Cyber-attacks detection in industrial systems using artificial intelligence-driven methods - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue International Journal of Critical Infrastructure Protection Année : 2022

Cyber-attacks detection in industrial systems using artificial intelligence-driven methods


Modern industrial systems and critical infrastructures are constantly exposed to malicious cyber-attacks that are challenging and difficult to identify. Cyber-attacks can cause severe economic losses and damage the attacked system if not detected accurately and timely. Therefore, designing an accurate and sensitive intrusion detection system is undoubtedly necessary to ensure the productivity and safety of industrial systems against cyber-attacks. This paper first introduces a stacked deep learning method to detect malicious attacks in SCADA systems. We also consider eleven machine learning models, including the Xtreme Gradient Boosting (XGBoost), Random forest, Bagging, support vector machines with different kernels, classification tree pruned by the minimum cross-validation and by 1-standard error rule, linear discriminate analysis, conditional inference tree, and the C5.0 tree. Real data sets with different kinds of cyber-attacks from two laboratory-scale SCADA systems, gas pipeline and water storage tank systems, are employed to evaluate the performance of the investigated methods. Seven evaluation metrics have been used to compare the investigated models (accuracy, sensitivity, specificity, precision, recall, F1-score, and area under curve, or AUC). Overall, results show that the XGBoost approach achieved superior detection performance than all other investigated methods. This could be due to its desirable characteristics to avoid overfitting, decreases the complexity of individual trees, robustness to outliers, and invariance to scaling and monotonic transformations of the features. Unexpectedly, the deep learning models are not providing the best performance in this case study, even with their extended capacity to capture complex features interactions.
Fichier non déposé

Dates et versions

hal-03977113 , version 1 (07-02-2023)



Wu Wang, Fouzi Harrou, Benamar Bouyeddou, Sidi-Mohammed Senouci, Ying Sun. Cyber-attacks detection in industrial systems using artificial intelligence-driven methods. International Journal of Critical Infrastructure Protection, 2022, 38, pp.100542. ⟨10.1016/j.ijcip.2022.100542⟩. ⟨hal-03977113⟩
3 Consultations
0 Téléchargements



Gmail Facebook Twitter LinkedIn More