for 15 s. The neurodynamic nerve gliding
stretching was performed six times.

Tests were conducted at three time points: before warm-up (called BASELINE), im-
mediately after the warm-up (called WARM) and immediately after stretching procedure
(called STRETCH). Volunteers were seated on the Biodex dynamometer has previously
described [32]. Briefly, the left side was maintained with an approximately 100� hip angle
and the right hip was flexed with a 45� angle between the thigh and torso. Then, the axis of
the right knee joint (corresponding to the lateral condyle) was aligned with the input axis of

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
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the dynamometer according to the manufacturer’s guidelines. A dynamometer strap was
firmly attached distally on the subject’s right thigh and a second one above the subject’s
right ankle. Velcro straps were also applied over the pelvis, trunk and contralateral thigh to
minimize inappropriate displacements.

Tests included two maximal voluntary isometric contractions of the hamstring muscles
(i.e., knee flexion). Volunteers were requested to contract as maximally as they could for 5 s.
Rest between the two maximal voluntary contractions was 15 s long. Then, volunteers were
requested to conduct a 5 s sub-maximal voluntary isometric contraction. This contraction
was performed at 40% of the maximal voluntary torque 15 s after the last maximal voluntary
contraction. Volunteers visualized the contraction intensity on the dynamometer screen
(predetermined horizontal line). All voluntary contractions were performed with a 90�

knee flexion angle.

2.4. Data Recording, Preprocessing and Initial Analyses
Torque and EMG activity of the long head of BF and ST muscles were recorded using a

Biopac MP150 system and associated software (AcqKnowledge 4.2 for MP systems, Biopac
System, Santa Barbara, CA, USA) at a 1000 Hz sampling frequency. EMG used two pairs
of silver chloride surface electrodes placed over muscle bellies according to SENIAM
recommendations. The interelectrode distance was 2 cm (center to center). The reference
electrode was fixed to the right patella. Low impedance (<5 kW) of the skin-electrode
interface was obtained by shaving, abrading with sandpaper and cleansing with alcohol.
The EMG signals were amplified with a bandwidth frequency ranging from 10 to 500 Hz
(common mode rejection ratio = 110 dB, gain = 500).

Analyses of the maximal voluntary contractions started with a manual identifica-
tion of the maximal voluntary torque value and timepoint using AcqKnowledge software
(AcqKnowledge 4.2 for MP systems, Biopac System, Santa Barbara, CA, USA). The best
contraction, as witnessed by the maximal voluntary torque, was only retained for subse-
quent analyses. Then, torque and raw EMG signals were extracted over a 1 s time window
being 0.5 s apart the so-identified maximal voluntary torque. Torque and EMG were
also extracted using 1 s windows within the sub-maximal voluntary contraction plateau
(i.e., between seconds 3 and 4). EMG raw data were band-pass filtered (20–300 Hz, 4th
order) and root mean square (RMS) was calculated over 250 ms sliding windows using
the “biosignalEMG” R package [33]. The maximal voluntary torque and corresponding
maximal RMS values were calculated. The mean torque and RMS values were calculated
during sub-maximal voluntary contractions. An example of the EMG signal processing
during maximal and submaximal contraction is shown in Figure 2. Values were calculated
using a custom-written R routine. Complex analyses were subsequently conducted and
included various tools: Sample Entropy (SampEn), Recurrence Quantification Analysis
(RQA) and Detrended Fluctuation Analysis (DFA).

2.5. Sample Entropy
SampEn is often used as index of physiological complexity [28,34]. For instance,

complexity (and SampEn) has been shown to be greater in concentric contractions and to
decrease with fatigue [30]. SampEn was calculated using the “TSEntropies” R package [35].
To be computed, EMG time series xi was first embedded in a delayed m-dimensional space.
The probability Bm(r) that two sequences match for m points was computed by counting the
average number of vector pairs within a tolerance of r. The embedding dimension m was set
to length 2 and tolerance r to 0.2 multiplied by the SD of the original EMG time series [30].
This process was repeated for an embedding dimension of m + 1 to obtain the probability
Am(r). SampEn was the negative logarithm of the ratio between these two probabilities:

SampEn (m, r) = �ln(Am(r)/Bm(r)) (1)
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Figure 2. Torque and electromyography (EMG) traces for biceps femoris (B,F) and semitendinosus
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EMG (B,E), filtered and rectified (EMG)(C,F) and root mean square (RMS; (D,G)). During maximal
contractions and sub-maximal contractions, 1 s windows were considered for analyses (gray area).

2.6. Recurrence Quantification Analysis
RQA is used to detect recurring patterns and non-stationarities in a dynamic sys-

tem [28,36]. Detailed descriptions could be found in previous studies [28,37–39]. A time
delay t was used to embed the EMG time series into a d-dimensional space. Thus, the first
step of RQA was to construct the time delay vectors yi by cutting the original EMG time
series xi into vectors:

yi(d) =
⇣

xi, xi+t , xi+(d�1)t

⌘
(2)

This method requires to determine the time delay t and the minimum embedding
dimension d. These parameters were first optimized according to Marwan et al. [40]. Then,
the recurrence plot was built. It consists in a two-dimensional plot that computes the
distances between the delayed vectors yi(d) and yj(d). Distances are normalized according
to the maximum distance. A recurrence occurs when the distance between yi(d) and yj(d) is
smaller than a threshold radius r. The recurrence is shown with a black dot.

Authors [41] indicated that fine changes in surface EMG can be detected by the
percentage of recurrence (%Rec) and percentage of determinism (%Det). %Rec quantifies
the density of the recurrent points and reflects the current state of the system. %Det
quantifies the ratio of the recurrence points that form diagonals higher than a minimal
length (lmin) and reflects the amount of rule-obeying structure in the signal dynamic. A
deterministic system produces longer recurrence diagonals and fewer isolated points than
uncorrelated random time series.

RQA and parameters’ optimization were achieved using “crqa” R package [42]. In the
present study, the lmin was set at 3 points, the radius r was fixed at 25% of the maximum
distance to limit too high %Rec [37]. The time delay t was set at 5 and the embedding
dimension d was 10. An example of recurrence plots is shown in Figure 3.
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if significant main effects or interactions were present. Partial eta square (partial h2) was
calculated from ANOVA results, with values of 0.01, 0.06 and above 0.14 representing small,
medium and large differences, respectively [45]. Subsequently, qualitative descriptors of
standardized effects were used for pairwise comparisons with Cohen’s d < 0.5, 0.5–1.2
and > 1.2 representing small, medium and large magnitudes of change, respectively [45].
p < 0.05 was taken as the level of statistical significance for all comparisons. Absolute values
are expressed as mean ± SD or mean difference with 95% confidence intervals (95%CI).

3. Results
Maximal voluntary torque was significantly altered depending on time (Table 1).

Torque was significantly greater during WARM as compared to BASELINE (mean differ-
ence (95%CI): 5.0 (0.7;9.3); d = 0.745; medium; p = 0.017) and STRETCH (mean difference
(95%CI): 8.2 (3.9;12.5); d = 1.211; large; p < 0.001) (Figure 4). No difference was obtained be-
tween BASELINE and STRETCH (mean difference (95%CI): 3.1 (�1.1;7.4); d = 0.466; small;
p = 0.216). BF RMS was not modified during the experimental procedure (Table 1). In
contrast ST RMS demonstrated significant main effects for condition and time (Table 1).
Post hoc analyses revealed greater ST RMS during the static as compared to the neuro-
dynamic nerve gliding condition (mean difference (95%CI): 0.055 (0.000;0.110); d = 0.539;
medium; p = 0.048). Considering the time effect, no significant difference was observed
during post hoc analyses instead of the significant main ANOVA effect. Finally, during
sub-maximal voluntary contractions, no difference was obtained for torque, BF RMS and
ST RMS (Table 1).

Table 1. Results of the two-way repeated measures ANOVA.

Variable Effect
Maximal Contraction Sub-Maximal Contraction

F p ph2 F p ph2

Condition 1.363 0.261 0.083 0.620 0.443 0.040
Torque Time 11.942 < 0.001 * 0.443 2.443 0.104 0.140

Condition x Time 0.268 0.767 0.018 0.548 0.532 0.035
Condition 1.345 0.264 0.082 1.194 0.292 0.074

RMS BF Time 0.956 0.396 0.060 2.352 0.113 0.136
Condition x Time 0.427 0.656 0.028 1.155 0.329 0.071

Condition 4.650 0.048 * 0.237 0.722 0.409 0.046
RMS ST Time 3.320 0.050 * 0.181 2.258 0.122 0.131

Condition x Time 0.291 0.750 0.019 1.866 0.172 0.111
Condition 0.031 0.863 0.002 3.865 0.068 0.205

SampEn BF Time 10.463 < 0.001 * 0.411 0.097 0.907 0.006
Condition x Time 1.794 0.184 0.107 0.854 0.436 0.054

Condition 0.136 0.717 0.009 1.812 0.198 0.108
SampEn ST Time 19.175 < 0.001 * 0.561 0.796 0.461 0.050

Condition x Time 0.559 0.578 0.036 0.909 0.414 0.057
Condition 1.041 0.325 0.069 0.994 0.335 0.062

%Rec BF Time 0.952 0.346 0.064 0.930 0.350 0.058
Condition x Time 0.965 0.343 0.064 1.046 0.323 0.065

Condition 0.881 0.364 0.059 0.225 0.642 0.015
%Rec ST Time 0.944 0.348 0.063 0.605 0.482 0.039

Condition x Time 0.966 0.343 0.065 1.453 0.251 0.088
Condition 0.837 0.375 0.053 0.416 0.529 0.027

%Det BF Time 4.638 0.018 * 0.236 2.259 0.122 0.131
Condition x Time 0.549 0.583 0.035 1.954 0.159 0.115

Condition 1.496 0.240 0.091 2.098 0.168 0.123
%Det ST Time 1.101 0.330 0.068 1.949 0.160 0.115

Condition x Time 1.528 0.233 0.092 0.027 0.973 0.002
Condition 0.557 0.467 0.036 0.096 0.761 0.006

a BF Time 0.285 0.754 0.019 0.232 0.794 0.015
Condition x Time 1.378 0.268 0.084 3.642 0.055 0.195

Condition 0.709 0.413 0.045 0.013 0.911 0.001
a ST Time 7.623 0.002 * 0.337 11.367 < 0.001 * 0.431

Condition x Time 0.394 0.615 0.026 1.118 0.340 0.069

RMS: root mean square, SampEn: sample entropy; %Rec: % recurrence; %Det: % determinism; BF: biceps femoris;
ST: Semitendinosus. *: p < 0.05.
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The a scaling parameter was not affected by the experimental procedures for BF muscle.
In contrast, a significant time effect was observed for ST during maximal and sub-maximal
contractions (Table 1). Post hoc analyses conducted on the main time effect for ST revealed
lower a during WARM maximal contractions as compared to BASELINE (mean difference
(95%CI): 0.042 (0.015;0.069); d = 0.975; medium; p = 0.002) (Figure 4). No difference was
obtained between STRETCH and WARM (mean difference (95%CI): 0.023 (�0.005;0.050);
d = 0.526; medium; p = 0.132) and BASELINE (mean difference (95%CI): 0.019 (�0.008;0.046);
d = 0.449; small; p = 0.247) time points. During sub-maximal contractions, a values for ST
during WARM (mean difference (95%CI): 0.046 (0.021;0.070); d = 1.162; large; p < 0.001) and
STRETCH (mean difference (95%CI): 0.032 (0.007;0.057); d = 0.810; medium; p = 0.009) were
significantly lower than BASELINE without any difference between WARM and STRETCH
(mean difference (95%CI): 0.014 (�0.011;0.039); d = 0.352; small; p = 0.509).

4. Discussion
The present study attempted to apply non-linear/complexity-based methods to EMG

signals following a standardized warm-up that included stretching exercises. Different
methods including SampEn, RQA and DFA were used. Our results revealed complexity-
based methods can be used to detect changes in the physiological state of the neuromuscular
system following warm-up and stretching. While the standard linear analysis (i.e., RMS)
was unable to detect any changes, complexity-based methods confirmed our a priori
hypothesis with some significative increases in the EMG signal complexity. This increased
complexity would suggest subtle changes following warm-up that could optimize the
neuromuscular system for subsequent neuromuscular performance.

Warm-up is a preparatory activity with multiple beneficial consequences for indi-
viduals such as performance improvements for competitive athletes. The present study
confirmed this most-desired effects since knee flexion torque was significantly increased
after the warm-up. Such result is often obtained in the literature with various condition-
ing exercises on single joint or whole-body outcomes [1,46,47]. In contrast, our results
indicated maximal torque returned to baseline after stretching whatever the modality
applied (static or neurodynamic nerve gliding technique). This finding partly confirmed
the literature since stretching has often been shown to be detrimental for subsequent
performance [7,10,13,48]. While the acute effects of static stretching on strength are of-
ten documented in the literature, less is known for neurodynamic nerve gliding. This
method has previously been shown to produce larger gains in range of motion as com-
pared to other techniques [17–20]. However, no study has explored the immediate effect
on the subsequent force. According to our results, we can conclude that this technique
is as detrimental as static stretching for force production when included at the end of a
comprehensive warm-up.

The torque outcomes are undoubtedly in accordance with previously published obser-
vations. However, neural alterations after warm-up or stretching remain equivocal. Follow-
ing warm-up, a lack of alteration in muscle activation is often registered [24,25,49]. How-
ever, some alterations are suggested such as increases in muscle conduction time [50,51],
spinal excitability [52] or changes during sub-maximal contractions [26]. Following stretch-
ing, changes in spinal or cortical excitability have been observed [14,53] without being
associated with clear changes in peak EMG activity [14,23,54]. In the present study, and
as previously registered, the RMS amplitude of the EMG signal was not modified during
and following our two experimental conditions. The lack of changes could be due to the
specificity of the acute alterations (i.e., depending on the exercises performed or outcomes)
but could also be attributed to the low resolution of the EMG technique to detect small
activation changes [55]. Accordingly, the present study gives new insight for neural changes
following warm-up and stretching. Non-linear analyses would show subtle changes in the
EMG signal that might have large consequences for subsequent activities.

In the present study, different non-linear approaches were applied to the EMG sig-
nal. First, it is important to note that non-linear methods are regularly used on biolog-
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ical signals (e.g., force output, EMG, electrocardiography, electroencephalography) to
explore fatigue-related mechanisms, to detect various movement patterns and to detect
diseases [28,30,37,39,43,56–58]. To the best of our knowledge, the present study is the first
that applied these methods to the EMG signal to explore the effects of warm-up and stretch-
ing exercises in athletes. Entropy was previously used following stretching. However,
studies mostly considered patients and used high-density surface EMG [59].

The analyses applied here revealed small changes during both experimental proce-
dures (no difference between conditions). Taken as a whole, an increase in complexity is
observed after warming up. It is witnessed by an increase in entropy for both hamstring
muscles, a decrease in a DFA (only for ST muscle) and a slight increase in %Det for BF
muscle after stretching. The increase in complexity refers to less irregularities in the EMG
signal with less random information [60]. The slight but significant a DFA decrease during
maximal and sub-maximal contractions partly illustrated this behavior with values going
closer to 1 (characteristics of an optimized system) and farther to 1.5 (characteristics of the
brown noise).

Alterations of complexity have been linked to some physiological mechanisms. For
instance, authors attributed changes in entropy to changes in action potential amplitude
and velocity [28]. In addition, the a DFA has been suggested to characterize the level of
motor unit recruitment [30] and %Det to motor unit synchronization, depolarization of the
sarcolemma or conduction velocity [37,38]. Similar associations could be made here such as
an increase in conduction velocity, already registered following warm-up [50,51], that could
have been witnessed by the increase in entropy [28]. However, such causal links would
be highly speculative since no direct measurement of these different neural recruitment
characteristics have been conducted here. Similarly, numerous factors and mechanisms
of regulation have not yet been questioned with complexity-based methods and require
further investigations (e.g., excitability).

Notwithstanding, these preliminary findings are functionally relevant for individuals
included in a physical activity program (whatever it is for sport, health or physiotherapy).
Indeed, because complexity is recognized as defining a healthy physiological state, the
increase of complexity, observed here, depicted an optimized neuromuscular system for
subsequent activity. Functionally speaking, individuals would be in an optimum state to
perform contractions (maximal as well as sub-maximal). In addition, it can be speculated
individuals would be in an optimum state for short- or long-term adaptive capacity such as
for motor learning (e.g., sport-specific technical skills for athletes or rehabilitation programs
based on balance for patients). For instance, authors have previously shown that older
adults with a higher complexity during balance exhibited greater adaptive capacities during
a specific time to failure balance test [61]. It can be suggested that specific exercises (either
voluntarily performed or virtually performed using motor imagery) should therefore
be included in a “complete” warm-up to exacerbate the complexity-induced effects of
the warm-up. Interestingly, complexity increase is maintained following stretching for
SampEn, a DFA during sub-maximal contraction and is only obtained after stretching
for %Det. Although (static) stretching is not recommended within a warm-up session [7]
and apart from a lower force output after stretching as compared to post-warm-up, our
results revealed that the beneficial effects of warm-up on complexity are not vanished with
subsequent stretching. After stretching, individuals would seem to stay in an optimized
neuromuscular state for subsequent activity.

It is important to note that some complex analyses, but not all, revealed alterations
during and after our experimental procedures. From the present results, it appeared
entropy and DFA are sensitive enough to detect neuromuscular changes after warming
up. In contrast, the sensitivity of RQA (%Rec and %Det) was lower. Such conclusion is
partly in accordance with the literature. For instance, authors concluded %Rec resulted in a
poor correlation with spectral EMG variables [38]. Moreover, RQA has been shown to be
sensitive to fatigue but not to the opposed potentiation mechanism [37], a mechanism that
could also be achieved during warm-up activities. Moreover, other authors concluded RQA
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was less effective than entropy to detect fatigue [62]. Our results reinforce this conclusion
following warm-up. Such low sensitivity could also be attributed to some methodological
considerations such as the surface EMG recording process or more specifically to the
parameters implemented in the RQA routine (time delay and embedding dimension). In
the present study, the minimal parameters were first determined before performing the
RQA. The so-determined parameters were in general accordance with previous studies [28].
SampEn and DFA also applied previously used parameters [30]. Accordingly, our values
are in the same range than these studies. The length of the time series might also impact our
results. In the present study, 1 s windows were used like in previous experiments [30] but
longer time windows could be of interest to increase the methods’ sensitivity. In addition,
multiscale entropy or multifractal DFA, could have been conducted. However, the larger
sensitivity of these complementary methods is not yet clearly demonstrated [62]. Finally,
it is important to acknowledge that athletes from various sport, competitive level and
training/warm-up history and experience have been considered here. This heterogeneity
might have impacted our results since warm-up exercises and intensity (e.g., pedaling
power output) were standardized.

5. Conclusions
The present work is the first that explored the effects of warm-up that included stretch-

ing exercises with some complexity-based methods (SampEn, RQA, DFA) applied to the
surface EMG signal. It is concluded that these methods are sensitive to detect some neu-
romuscular alterations (increase in complexity) following a comprehensive and realistic
warm-up. However, all methods are not as sensitive to detect these subtle changes. RQA
appeared less sensitive than SampEn. While the linear amplitude-based EMG analysis
(RMS) was not modified by the experimental procedure, non-linear methods revealed
increased complexity. The complexity increase obtained following warm-up suggested
an optimized neuromuscular system that might be more efficient for subsequent physi-
cal activities. Non-linear complexity-based analyses therefore appeared efficient to give
additional information than linear EMG analyses.
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