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Abstract

We show in a large-scale field experiment that a brief exposure to female role models working
in scientific fields affects high school students’ perceptions and choices of undergraduate
major. The classroom interventions reduced the prevalence of stereotypical views on jobs in
science and gender differences in abilities. They also made high-achieving girls in grade 12
more likely to enrol in selective and male-dominated science, technology, engineering
and mathematics programs in college. Comparing treatment effects across the 56 role
model participants, we find that the most effective interventions are those that improved
students’ perceptions of science, technology, engineering and mathematics careers without
overemphasising women’s under-representation in science.
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Introduction

The increase in women’s participation in science and engineering in the United States has levelled
off in the past decade (National Science Foundation, 2017). This trend, which is common to
almost all OECD countries, is a source of concern for two main reasons. First, it exacerbates
gender inequality in the labour market, as science, technology, engineering and mathematics
(STEM) occupations offer higher average salaries (Brown and Corcoran, 1997; Black et al., 2008;
Blau and Kahn, 2017) and are characterised by a smaller gender wage gap (Beede et al., 2011).
Second, in a context of heightened concern over a shortage of STEM workers in the advanced
economies, this trend is likely to represent a worsening loss of talent that could reduce aggregate
productivity (Weinberger, 1999; Hoogendoorn et al., 2013).

The under-representation of women in these traditionally male-dominated fields can also
constitute a self-fulfilling prophecy for subsequent generations, as girls have little opportunity
to interact with women who work in these fields and who could inspire them. A large literature
has established that exposing female students to successful or admirable women can help break
this vicious circle. Most of the work to date focuses on potential role models who interact on a
regular basis with the individuals they may influence, such as teachers or instructors (Bettinger
and Long, 2005; Carrell et al., 2010; Lim and Meer, 2017), university advisors (Canaan and
Mouganie, 2021) or doctors (Riise et al., 2022). Recently, however, two studies have shown that
a one-off exposure to external female role models can also have significant effects on female
representation in male-dominated fields of study. Porter and Serra (2020) documented a positive
impact of two female role models who were carefully selected among the economics alumnae of
Southern Methodist University in the United States on the likelihood of female students majoring
in economics. Del Carpio and Guadalupe (2021) demonstrated the effectiveness, relative to
other types of intervention, of a virtual role model in reducing identity costs related to female
participation in STEM and fostering female applications to a software-coding program.1 An
attractive feature of these light-touch interventions for identifying role model effects is that they
remove the influences of potential confounding factors such as gender differences in teaching
practices (Lavy and Sand, 2018; Carlana, 2019; Terrier, 2020).

While the studies by Porter and Serra (2020) and Del Carpio and Guadalupe (2021) furnish
compelling evidence that external role models can affect female students’ educational choices,
little is known about what drives their success, and it is unclear whether different role models are
equally able to influence students’ decisions. This paper addresses these questions by evaluating
the impact of one-hour in-class interventions by women scientists. Our key contribution is to

1Related studies outside the context of STEM education include field experiments on exposure to women in
leadership positions in India (Beaman et al., 2012) and the provision of information on the returns to education
by role models of poor or rich background in Madagascar (Nguyen, 2008).
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characterise what makes for an effective role model intervention. We investigate the attributes
of role models and the messages they convey that are more likely to appeal to young women’s
perceptions and to trigger their interest in traditionally male-dominated fields. Two distinctive
aspects of our setting make it particularly well suited to address this question. First, we use
a large-scale randomised experiment on a diverse student population, exploiting both a rich
post-intervention survey and comprehensive administrative data to measure directly how role
models affect students’ perceptions, beliefs and enrolment outcomes. Second, unlike previous
studies, our research design involves a large number of role model participants—56 in all. We
leverage the diversity of these women’s profiles to better understand what makes an effective
role model.

The program we evaluate is called ‘For Girls in Science’, launched in 2014 by the L’Oréal
Foundation—the corporate foundation of the world’s leading cosmetics manufacturer—to encour-
age girls to explore STEM career paths. It consists of one-hour in-class interventions by women
with two quite distinct profiles: half are young scientists (either PhD candidates or postdoctoral
researchers) who were awarded the L’Oréal-UNESCO Fellowship ‘For Women in Science’; the
others are young professionals employed as scientists in the Research and Innovation division of
the L’Oréal group. In the main part of the intervention, the role models share their experience
and career path with the students. They also provide information on science-related careers in
general and on gender stereotypes, using two short videos.

The evaluation was conducted during the 2015/16 academic year in 98 high schools in the
Paris region. It involved 19,451 students from grade 10 and grade 12 (science track), two grade
levels at the end of which students make irreversible educational choices. Half of the classes
were randomly selected to be visited by one of the 56 role model participants, who were assigned
to those classes through a registration process on a first-come, first-served basis.

The role models’ interventions led to a significant increase in the share of girls enrolling
in STEM fields, but only in the educational tracks where they are severely under-represented.
In grade 10, the classroom visits had no detectable impact on boys’ and girls’ probability of
enrolling in the science track in grade 11, where girls are only slightly under-represented (47%
of students). In grade 12, by contrast, the intervention induced a significant increase in the
share of female students enrolling in selective STEM undergraduate programs, which lead to
the most prestigious graduate schools, and in male-dominated STEM programs (maths, physics,
computer science and engineering).2 The visits respectively increased enrolment by 3.1 and 3.4
percentage points (pps) in selective and male-dominated programs among girls in grade 12, or

2We classify STEM programs as being male dominated if the share of female students is less than 50% (see
Appendix C.2 for details). Note that male-dominated and selective STEM programs are partly overlapping: in
2016/17, 49% of undergraduate students in male-dominated STEM fields were enrolled in selective programs,
while 95% of students in selective STEM programs were in male-dominated fields.
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increases of 28% and 20% over the baseline rates of 11% and 17%. These effects are concentrated
among high-achieving girls in maths. Although we cannot formally reject the equality of gender
coefficients, the effects for boys are small in magnitude and not statistically significant. These
results constitute the first field evidence that in-person exposure to external female role models
directly influences STEM enrolment decisions at college entry.

To explore the channels through which role models affect students’ enrolment outcomes, we
conducted a post-treatment student survey consisting of an eight-page questionnaire administered
in class between one and six months after the classroom interventions. We also collected
administrative data on high school graduation exams (baccalauréat) at the end of grade 12. Our
results show that the role model interventions significantly improved students’ perceptions of
science-related jobs at both grade levels, with no indication of declining effects over a period of
up to six months. They also helped mitigate some of the stereotypes typically associated with
STEM occupations (such as the difficulty of reconciling them with family life) and heightened
the perception that these jobs pay better. By contrast, the interventions had no significant
effect on students’ self-reported taste for science subjects or their academic performance, and
bolstered the girls’ self-concept in maths only slightly, at either grade level.

One of the most interesting—and unexpected—findings concerns the effects on students’
perceptions of gender roles in science. Not only were the classroom interventions effective in
debiasing students’ beliefs about gender differences in maths aptitude, they also raised awareness
of the under-representation of women in science. The combination of these two effects triggered
an unintended ex post rationalisation by students of the gender imbalance in scientific fields and
occupations, making them more likely to agree with the statements that women dislike science
and that they face discrimination in science-related jobs. Explicitly correcting self-stereotyping
beliefs (Coffman, 2014) and misperceptions about women’s representation in science (Bursztyn
and Yang, 2022) would thus appear to have generated more ambiguous perceptions among
students than the intervention’s gender-neutral messages about jobs and careers.

Finally, we highlight the importance of the role model’s profile for the success of the
intervention. We document a high degree of heterogeneity in treatment effects according
to the role model’s professional background. Those employed by the sponsoring firm had a
significantly greater effect on girls’ probability of enrolling in selective STEM programs than
the young researchers, even though the two sets of students they visited had similar observable
characteristics. While the two groups of role models were equally effective in debunking the
stereotype on gender differences in maths aptitude, we find clear evidence that those working at
L’Oréal were more effective in improving girls’ perceptions of science-related jobs and elevating
their aspirations for such careers. Conversely, they were less likely to reinforce students’ beliefs
that women are under-represented in science. Using machine learning methods, we provide
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further evidence that the most effective role models are those who managed to convey a positive
image of science careers and to stimulate students’ aspirations without overemphasising the
relative scarcity of women and its possible causes. Together, these results show that role model
interventions are not reducible to the provision of standardised information and that female
role models are not interchangeable. They also highlight the mechanisms that likely explain the
substantial effects that have been documented in other settings where career women serve as
external role models (Porter and Serra, 2020).

The remainder of the paper is organised as follows. Section 1 provides institutional back-
ground on the French educational system and the gender gap in STEM fields. Section 2 describes
the intervention and the experimental design. Section 3 presents the data and the empirical
strategy. Section 4 analyses the effects of role model interventions on student perceptions,
self-concept, aspirations and educational outcomes. Section 5 extends the analysis to the role of
information, the persistence of effects and potential spillovers. Section 6 discusses what makes
an effective role model intervention and Section 7 concludes.

1 Institutional Background

1.1 Structure of the French Education System

In France, education is compulsory from 6 to 16. The school year runs from September to June.
The school system consists of five years of elementary education (grades 1 to 5) and seven years
of secondary education, divided into four years of middle school (collège, grades 6 to 9) and
three of high school (lycée, grades 10 to 12). Students complete high school with the national
baccalauréat exam, which they must pass for admission to higher education.

High school tracks. The tracking of students occurs at two critical stages (see Figure 1).
At the end of middle school, about two-thirds of students are admitted to general and technical
upper secondary education (seconde générale et technologique) and the remaining third are
tracked into vocational schools (seconde professionnelle). After the first year of high school
(grade 10), the general and technical tracks are further split: approximately 80% of the students
are directed to the general baccalauréat program for the last two years of high school (grades 11
and 12), and the other 20%, mostly low-achieving students, are directed towards a technical
baccalauréat, which is more geared towards the needs of business and industry and leads to
shorter studies.

In the spring term of grade 10, the students who have been allowed to pursue the general track
are required to choose among three sub-tracks in grade 11: science (Première S), humanities
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Figure 1 – Tracks in Secondary and Post-Secondary Education in France
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(Première L) and social sciences (Première ES). This is an important choice, given that the
curriculum and high school examinations are specific to each baccalauréat track and thus have
a direct impact on students’ educational opportunities and career prospects. It is almost
impossible, for instance, for a student to be admitted to engineering or medical undergraduate
programs without a baccalauréat in science. Students directed to the technical track after
grade 10 are also required to choose among eight possible STEM and non-STEM sub-tracks,
which will affect their field of study in higher education.

College entry. In the spring term of grade 12, students in their final year of high school apply
for admission to higher education programs through a centralised online admission platform.
The programs to which students can apply fall into two broad categories, each accounting for
about half of first-year undergraduate enrolment: (i) non-selective undergraduate university
programs (licence), which are open to all students who hold the baccalauréat; and (ii) selective
programs, which can admit or reject students based on their academic achievement. Both
types of program offer specialisations in STEM and non-STEM fields. The most prestigious
selective programs are the two-year classes préparatoires aux grandes écoles (CPGE), which
prepare students to take the national entry exams to elite graduate schools (grandes écoles).
These programs are specialised either in science, in economics and business or in humanities.
Within the science CPGE programs, the main fields of specialisation are mathematics and
physics (MPSI), physics and chemistry (PCSI) and biology/geoscience (BCPST). The other
selective undergraduate programs (section de technicien supérieur or STS) are mostly targeted
to students holding a vocational or technical baccalauréat and prepare for technical/vocational
bachelor’s degrees.

1.2 Female Under-Representation in STEM

In France, the share of female students in STEM-oriented studies starts to decline after grade 10
and drops sharply at entry into higher education. While 54% of the students in the general
and technical track in grade 10 are girls, the share falls to 47% in the general science track
(grades 11 and 12) and then plummets to 30% in the first year of higher education.3 Female
under-representation in STEM fields of study is more pronounced in the selective undergraduate
programs (shares of 18% in STS and 30% in CPGE) than in the non-selective programs (35%).
These proportions, which are derived from administrative data for 2016/17, are almost identical
to those of a decade earlier. Within STEM fields, female students tend to specialise in earth
and life sciences (female share: 62%) rather than mathematics, physics or computer science

3At the high school level, the gender imbalance in STEM is much more severe in the technical track (female
share: 17%) than in the general science track (female share: 47%).
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(female share: 26%).
The under-representation of women in STEM fields accounts for a good part of the gender

pay gap among university graduates in France. Using a variety of administrative and survey data
sources (MESRI-DGESIP/DGRI-SIES, 2017; CGE, 2018; MESRI, 2018), we show that across
all majors, male graduates who obtained a master’s degree in 2015 or 2016 earn a median gross
annual starting salary of e32,122, compared to e28,411 for female graduates (Appendix A).
This gap of e3,711 per year is equal to 11.6% of men’s pay (see Table A1 A1). Using standard
decomposition methods, we find that the under-representation of female students in STEM
accounts for approximately 28% of this gap (see Table A2 A2). Additionally, almost half of the
9.1% gender pay gap within STEM can be ascribed to the fact that female graduates are less
likely than males to be enrolled in the selective and male-dominated fields, which lead to the
best-paying degrees. These figures strongly suggest that, in the French context, increasing the
share of female students in STEM—especially in selective and male-dominated programs—would
narrow the gender pay gap substantially.

2 Program and Experimental Design

2.1 ‘For Girls in Science’

The program ‘For Girls in Science’ (FGiS) is an awareness campaign launched in 2014 by the
L’Oréal Foundation to encourage girls to explore STEM career paths. It consists of one-hour
one-off classroom interventions by female role models with a background in science. The
interventions, which take place in the presence of all students in the class, including boys, are
made by female role models of two distinct types: (i) PhD candidates or postdoctoral researchers
who have been awarded a fellowship by the Foundation (the L’Oréal-UNESCO ‘For Women in
Science’ Fellowship) and who participate in the program as part of their contract; and (ii) young
scientists employed in the research and innovation division of the L’Oréal group who volunteer
for the program.

Structure and content of the interventions. The classroom interventions last one hour
and are divided into four main sequences. Each role model was given a set of slides as a support
for the in-class conversation. During the first sequence, a few slides highlight two facts: (1) the
labour market is marked by high demand for STEM skills and there is a shortage of graduates
in the relevant fields of study; and (2) women are under-represented in STEM careers. To
investigate the role of information provision, we gave 36 of the 56 role models additional slides
that they were free to use during this sequence. They supplied supplementary information about
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average earnings and employment conditions in STEM jobs and were illustrated with examples
of career prospects in humanities versus science. In Section 5, we discuss the sensitivity of our
results to this more intensive provision of standardised information.

The second sequence kicks off with two three-minute videos designed to set forth and
deconstruct stereotypes about science-related careers and gender roles in science.4 The first
video, entitled ‘Science, Beliefs or Reality?’, uses interviews with high school students to debunk
myths about careers in science (e.g., jobs in science are more challenging, they necessarily require
more years of schooling), stereotypes about scientists (e.g., they are introverted, lonely) and
gender differences in science aptitude (e.g., women are naturally less talented in maths). The
second video, entitled ‘Are we all Equal in Science?’, sets out the common gender stereotypes
about science aptitude while providing information on brain plasticity and on how interactions
and the social environment shape men’s and women’s abilities and tastes. This sequence seeks
to stimulate class discussion based on students’ reactions.

The third sequence centres on the role model’s own experience as a woman with a background
in science and consists of a question-and-answer session with the students.5 Topics addressed
during this discussion include the role model’s typical day at work, what she enjoys about her job,
the biggest challenge she had to overcome, how she views her professional future, her everyday
interactions with co-workers, how much she earns and her work-family balance. Consistent with
the program’s emphasis on the role model dimension, this sequence was intended as the longest
and most important part of the intervention. To convey this objective to the role models, a
day-long training session was organised to help them share their experience with the students.
The training also included a workshop on the under-representation of women in science and a
practice session aimed at enhancing oral communication skills.

The intervention concludes with an overview of the diversity of STEM studies and careers,
illustrated by concrete examples such as jobs in graphic design, environmental engineering and
computer science.

2.2 Experimental Design

Participating schools. The evaluation was conducted in the three school districts (académies)
of the Paris region (Paris, Créteil and Versailles) during the 2015/16 academic year. Créteil and
Versailles are the two largest districts in France and the three combined include 318,000 high
school students in the general and technical track, or 20% of all French high school enrolment.

Figure 2 shows the detailed timeline of the evaluation. In the spring of 2015, the French
Ministry for Education agreed to support a randomised evaluation of the program and designated

4Screenshots of the two videos shown during the classroom interventions are displayed in Appendix Figure B1.
5Screenshots of the slides used during the discussion are shown in Appendix Figure B2.
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Figure 2 – Program Evaluation Timeline

one representative for each district as intermediary between the schools and the evaluation team.
In June, official letters informed the high school principals, who are in charge of extracurricular
activities, that they were likely to be contacted to take part in the evaluation. All public and
private high schools with at least four classes in grade 10 and two in the grade 12 science track
were contacted by our team between September and December 2015, accounting for 349 of the
489 high schools in the three districts. Of these schools, 98 agreed to take part in the experiment,
representing 28% of grade 10 enrolment and 29% of grade 12 science track enrolment in the
three districts.6 The participating schools tend to be larger and are less likely to be private or
to be in the Paris education district than the non-participants (see Appendix Table E1).

Selection of classes and randomisation. In the fall of 2015, the principals were invited
to select at least six classes—four or more in grade 10 and two or more in grade 12 science
track—and to indicate a preferred time slot and day for the visits.7 While it is possible that
principals selected classes where they expected the interventions to be more effective, Appendix
Table E2 shows that selected and non-selected classes are broadly comparable, lending support
to the external validity of our experimental design. The gender composition of grade 10 classes
is similar between the two groups, while in grade 12, the share of female students is slightly
higher in the classes selected. Despite these differences, the experimental sample, which consists
of 19,451 students (13,700 in grade 10 and 5,751 in grade 12), resembles the relevant student
population quite closely, both in social composition and in average academic performance.

In each school, half of the classes selected (up to the nearest integer) were assigned randomly
to the treatment group (302 classes in total) and the other half to the control group (299 classes).
Table 1 indicates that, while the random assignment successfully balanced the characteristics of
students in the treatment and control groups in grade 10, it did not achieve perfect covariate

6The location of the participating schools is shown in Appendix Figure B3. The high schools that declined to
take part did so mainly because they feared the organisational burden of the classroom interventions.

7In a large majority of schools, principals selected exactly four grade 10 and two grade 12 classes.
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Table 1 – Treatment-Control Balance

Within school

Control
group

Treatment
group

Difference
T−C

p-value
of diff.

(1) (2) (3) (4)

Panel A. Grade 10

Student characteristics
Female 0.535 0.522 −0.010 0.309
Age (years) 15.13 15.12 −0.01 0.180
Non-French 0.059 0.061 0.002 0.652
High SES 0.377 0.386 0.008 0.321
Medium-high SES 0.131 0.125 −0.007 0.168
Medium-low SES 0.248 0.235 −0.012 0.064
Low SES 0.244 0.254 0.012 0.085
Number of siblings 1.485 1.486 0.003 0.904
Class size 33.22 33.27 0.07 0.476
At least one science elective course 0.389 0.398 0.005 0.820
At least one standard elective course 0.770 0.737 −0.031 0.138
DNB percentile rank in maths 58.61 58.35 −0.35 0.533
DNB percentile rank in French 57.79 57.91 0.12 0.829

Test of joint significance F -statistic: 0.798 (p-value: 0.653)

Predicted track in grade 11
Grade 11: science track 0.449 0.452 0.001 0.922
Grade 11: science–general track 0.373 0.375 0.001 0.920
Grade 11: science–technical track 0.077 0.077 −0.000 0.989

N 6,801 6,899 13,700

Panel B. Grade 12 (science track)

Student characteristics
Female 0.499 0.484 −0.014 0.292
Age (years) 17.14 17.11 −0.04 0.000
Non-French 0.053 0.048 −0.006 0.275
High SES 0.453 0.474 0.029 0.009
Medium-high SES 0.136 0.135 −0.001 0.829
Medium-low SES 0.216 0.201 −0.015 0.023
Low SES 0.195 0.190 −0.012 0.140
Number of siblings 1.510 1.487 −0.032 0.127
Class size 31.75 32.19 0.39 0.196
DNB percentile rank in maths 74.17 73.95 0.20 0.699
DNB percentile rank in French 69.31 69.90 0.89 0.122

Test of joint significance F -statistic: 0.983 (p-value: 0.459)

Predicted undergraduate major
Major: STEM 0.382 0.384 0.003 0.352
Major: selective STEM 0.175 0.178 0.006 0.081
Major: male-dominated STEM 0.273 0.276 0.004 0.279

N 2,853 2,898 5,751
Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left, separately for students
in grade 10 (panel A) and in grade 12 (panel B). Columns 1 and 2 show the average value for students in the control and treatment
groups, respectively. Column 3 reports the coefficient from the regression of each variable on the treatment group indicator, with
the p-value reported in column 4. The regression controls for school fixed effects to account for the fact that randomisation was
stratified by school, and standard errors are adjusted for clustering at the unit of randomisation (class). The F -statistic is from a
test of the joint significance of the coefficients in a regression of the treatment group indicator on all student characteristics. High
school tracks (panel A) and undergraduate majors (panel B) are predicted for each student using the coefficients from a linear
regression of the corresponding binary variable (e.g., enrolment in a STEM major) on all student characteristics listed in the table.
This model is fitted separately by grade level on the sample of students in the control group.
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balance in grade 12. In our empirical analyses, we account for these residual imbalances by
controlling for students’ baseline characteristics in our main specification.

Role models. The experiment involved 56 female role models: 35 L’Oréal employees and
21 PhD candidates or postdoctoral researchers. Table 2 provides summary statistics of their
characteristics. The researchers are younger (30 versus 36 years of age on average) and less
likely to be foreign nationals (10% versus 17%). Although both types have very high educational
attainment, 39% having graduated from a grande école, the researchers, by definition, are more
likely than the professionals to hold (or be preparing for) a PhD (100 versus 38%) and to hold
a degree in maths, physics and engineering (38% versus 14%). They are also less likely to
have children (19% versus 58%) and to have been involved in the program in the previous year
(19% versus 29%). The professionals working at L’Oréal are employed in various activities:
chemistry (development of new technologies for skin products), logistics and supply chain
management, statistics (consumer evaluation), immunology and toxicology. Although we could
not collect direct information on earnings for reasons of confidentiality, based on aggregate
information provided by the L’Oréal Group we estimate that the annual gross salary of these
young professionals is between e45,000 and e65,000, compared with e22,000–e50,000 for the
researchers. On average, the role models carried out five classroom interventions in two different
high schools.

Classroom interventions. The classroom visits took place between 17 November 2015 and
3 March 2016.8 The role models were asked to choose two or three schools in which to make
an average of three classroom visits per school—in most cases, two in grade 10 and one in
grade 12. They were not assigned to the schools randomly but registered for the visits and time
slots on a first-come, first-served basis during four registration sessions using an online system.
Randomly assigning the role models to the schools was not feasible, as most were participating
on a voluntary basis and during regular working hours. We therefore gauge the causal impact
of role models in a setting where they have some freedom to choose the schools in which they
intervene. The assignment process, however, did not involve any coordination between the
participants and was designed to limit their ability to select the schools they would visit, as
each registration session only concerned a subset of the participating schools.9

8Of the visits, 17% took place in November, 26% in December, 40% in January, 17% in February and 1% in
March (see panel A of Appendix Table E9).

9The role models were contacted four times to complete the schedule, on 21 October, 24 November, 7 December
2015 and 3 February 2016.
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Table 2 – Female Role Models: Summary Statistics

All role
models

Researchers
(PhD/
postdoc)

Professionals
(employed by

sponsoring firm)
(1) (2) (3)

Age (N = 51) 33.3 30.0 35.6
(5.7) (3.1) (6.0)

Non-French 0.14 0.10 0.17

Holds/prepares for a PhD (N = 55) 0.62 1.00 0.38

Graduated from a grande école 0.39 0.33 0.43

Field: maths, physics, engineering 0.23 0.38 0.14

Field: earth and life sciences 0.64 0.62 0.66

Field: other 0.13 0.00 0.20

Has children (N = 52) 0.42 0.19 0.58

Participated in the program the year before 0.25 0.19 0.29

Number of high schools visited 1.8 2.1 1.6
(0.8) (0.9) (0.7)

Number of classroom interventions 5.2 5.9 4.7
(2.3) (2.3) (2.1)

Visited at least one high school in Paris 0.27 0.29 0.26

N 56 21 35
Notes: The summary statistics are computed based on information obtained from the L’Oréal Foundation and from the post-
intervention survey administered online to collect feedback about the classroom visits. Standard deviations are shown in parentheses
below the mean values. Where data are missing for some role models, the number of non-missing values N is indicated in parentheses.

3 Data and Empirical Strategy

3.1 Data

To evaluate the program’s effects on student perceptions and educational outcomes, we combine
three main data sources: (i) a post-intervention survey of the role models; (ii) a post-intervention
survey of the students and (iii) student-level administrative data.10

Role model survey. After each visit to a school, the role models were invited to complete an
online survey (Breda et al., 2016a,b). Besides collecting general feedback, this survey served to
monitor compliance with random assignment, asking them to indicate each of the classes they
visited. Summary statistics are reported in Appendix Table E3. The interventions almost always
(89%) took place in the presence of the teacher and sometimes (35%) of another adult. The role
models reported organisational problems (e.g., the intervention started late, the slides could not
be shown) for only 16% of the visits. According to the survey, researchers and professionals
were equally likely to cover the intended topics, such as ‘jobs in science are fulfilling’, ‘they are

10The original and translated versions of the two surveys are provided in the replication package to this paper
(available at https://doi.org/10.5281/zenodo.7588802).
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for girls too’ and ‘they pay well’. Finally, when asked about their overall perception of their
interventions, 93% gave positive assessments, saying they went ‘well’ (37%) or ‘very well’ (56%).
Students were generally seen to have been responsive to the key messages.

Student survey. We conducted a paper-and-pencil student survey in the classes assigned to
the treatment and control groups between one and six months after the classroom visits, i.e.,
between January and May 2016 (Breda et al., 2016c). Each questionnaire had a unique identifier
so that it could be linked with student-level administrative data. The survey was designed
to collect a rich set of information on students’ preferences, beliefs and perceptions regarding
science, self-concept and aspirations. The questionnaire was anonymous and, to maximise the
response rate and the quality of the responses, was administered in exam conditions under the
supervision of a teacher (not necessarily the one present during the classroom visit). It was
presented as a general survey on attitudes about science and science-related careers so as to
minimise the risk that students would associate it with the FGiS program and, therefore, reduce
the scope for social desirability bias.11 It was eight pages long and took about half an hour to
complete.

The survey items are designed to measure the effects of the interventions on students’
perceptions along five dimensions: (i) general perceptions of science-related careers; (ii) percep-
tions of gender roles in science; (iii) taste for science subjects; (iv) self-concept in maths and
(v) science-related career aspirations. When conceptually related, we combine the survey items
to construct a composite index for each dimension using standardised z-score scales. Section 4
below describes the specific items that are used for each dimension.12

As shown in Appendix Table E5, the survey response rates are high both in grade 10 (88%)
and in grade 12 (91%). They are slightly higher among grade 10 students in the treatment
than in the control group (by 2.6 pps). Despite this small difference in response rates, the
characteristics of survey respondents are generally balanced (see Appendix Table E6). In
analysing survey-based outcomes, we control for students’ characteristics at baseline to account
for any residual imbalance between the treatment and control groups.

Administrative data. We linked the student survey data to a rich set of individual-level
administrative data covering the universe of high school students in the Paris region from
2012/13 to 2016/17 (DAPEP, 2017; PAPP, 2017; SSA, 2017). These data provide detailed
information on students’ socio-demographic characteristics and enrolment status every year,
allowing us to identify the track taken by grade 10 students entering grade 11.

11In Section 5, we provide suggestive evidence against experimenter demand effects driving our findings.
12To attenuate potential order bias, the order of several of the response items (e.g., maths/French, man/woman)

was set randomly.
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The college enrolment outcomes of students in grade 12 were obtained by matching the
survey and administrative data for high school students with administrative microdata covering
almost all the students enrolled in selective and non-selective higher education programs in
2016/17 (MESRI-DGESIP/DGRI-SIES, 2017).13 These data are supplemented by comprehensive
individual examination results from the diplôme National du Brevet (DNB), which is taken
at the end of middle school, and from the national baccalauréat exam for grade 12 students
(MENJ-DEPP, 2017). Specifically, we use students’ grades on the final exams in French and
maths (converted into national percentile ranks), as these tests are graded externally and
anonymously. Further details on the data sources and the classification of higher education
programs can be found in Appendix C .

3.2 Empirical Strategy

Compliance with random assignment was not perfect: about 5% of the classes assigned to the
treatment group were not visited by a role model, and 1% of the classes in the control group,
instead, were mistakenly visited (see Appendix Table E4 ).14 To deal with this marginal two-way
non-compliance, we follow the standard practice of using treatment assignment as an instrument
for treatment receipt, which allows us to estimate the program’s local average treatment effect
(LATE) instead of the average treatment effect. Specifically, we estimate the following model
using two-stage least squares:15

Yics = α + βDcs + Xicsπ + θs + εics, (1)

Dics = γ + δTcs + Xicsτ + λs + ηics. (2)

Here Yics denotes the outcome of student i in class c and high school s, Dcs is a dummy variable
indicating whether the student’s class received a visit and Tcs is a dummy for assignment to
the treatment group. The regression further includes the student characteristics Xics listed in
Table 1 to control for residual imbalances between the treatment and control groups. Finally,
school fixed effects, θs and λs, are included to account for the fact that the randomisation was

13The programs not covered by these administrative data are those leading to paramedical and social care
qualifications. Available estimates suggest that among grade 12 students who obtained a baccalauréat in science
in 2008, under 6% were enrolled in those programs the following year (Lemaire, 2012).

14We are confident that non-compliance was mostly due to organisational and logistical issues and was not an
endogenous response to randomisation. The few role models who carried out interventions in classes assigned
to the control group or in classes not selected to participate in the evaluation generally reported that their
interventions had been poorly organised, the person in charge often not being aware of the purpose of the visit.
In some cases, classroom interventions were scheduled during another speciality course involving multiple classes,
meaning that only some of the students in the treatment group were effectively treated.

15Because non-compliance concerned only a small fraction of classes, the LATE and intention-to-treat (ITT)
estimates are very close in magnitude. The ITT estimates can be found in Appendix Table H1 (columns 1
and 4).
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stratified by school and grade level.
The model specified by (1) and (2) is estimated separately by grade level and gender,

with standard errors clustered at the unit of randomisation (class). To account for multiple
hypothesis testing across the outcomes of interest, the treatment effect estimates are accompanied
by adjusted p-values (q-values) in addition to the standard p-values.16

4 Effects of Classroom Interventions

We analyse the impact of the classroom interventions on three sets of student outcomes:
(i) general perceptions of science-related careers and of gender roles in science; (ii) preferences,
self-concept and aspirations; and (iii) enrolment outcomes and academic performance.

4.1 Perceptions of STEM Careers and Gender Roles in Science

Students’ post-intervention survey responses show that the classroom interventions were effective
in challenging stereotyped views of science-related careers and gender roles. The results are
reported in Table 3 for students in grade 10 and in Table 4 for students in grade 12.

Perceptions of science-related careers. Students were asked to agree or disagree with five
statements on science-related careers relating to pay, the length of studies leading to these careers,
work-life balance and the two prevalent stereotypes that science-related jobs are monotonous
and solitary. We build a composite index of ‘positive perceptions of science-related careers’
by re-coding the Likert scales so that higher values correspond to less stereotyped or negative
perceptions, before taking the average of each student’s responses to the five questions. To
facilitate interpretation, we normalise the index to have a mean of zero and a SD of 1 in the
control group.17 For closer investigation of the various aspects that might be captured by the
overall index, we construct binary variables taking value 1 if the student agrees (strongly or
somewhat) with each statement, and zero if he/she disagrees.18

One of the interventions’ key objectives was to correct students’ beliefs about jobs and
careers in science by offering not only standardised information but also information specific
to each role model’s experience. As is shown in panel A of Tables 3 and 4, the role model

16We use the false discovery rate (FDR) control, which designates the expected proportion of all rejections
that are type-I errors. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006)
and described in Anderson (2008). See Appendix D for details.

17We checked that our results are robust to converting the item responses into binary variables before
computing the indices as well as to using Bartlett factor scores instead of the procedure described in the text.
See Appendix D for further details on the construction of the composite indices.

18Similar groupings are performed when using responses that are measured on a four-point Likert scale (usually
concerning perceptions or self-confidence) so that the outcome variables can be directly interpreted as proportions.
The results are not qualitatively affected by such grouping.
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Table 3 – Impact of Role Model Interventions on Student Perceptions in Grade 10

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

Panel A. Perceptions of science-related careers

Positive perceptions of science-related −0.020 0.245∗∗∗ 0.000 0.023 0.162∗∗∗ 0.000 0.013
careers (index) (0.027) [0.001] (0.027) [0.001]

Panel B. Perceptions of gender roles in science

More men in science-related jobs 0.628 0.154∗∗∗ 0.000 0.629 0.170∗∗∗ 0.000 0.345
(0.013) [0.001] (0.014) [0.001]

Equal gender aptitude for maths (index) 0.115 0.111∗∗∗ 0.000 −0.134 0.142∗∗∗ 0.000 0.383
(0.024) [0.001] (0.030) [0.001]

Women do not really like science 0.157 0.056∗∗∗ 0.000 0.198 0.101∗∗∗ 0.000 0.002
(0.011) [0.001] (0.013) [0.001]

Women face discrimination in 0.603 0.126∗∗∗ 0.000 0.527 0.154∗∗∗ 0.000 0.102
science-related jobs (0.013) [0.001] (0.014) [0.001]

Panel C. Stated preferences, self-concept, and aspirations

Taste for science subjects (index) −0.169 −0.033 0.275 0.197 −0.021 0.431 0.704
(0.031) [0.414] (0.026) [0.555]

Self-concept in maths (index) −0.198 −0.001 0.981 0.231 0.033 0.250 0.324
(0.028) [0.982] (0.029) [0.375]

Science-related career aspirations (index) −0.103 0.005 0.851 0.120 0.004 0.871 0.977
(0.029) [0.970] (0.027) [0.872]

N 6,475 5,751
Notes: This table reports estimates of the treatment effects of the role model interventions on the perceptions of students in grade 10.
The sample is restricted to students who completed the post-intervention questionnaire. Each row corresponds to a different linear
regression performed separately by gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value
for students in the control group. Columns 2 and 5 report the LATE estimates. They are obtained from a regression of the outcome
of interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression
includes school fixed effects (to account for the fact that randomisation was stratified by school) and the student characteristics
listed in Table 1. Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomisation (class). Columns 3
and 6 report the cluster-robust p-value of the estimated treatment effect and, in square brackets, the p-value (q-value) adjusted
for multiple hypothesis testing, using the false discovery rate (FDR) control method. Specifically, we use the sharpened two-stage
q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). The q-values are adjusted for multiple testing
across the study’s nine main outcomes of interest, separately by grade level and gender (see Appendix D for details). The p-value
of the difference between the treatment effects by gender is reported in column 7. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 4 – Impact of Role Model Interventions on Student Perceptions in Grade 12 (Science
Track)

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

Panel A. Perceptions of science-related careers

Positive perceptions of science-related −0.003 0.296∗∗∗ 0.000 0.003 0.171∗∗∗ 0.000 0.002
careers (index) (0.032) [0.001] (0.033) [0.001]

Panel B. Perceptions of gender roles in science

More men in science-related jobs 0.712 0.122∗∗∗ 0.000 0.717 0.149∗∗∗ 0.000 0.166
(0.016) [0.001] (0.015) [0.001]

Equal gender aptitude for maths (index) 0.158 0.078∗∗∗ 0.004 −0.161 0.124∗∗∗ 0.003 0.348
(0.028) [0.007] (0.042) [0.006]

Women do not really like science 0.074 0.042∗∗∗ 0.000 0.146 0.073∗∗∗ 0.000 0.079
(0.009) [0.001] (0.015) [0.001]

Women face discrimination in 0.624 0.085∗∗∗ 0.000 0.600 0.074∗∗∗ 0.000 0.651
science-related jobs (0.020) [0.001] (0.018) [0.001]

Panel C. Stated preferences, self-concept, and aspirations

Taste for science subjects (index) −0.002 0.018 0.583 0.002 0.014 0.733 0.924
(0.033) [0.583] (0.040) [0.825]

Self-concept in maths (index) −0.184 0.051 0.139 0.187 0.068∗∗ 0.038 0.695
(0.035) [0.157] (0.033) [0.057]

Science-related career aspirations (index) −0.045 0.106∗∗∗ 0.004 0.046 0.068∗ 0.055 0.410
(0.037) [0.007] (0.035) [0.071]

N 2,600 2,636
Notes: This table reports estimates of the treatment effects of the role model interventions on the perceptions of students in grade 12
(science track). The sample is restricted to students who completed the post-intervention questionnaire. Each row corresponds
to a different linear regression performed separately by gender, with the dependent variable listed on the left. Columns 1 and 4
report the average value for students in the control group. Columns 2 and 5 report the LATE estimates. They are obtained from
a regression of the outcome of interest on a classroom visit indicator, using treatment assignment as an instrument for treatment
receipt. The regression includes school fixed effects (to account for the fact that randomisation was stratified by school) and
the student characteristics listed in Table 1. Standard errors (shown in parentheses) are adjusted for clustering at the unit of
randomisation (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in square brackets,
the p-value (q-value) adjusted for multiple hypothesis testing, using the FDR control method. Specifically, we use the sharpened
two-stage q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). The q-values are adjusted for multiple
testing across the study’s nine main outcomes of interest, separately by grade level and gender (see Appendix D for details). The
p-value of the difference between the treatment effects by gender is reported in column 7. *** p < 0.01, ** p < 0.05, * p < 0.1.
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interventions significantly improved girls’ and boys’ perceptions of such careers as measured
by the composite index. The treatment effect estimates range from 16% of a SD for boys to
around 30% for girls, with significantly stronger effects for female students in both grades.

The detailed results for the different components of the index are reported in Appendix
Table F1. Students’ baseline perceptions indicate relatively widespread negative stereotypes
about careers in science (see columns 1 and 4), with little difference between boys and girls
or between grade levels. As an example, between 17% and 33% of students consider that
science-related jobs are monotonous or solitary. A significant impact of the classroom visits is
observed for almost all the components of the index. The largest effects relate to the statements
‘science-related jobs require more years of schooling’ and ‘science-related jobs are rather solitary’,
two stereotypes that were explicitly debunked in the slides and videos. Although the effects are
not strikingly different between genders and grade levels, they tend to be greater for girls in
grade 12. In particular, the interventions significantly reinforced female students’ perceptions
that science-related careers are compatible with a fulfilling family life, a message specifically
conveyed by the role models and in line with the evidence showing that jobs in science and
technology enable women to work more flexibly (Goldin, 2014).

Perceptions of gender roles in science. Female under-representation in STEM can be
broadly attributed to three possible causes: gender differences in abilities, discrimination (on
the demand side) and differences in preferences and career choices (on the supply side). The
survey questions were designed to capture students’ views on these three dimensions.19

Strikingly, the results show that more than a third of grade 10 students and a quarter of
grade 12 students in the control group are not aware that women are under-represented in
science-related careers (panel B of Tables 3 and 4). These proportions do not differ greatly
either by gender or by grade. For boys and girls in both grades, the interventions increased
awareness of female under-representation in STEM by 12 to 17 pps. This is one of the strongest
effects of the interventions.

The classroom interventions were also effective in debiasing students’ beliefs about gender
differences in maths aptitude. To capture this dimension, we asked students whether they
agreed with the statements that ‘men are more gifted than women in mathematics’ and that
‘men and women are born with different brains’. We used these two questions to construct a
composite index to gauge whether students believe that men and women have equal aptitude
for mathematics. The results show significant rises in this index for both genders in both grades,

19Unlike the survey questions related to students’ perceptions of science-related careers, those on perceptions
of gender roles in science are not aggregated into a single index because they were designed to capture different
dimensions that cannot be easily combined. For the same reason, we refrained from using a single index to
measure students’ stated preferences, self-concept and aspirations (see Section 4.2).
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with treatment effects ranging between 7.8% and 14.2% of a SD.20

Interestingly, the classroom visits had more ambiguous, partially unintended effects regarding
the other two possible causes. First, when asked about gender differences in preferences, the
share of students who agree that ‘women do not really like science’ is relatively low in the control
group (16% of girls and 20% of boys in grade 10; 7% of girls and 15% of boys in grade 12), but it
is substantially higher owing to the interventions for both genders, by 4 to 10 pps. Second, the
baseline shares of boys and girls who say that women face discrimination in science-related jobs
are much larger (between 53% and 62%); these too increase for both genders, by 7 to 15 pps.
These unintended effects on students’ perceptions might represent an effort to rationalise the
small number of women in science-related careers, making students more likely to agree with
the simplistic view that ‘women do not really like science’ as well as subscribing to the idea
that women face discrimination.

4.2 Stated Preferences, Self-Concept and Aspirations

We now turn to the effects of the interventions on students’ tastes for science subjects, their
self-concept in maths and their science-related career aspirations. The results are reported in
panel C of Tables 3 and 4.

Taste for science subjects. For both genders in grade 10 and grade 12, the classroom visits
had no sizeable impact on students’ taste for science subjects, which we measure using an index
that combines their answers to four questions about their enjoyment of maths, physics-chemistry,
and earth and life sciences (on a 0 to 10 Likert scale), and their self-reported taste for science in
general (on a four-point Likert scale).21 These findings are not particularly surprising, given that
the interventions did not expose students to science-related content and were not specifically
designed to promote interest in science.

Self-concept in maths. To measure the impact of the classroom visits on students’ self-
concept in mathematics, we use a composite index combining the responses to four questions:
(i) students’ self-assessed performance in maths; (ii) whether they feel lost when trying to solve
a maths problem; (iii) whether they often worry that they will struggle in maths class and
(iv) whether they think they can do well in science subjects if they make enough effort.

Consistent with the literature, our sample exhibits large gender differences in self-concept in
mathematics. In the control group, the value of the index is 43% of a SD lower for girls than for
boys in grade 10, and 37% lower in grade 12. Large gender differences are found for most of the

20The detailed results for the two components of this index are reported in Appendix Table F2.
21The detailed results for the four components of the index are reported in Appendix Table F3.
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items used in the construction of this index, in particular those related to maths anxiety (see
Appendix Table F4).

Although the interventions were light touch, they did have some positive effect on students’
self-concept in maths. These effects are statistically significant only for boys in grade 12 when
using the composite index. The interventions, however, consistently reduced the probability
of students reporting worry that they will struggle in maths class. Point estimates tend to be
higher for boys than for girls in both grades, indicating that the classroom interventions had no
corrective effect on the substantial gender gap in this area.

Science-related career aspirations. The choice of a science-related career path does not
depend solely on students’ tastes for the science taught at school. It also depends on their
perceptions of the relevant jobs and their amenities, such as earnings, work/life balance and the
work environment, all of which were embodied by the role models.

To measure the effects on students’ aspirations for science-related careers, we use a composite
index combining the responses to four questions: (i) whether the students find that some jobs
in science are interesting; (ii) whether they could see themselves working in a science-related
job; (iii) whether they are interested in at least one of six STEM jobs out of a list of 10 STEM
and non-STEM occupations22 and (iv) whether they consider career and earnings prospects as
important factors in their choice of study.

Although the interventions had no discernable impact on grade 10 students’ science-related
aspirations, in grade 12 the effects are positive and statistically significant for both genders
(11% of a SD for girls, significant at the 1% level, and 7% for boys, significant at the 10%
level). The more detailed results reported in Appendix Table F5 show that the interventions
had significant positive effects on three of the relevant survey items for grade 12 students. In
particular, those in the treatment group are more likely to report that career and earnings
prospects are important factors in their choice of study, which is consistent with the thesis that
the interventions raised their awareness of the wage premium for STEM jobs.

4.3 Educational Choices and Academic Performance

High school track after grade 10. Table 5 shows that the classroom visits had no significant
impact on grade 10 students’ choices of track for the academic year following the intervention,
i.e., 2016/17. For both genders, the treatment effect estimates are close to zero, whether we
consider enrolment in any STEM track or in the general and technical STEM tracks separately.

22The STEM occupations in the list were chemist, computer scientist, engineer, industrial designer, renewable
energy technician and researcher in biology. The non-STEM occupations were lawyer, pharmacist, physician and
psychologist.
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That is, the interventions had no effect on the 20 pp gender gap in the probability of pursuing
STEM studies after grade 10.

Several mechanisms can be posited for this lack of effect on the enrolment status of grade 10
girls the next year. First, the interventions did not appear to be especially well suited to increase
the share of girls enrolling in the STEM technical tracks in grade 11, where their share is
particularly low (17%). As is noted below, the positive effects observed on the STEM enrolment
decisions of girls in grade 12 are concentrated among the high achievers in maths. In grade 10,
high-achieving students are traditionally not directed to the technical tracks. If low-achieving
students are less likely to be affected then it is not surprising to find limited effects on enrolment
in STEM technical tracks. Turning to the general science track, female under-representation is
only moderate in grade 11 (in 2016/17, the female share was 47%) and this track is the most
common choice (usually the default) for high-performing students, including girls. Unlike the
other high school tracks, it gives access to almost all fields of study in higher education and
thus does not signal any strong commitment to a STEM education or career in the future; that
is, the potential of STEM role models to influence enrolment in this track is limited. Female
students who turn away from the science track in high school are unlikely to even consider a
STEM career as a viable option, making their choices less easily reversible.23

Field of study after grade 12. A central finding of the study is that the role model
interventions had significant effects on the educational choices of girls in grade 12, by raising
their probability of enrolling in selective and in male-dominated STEM programs in higher
education.24

Table 6 indicates a positive but statistically insignificant (p = 0.14) effect of the interventions
on the probability of female students enrolling in undergraduate STEM programs, of 2.0 pps
from a baseline of 28.9%, i.e., a 7% increase. Importantly, however, we find that the classroom
visits had larger and statistically significant effects on female students’ enrolment in the STEM
programs in which they are most severely under-represented. Our estimates show that their
probability of enrolling in selective STEM programs increased by 3.1 pps (a 28% increase
from the baseline of 11.0%, significant at the 1% level). In male-dominated STEM programs
(mathematics, physics, computer science and engineering), their enrolment probability increased
by 3.4 pps from a baseline of 16.6% (i.e., a 20% increase, significant at the 1% level).

These results are particularly striking given that selective and male-dominated STEM
programs are not only the most prestigious tracks but also those where the gender gap is

23Consistent with this interpretation, the survey data indicate that among grade 10 students in the control
group, only 24% of the girls who did not enrol in the science track the following year said they could see
themselves working in a science-related job, compared to 87% of those who did.

24STEM programs are classified as being either male dominated or female dominated depending on whether
the share of female students in the corresponding field is below or above 50% (see Appendix C.2 for details).
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Table 5 – Impact of Role Model Interventions on Grade 10 Students’ Enrolment Status the
Following Year

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

All STEM tracks
Grade 11: science track 0.355 −0.002 0.862 0.551 −0.006 0.640 0.800

(0.011) [0.970] (0.012) [0.720]

General versus technical STEM track
Grade 11: science–general track 0.328 0.003 0.794 0.416 0.004 0.710 0.925

(0.010) [0.794] (0.011) [0.710]

Grade 11: science–technical track 0.026 −0.005 0.188 0.135 −0.010 0.234 0.562
(0.004) [0.377] (0.008) [0.468]

Other tracks or repeater
Grade 11: other tracks 0.545 0.006 0.614 0.324 0.020 0.110 0.391

(0.012) (0.012)

Repeater or dropout 0.101 −0.004 0.636 0.126 −0.014∗ 0.090 0.327
(0.009) (0.008)

N 7,241 6,459
Notes: This table reports estimates of the treatment effects of classroom interventions on grade 10 students’ enrolment outcomes in
the academic year following the classroom interventions, i.e., 2016/17. The enrolment outcomes are measured using student-level
administrative data. Each row corresponds to a different linear regression performed separately by gender, with the dependent
variable listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the
LATE estimates. They are obtained from a regression of the outcome of interest on a classroom visit indicator, using treatment
assignment as an instrument for treatment receipt. The regression includes school fixed effects (to account for the fact that
randomisation was stratified by school) and the student characteristics listed in Table 1. Standard errors (shown in parentheses)
are adjusted for clustering at the unit of randomisation (class). Columns 3 and 6 report the cluster-robust p-value of the estimated
treatment effect and, in square brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using the FDR control
method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in Anderson
(2008). The q-values associated with the treatment effect estimates on ‘Grade 11: science track’ are adjusted for multiple testing
across the study’s nine main outcomes of interest, separately by gender (see Appendix D for details). The q-values associated with
the treatment effect estimates on enrolment in the general and technical STEM tracks are adjusted for multiple testing across these
two tracks, separately by gender. The p-value of the difference between the treatment effects by gender is reported in column 7.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6 – Impact of Role Model Interventions on Grade 12 Students’ Enrolment Status the
Following Year

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

All undergraduate STEM majors
Major: STEM 0.289 0.020 0.139 0.470 −0.002 0.925 0.310

(0.014) [0.157] (0.019) [0.926]

Selective versus non-selective STEM
Major: selective STEM 0.110 0.031∗∗∗ 0.006 0.232 0.008 0.575 0.200

(0.011) [0.012] (0.015) [0.575]

Major: non-selective STEM 0.178 −0.011 0.333 0.239 −0.010 0.445 0.959
(0.012) [0.333] (0.013) [0.575]

Male- versus female-dominated STEM
Major: male-dominated STEM 0.166 0.034∗∗∗ 0.004 0.379 0.013 0.485 0.289
(maths, physics, computer science) (0.012) [0.012] (0.019) [0.575]

Major: female-dominated STEM 0.123 −0.015 0.169 0.091 −0.015 0.119 0.983
(earth and life sciences) (0.011) [0.226] (0.009) [0.477]

Other tracks or dropout
Other non-STEM programs 0.507 −0.031∗∗ 0.049 0.293 −0.008 0.571 0.286

(0.016) (0.015)

Not enrolled in higher education 0.206 0.011 0.430 0.237 0.012 0.425 0.957
(0.013) (0.015)

N 2,827 2,924
Notes: This table reports estimates of the treatment effects of classroom interventions on grade 12 (science track) students’ enrolment
outcomes in the academic year following the classroom interventions, i.e., 2016/17. The enrolment outcomes are measured using
student-level administrative data. Each row corresponds to a different linear regression performed separately by gender, with the
dependent variable listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2
and 5 report the LATE estimates. They are obtained from a regression of the outcome of interest on a classroom visit indicator,
using treatment assignment as an instrument for treatment receipt. The regression includes school fixed effects (to account for
the fact that randomisation was stratified by school) and the student characteristics listed in Table 1. Standard errors (shown in
parentheses) are adjusted for clustering at the unit of randomisation (class). Columns 3 and 6 report the cluster-robust p-value
of the estimated treatment effect and, in square brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using the
FDR control method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in
Anderson (2008). The q-values associated with the treatment effect estimates on ‘Major: STEM’ are adjusted for multiple testing
across the study’s nine main outcomes of interest, separately by gender (see Appendix D for details). The q-values associated with
the treatment effect estimates on enrolment in the different STEM majors are adjusted for multiple testing across these different
majors, separately by gender. The p-value of the difference between the treatment effects by gender is reported in column 7.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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greatest, explaining approximately half of the STEM-related gender pay gap in France (see the
discussion in Section 1.2). Our estimates indicate that, on average, the role model interventions
induced one girl in every two grade 12 science-track classes to switch to a selective or a
male-dominated STEM program at entry into higher education.25

The more detailed results presented in Appendix Table F6 suggest that these effects are
driven by girls switching from non-STEM programs and from STEM programs that are neither
selective nor male dominated. A significant decline in female enrolment is indeed found for non-
selective undergraduate programs in earth and life sciences (−2.2 pps), while small reductions
of 0.2 to 0.9 pp are found for selective programs in humanities and non-STEM vocational
programs, as well as for non-selective programs in medicine, law and economics, humanities
and psychology, and sports studies. Role models thus appear to have affected the enrolment
outcomes of grade 12 girls who would have otherwise chosen a curriculum in a female-dominated
environment, be it in STEM or outside STEM.

By contrast, we find no evidence of statistically significant effects of the interventions on the
college major decisions of boys in grade 12. The estimated effect on their probability of enrolling
in a STEM undergraduate program is close to zero (−0.2 pp from a baseline of 47.0%), while the
effects on enrolment in selective STEM (0.8 pp from a baseline of 23.2%) and male-dominated
STEM programs (1.3 pp from a baseline of 37.9%) are small and insignificant at conventional
levels. It should be noted, however, that these estimates do not allow drawing firm conclusions
on the impact of the program on the gender gap in STEM enrolment, as we lack the statistical
power to reject the null hypothesis of equal effects on male and female students.

Taken together, the results for grade 12 students indicate that the interventions were effective
in steering girls towards the STEM tracks in which they are heavily under-represented, even
though two-thirds of the role models came from female-dominated STEM fields (earth and
life sciences) and that the interventions were designed to promote all types of STEM careers,
including those where women now outnumber men. These findings suggest that in the current
setting, the role models affected only the most strongly stereotyped choices.

Academic performance. The effects of the classroom visits on academic performance can
be documented for students in grade 12 based on the baccalauréat exams, taken a few months
after the classroom interventions. The estimates of the effect of the treatment on students’
performance on the maths test and on the probability of obtaining the baccalauréat are close
to zero and statistically insignificant for both genders (see Appendix Table F7).26 Although
hypothetically the role models could have strengthened students’ motivation to be admitted to

25This calculation is based on an average of 15 girls per class.
26The small negative effect on overall baccalauréat performance for female students is only marginally significant

when we control for student characteristics and is not robust to omitting these controls.
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the most selective STEM programs, and so increased the time devoted to studying maths and
science, we find no evidence of any such effect. We can therefore rule out that the effects on the
enrolment outcomes of girls in grade 12 were driven by increased effort and accordingly better
academic performance.

4.4 Robustness Checks

We conducted a series of robustness checks for our main findings (see Appendices G and H).
First, we checked that our results are robust to using a specification that does not control

for students’ characteristics at baseline. The resulting estimates for the survey-based outcomes
(Table G1) are quite similar to those presented in Tables 3 and 4. The estimates without
controls are also qualitatively similar to those reported in Tables 5 and 6 for enrolment outcomes
(Table G2). They tend to be slightly larger (but not statistically significant) for boys in grade 12,
which we interpret as a consequence of the small residual imbalances in the male sample.27

Second, we assessed the sensitivity of our results to non-parametric randomisation inference
tests rather than model-based cluster-robust inference. The tests are performed by comparing
our ITT estimates with the distribution of ‘placebo’ ITT estimates obtained by randomly
re-assigning treatment two thousand times among participating classes within each school and
grade level. The results yield empirical p-values that are generally close to the model-based
p-values (see Table H1). Although they tend to be slightly more conservative, they confirm the
interventions’ statistically significant effects on female enrolment in selective and male-dominated
undergraduate STEM programs.

5 Information, Persistence and Spillovers

In this section, we test the sensitivity of students’ attitudes and choices to the informational
component of the intervention. We then extend the analysis to the persistence of effects
on student perceptions, the timing of the interventions and the potential spillover effects on
enrolment outcomes.

The role of information provision. Role model interventions not only foster self-identification
but intrinsically contain an informational component. While our design does not allow fully
disentangling these two mechanisms, there is suggestive evidence that the purely informational

27Balancing tests performed separately by grade level and gender do not point to unusually large covariate
imbalance between the treatment and control groups in any of the subsamples (results available upon request).
However, the predicted probability of being enrolled in a selective STEM program is marginally higher in the
treatment than in the control group for boys in grade 12 (by 0.8 pp from a baseline of 23.8%, significant at the
5% level).
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component of the classroom visits does not in itself explain the changes in female students’
college major decisions after grade 12.

As described in Section 2, we initially sent a set of slides to the role models to assist
them during the intervention. The first six slides highlighted some stylised facts about jobs in
science and female under-representation in STEM careers, but gave only limited information on
employment conditions in such careers, and no information on salaries. Starting on 20 November
2015, we sent six additional slides to 36 of the 56 role models, with more detailed information
regarding wage and employment gaps between STEM and non-STEM jobs, as well as differences
between male and female students’ choices of study. The role models were free to integrate
these slides into their final presentation or just use them as a support.28

The results reported in Appendix I show that students’ characteristics are balanced between
the role models who received the standard or the ‘augmented’ set of slides (see Table I1).29

Consistent with the thesis that the effects on college major decisions were not driven primarily
by the standardised information contained in the slides, we find that the role models who had
just the standard slideshow also had positive and significant effects on the probability of female
students enrolling in selective STEM and male-dominated STEM programs after grade 12 (see
Table I2). And we find no evidence that those who had the additional slides had significantly
larger effects on girls’ STEM enrolment outcomes, although the students with whom they
interacted were more likely to agree that science-related jobs pay higher salaries.30

Persistence. The effects on students’ perceptions that we observe could be short lived. We
explore this issue by comparing the treatment effects depending on the time elapsed between
the classroom visit and the date when the student completed the survey. Splitting the sample
at the median of this time interval (63 days), we find that, on average, students below this
threshold completed the survey 46 days after the intervention, those above it in 93 days, i.e.,
an extra 47 days. Note that students whose class was visited early are more likely to have
waited longer before completing the survey. The comparison of treatment effects between the
two subsamples should therefore be interpreted with some caution when assessing persistence,
since these effects may also capture heterogeneity related to the timing of the visits (see the
next paragraph). Moreover, the interval between the intervention and survey completion never

28Screenshots of the two sets of slides are shown in Appendix Figures I1 and I2.
29At first, we planned to allocate the two sets of slides randomly to the role models and were able to do so for

a subset of 14 participants. However, the L’Oréal Foundation requested that going forward, all remaining role
models be provided with the ‘augmented’ version. Those who had already started the visits kept the standard
version. To ensure sufficient statistical power, we present results for the entire sample of role models, controlling
for month-of-visit fixed effects. The results are qualitatively similar if we restrict the sample to the subset to
whom the slides were randomly assigned.

30Note that, since the use of the supplementary slides was at the discretion of the role models, the coefficient
on the interaction term T×additional slides in Appendix Table I2 should be interpreted as a lower bound for the
effect of the more information-intensive treatment.
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exceeds six months. With these caveats in mind, the results in Appendix Table I3 suggest that
the treatment effects did not vanish quickly, insofar as they are statistically significant and of
comparable magnitude in both subsamples and, in most cases, are not significantly different.
These results should also attenuate concerns about social desirability bias, since experimenter
demand effects would be expected to be greater for students who took the survey shortly after
the intervention.

Timing of visits. We find suggestive evidence that earlier interventions had greater effects
on the college choices of grade 12 students, which could be made through May. For girls, the
positive effects on enrolment in STEM, selective STEM and male-dominated STEM are all
statistically significant for the classroom visits that took place in November or December 2015,
whereas the effects of visits in January or February 2016 are smaller and not significant (see
Appendix Table I4).31 With the caveat that we cannot reject the null hypothesis of equal
treatment effects across the two subperiods, these findings suggest that interventions made
when many students are still undecided about their field of study and career plans may be more
effective than those on the eve of the deadline when irreversible choices may already have been
made.

Spillovers. An important issue is whether the interventions could have influenced the educa-
tional choices of students in the control group. These students may have heard about the visits
directly, through their schoolmates in treatment group classes, or indirectly, through regular
social interaction. If the direction of such effects is the same for students in the treatment and
control groups, ignoring spillovers would cause us to underestimate the treatment effects.

On the last page of the post-intervention survey questionnaire, the students in the treatment
group were asked whether they had discussed the classroom intervention with their classmates,
with schoolmates from other classes or with friends outside of school, as a way of assessing
possible spillover effects. Students in the control group received a slightly different version of
this final section, asking whether they had heard of classroom visits by male or female scientists
in other classes, with no explicit mention of the FGiS program.

The survey evidence suggests that the scope for spillover effects was limited, which is
consistent with the idea that in French schools most peer interactions take place within the
class (Avvisati et al., 2014). In the treatment group, 58% of grade 10 students and 63% of
grade 12 students report having talked about the classroom intervention with their classmates,
but only 24% and 27% report having talked with schoolmates from other classes (see Appendix

31We are confident that these differences are not driven primarily by confounding factors. Although the
subsamples defined on the basis of whether the visit took place in 2015 or in 2016 exhibit significant imbalances
with respect to education districts and the share of private schools, they are reasonably balanced with respect to
students’ characteristics and predicted STEM enrolment (results available upon request).
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Table J1). In the control group, only 14% of students in grade 10 report having heard of the
classroom visits, almost all of them (12%) only vaguely. In grade 12, students in the control
group are more likely (34%) to report being at least vaguely aware of the visits, but fewer than
5% of boys and girls have a precise recollection. Overall, these summary statistics suggest that
spillover effects were quite limited indeed.

We complement this survey evidence with a more formal investigation of whether the
interventions affected the higher education choices of grade 12 students whose classes were not
assigned to the treatment group—either classes not selected by principals for the interventions or
participating classes randomly assigned to the control group. Our empirical strategy, described
in detail in Appendix J, builds on the following intuition: for schools that participated in the
evaluation, the random assignment of treatment to participating classes makes it possible to
estimate the average outcome that would have resulted if all students had only been exposed to
the spillover effects of classroom interventions without being directly exposed to a role model.
This unobserved ‘spillover-only’ counterfactual can be estimated at the school level by computing
an appropriately weighted average of the outcomes of students in the non-participating classes
and in the participating classes that were assigned to the control group. Students in the
control group classes are given a greater weight, as they are used to account for both their own
outcome and for the hypothetical outcome in the treatment classes, if they had been exposed
to a role model only indirectly.32 The spillover effects of the interventions are then estimated
by comparing the ‘spillover-only’ counterfactual and a ‘no-treatment’ counterfactual. This
second counterfactual is constructed using non-participating schools, which we observe in the
administrative data, whose observable characteristics are similar to those of the participating
schools over the period 2012–2015. Having verified that trends in student enrolment outcomes
were parallel between the two groups of schools in the pre-treatment period, we implement
a difference-in-differences estimator to identify the interventions’ spillover effects on students’
STEM enrolment outcomes at college entry.

This difference-in-differences approach produces no evidence of significant spillover effects
on non-treated grade 12 students (see Table J2 in the Appendix). Together with the survey
evidence, the results based on this approach suggest that spillovers between treatment and
control classes were at most limited.

32For instance, in a school with two participating classes, one treated and one control, and one non-participating
class, the ‘spillover-only’ counterfactual is computed by assigning a weight of 1 to the non-participating class and a
weight of 2 to the control group class (if all classes have the same number of students). By virtue of randomisation,
mean outcomes in the control classes provide unbiased estimates of the counterfactual ‘spillover-only’ outcomes
in the treatment classes.
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6 What Makes the Role Model Intervention Effective?

To understand what drives the success of the interventions, we investigate the characteristics of
the message, the messenger and the students who were the most responsive. One advantage of
our setting is that we can compare treatment effects for groups of students who were exposed to
different role models or who responded differently to the same one.

We proceed in three steps. First, we show that the treatment effects on STEM enrolment
outcomes vary substantially along the two most salient dimensions of heterogeneity, namely the
role models’ background (L’Oréal professionals versus researchers) and the students’ academic
performance. Second, we determine which of the student perceptions were most strongly affected
by the role models who had the greatest impact on enrolment outcomes. Third, we build on the
machine learning approach of Chernozhukov et al. (2018) to analyse whether the students who
were particularly receptive or unreceptive to some of the messages conveyed are the same ones
whose choice of study was most or least affected by the interventions. We use this approach to
determine which messages were most effective.

6.1 Heterogeneous Treatment Effects on STEM Enrolment

We start by investigating how the treatment effects on STEM enrolment vary with the role
models’ background and the students’ performance in maths. Our analysis focuses on grade 12
students, as we find no evidence of significant effects on enrolment outcomes for grade 10
students.33

Role model background: researchers versus professionals. We find clear evidence that
the two types of role model had different effects on the STEM enrolment outcomes of girls in
grade 12 (see panel A of Table 7 and Appendix Figure K1). The professionals increased the
probability of female students enrolling in a selective STEM program by a significant 5.4 pps,
whereas the researchers had no discernable effect.34 The contrast is qualitatively similar whether
male-dominated STEM programs or all STEM programs are considered. While the estimates also
point to larger effects for boys who were exposed to role models with a professional background,
they are not statistically significant at conventional levels.

Why were the two types of role model not equally able to steer female students towards STEM
fields? The academic role models are, on average, younger than the professionals employed
by the sponsoring firm (see Table 2), which might foster greater identification on the part

33The results of the heterogeneity analysis by role model background and maths performance for grade 10
students are reported in Appendix Tables K1 and K2.

34The difference between the treatment effects of the two types of role model is significant at the 5% level.
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Table 7 – Heterogeneous Treatment Effects on Grade 12 Students’ Outcomes, by Role Model
Background

Girls Boys
Role model background Role model background

Resear-
chers

Profes-
sionals

p-value
of diff.

[q-value]

Resear-
chers

Profes-
sionals

p-value
of diff.

[q-value]
(1) (2) (3) (4) (5) (6)

Panel A. Enrolment outcomes

Undergraduate major: STEM −0.014 0.043∗∗∗ 0.049 −0.017 0.010 0.480
(0.024) (0.016) [0.146] (0.030) (0.024) [0.729]

Undergraduate major: selective STEM −0.002 0.054∗∗∗ 0.017 −0.016 0.028 0.151
(0.019) (0.013) [0.034] (0.024) (0.019) [0.303]

Undergraduate major: male-dominated STEM 0.015 0.046∗∗∗ 0.188 −0.008 0.029 0.340
(0.019) (0.015) [0.189] (0.028) (0.026) [0.340]

N 1,180 1,647 1,312 1,612

Panel B. Student perceptions

Positive perceptions of science-related careers (index) 0.166∗∗∗ 0.380∗∗∗ 0.001 0.157∗∗∗ 0.181∗∗∗ 0.711
(0.049) (0.039) [0.003] (0.046) (0.046) [0.800]

More men in science-related jobs 0.137∗∗∗ 0.113∗∗∗ 0.461 0.161∗∗∗ 0.139∗∗∗ 0.486
(0.025) (0.021) [0.649] (0.023) (0.021) [0.729]

Equal gender aptitude for maths (index) 0.095∗∗ 0.068∗∗ 0.623 0.185∗∗∗ 0.078 0.208
(0.046) (0.033) [0.702] (0.067) (0.053) [0.729]

Women do not really like science 0.039∗∗∗ 0.044∗∗∗ 0.815 0.091∗∗∗ 0.060∗∗∗ 0.284
(0.015) (0.012) [0.816] (0.025) (0.017) [0.729]

W face discrimination in science-related jobs 0.124∗∗∗ 0.061∗∗∗ 0.135 0.088∗∗∗ 0.064∗∗∗ 0.509
(0.035) (0.024) [0.243] (0.028) (0.023) [0.729]

Taste for science subjects (index) −0.054 0.065 0.074 −0.011 0.033 0.567
(0.049) (0.044) [0.167] (0.056) (0.055) [0.729]

Self-concept in maths (index) 0.081 0.032 0.504 0.126∗∗ 0.023 0.118
(0.059) (0.043) [0.649] (0.050) (0.043) [0.729]

Science-related career aspirations (index) −0.089 0.231∗∗∗ 0.000 0.060 0.074 0.846
(0.057) (0.044) [0.001] (0.054) (0.047) [0.847]

N 1,067 1,533 1,174 1,462

Notes: This table reports estimates of the treatment effects of the role model interventions on the outcomes of grade 12 students,
separately by gender and by background of the female role model who visited the classroom (professional or researcher). Each
row corresponds to a different linear regression performed separately by gender, with the dependent variable listed on the left.
Columns 1 and 2 (for girls) and columns 4 and 5 (for boys) report the LATE estimates for students whose class was visited by
a researcher or a professional, respectively. They are obtained from a regression of the outcome of interest on the interaction
between a classroom visit indicator and indicators for the role model being either a researcher or a professional, using treatment
assignment (interacted with the role model background indicator) as an instrument for treatment receipt. The regression includes
school fixed effects (to account for the fact that randomisation was stratified by school) and the student characteristics listed in
Table 1. Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomisation (class). Columns 3 and 6
report both the cluster-robust model-based p-value for the difference between the treatment effect estimates for students visited by
a professional versus a researcher and, in square brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using the
FDR control method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in
Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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of the students. But because they work in highly specialised fields and in very competitive
environments, it is not clear how attainable students might think their achievements are. On
the other hand, the professionals tend to have higher pay and more experience, and they come
less often from a purely academic background. Also, unlike PhD candidates and postdocs, they
hold permanent jobs and their work environment could be perceived as more attractive. Finally,
the types of role model might differ in their communication skills and charisma.35 While it
is hard to pinpoint the precise attributes that could explain why the professionals had more
impact than the researchers, our data allow us to investigate the messages they conveyed more
effectively to the students (see Section 6.2).

High versus low achievers in maths. Academic performance in mathematics is the single
most important admission criterion of selective undergraduate STEM programs. Using grade 12
students’ national percentile rank on the baccalauréat maths test to proxy for academic perfor-
mance, we find that the interventions’ positive impact on selective STEM enrolment is driven by
female students above the median (see panel A of Table 8).36 For these girls, the probability of
enrolling in a selective STEM program after high school increases by 6.5 pps (significant at the
1% level), which corresponds to a 34% increase from the baseline of 19%, while the effect is close
to zero for girls below the median and is not statistically significant for boys. The differences in
treatment effects between high- and low-achieving girls in maths are qualitatively similar for
enrolment in male-dominated STEM programs and for all STEM programs.37

Potential confounders. Even though the role models were not randomly assigned to the
participating schools, the classroom visits of the researchers and the professionals are similarly
distributed over the period of intervention (see Appendix Table E9, panel A).38 The charac-
teristics of the schools and students visited by the two sets of role models also appear to be
reasonably balanced (see Appendix Tables E7 and E8). There are, however, a few statistically
significant differences. In grade 12, in particular, the professionals were more likely than the
researchers to visit private high schools (24% versus 10%).

35Although we cannot rule this explanation out, we do not think it is the most likely, both because researchers
and professionals received a one-day training before visiting the high schools and because the PhD candidates
and postdocs, with their experience as teaching assistants, are probably more used to speaking to a student
audience and handling classrooms. It is also possible that the professionals were more motivated than the
researchers because they volunteered for the program. Our feeling is that this aspect may not have played a
major role. We met the academic role models on multiple occasions and our general impression is that they were
genuinely enthusiastic about their participation.

36As noted in Section 4.3, we find no significant impact of the interventions on students’ performance on the
maths test of the baccalauréat exam, which mitigates concerns about potential endogenous selection bias when
conditioning on this variable.

37Appendix Figure K2 further shows that the effects on STEM enrolment are mainly driven by girls in the top
quartile of maths performance.

38The average interval between the visits and the date when students completed the survey is also comparable
between the two groups of role models (Table E9, panel B).
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Table 8 – Heterogeneous Treatment Effects on Grade 12 Students’ Outcomes, by Maths
Performance

Girls Boys
Performance in maths Performance in maths

Below
median

Above
median

p-value
of diff.

[q-value]

Below
median

Above
median

p-value
of diff.

[q-value]
(1) (2) (3) (4) (5) (6)

Panel A. Enrolment outcomes

Undergraduate major: STEM 0.007 0.028 0.567 −0.036 0.012 0.241
(0.021) (0.026) [0.639] (0.027) (0.029) [0.484]

Undergraduate major: selective STEM −0.004 0.065∗∗∗ 0.011 −0.019 0.023 0.232
(0.013) (0.022) [0.022] (0.019) (0.026) [0.464]

Undergraduate major: male-dominated STEM 0.020 0.042∗ 0.506 −0.001 0.016 0.672
(0.018) (0.023) [0.507] (0.026) (0.028) [0.673]

N 1,544 1,211 1,497 1,328

Panel B. Student perceptions

Positive perceptions of science-related careers (index) 0.239∗∗∗ 0.340∗∗∗ 0.263 0.053 0.275∗∗∗ 0.011
(0.053) (0.058) [0.440] (0.056) (0.052) [0.100]

More men in science-related jobs 0.152∗∗∗ 0.078∗∗∗ 0.056 0.159∗∗∗ 0.143∗∗∗ 0.609
(0.026) (0.024) [0.339] (0.025) (0.019) [0.822]

Equal gender aptitude for maths (index) 0.034 0.134∗∗∗ 0.151 0.055 0.212∗∗∗ 0.083
(0.043) (0.045) [0.339] (0.063) (0.062) [0.375]

Women do not really like science 0.023 0.061∗∗∗ 0.130 0.077∗∗∗ 0.072∗∗∗ 0.874
(0.015) (0.016) [0.339] (0.025) (0.022) [0.874]

W face discrimination in science-related jobs 0.096∗∗∗ 0.088∗∗∗ 0.845 0.097∗∗∗ 0.047 0.268
(0.027) (0.031) [0.845] (0.031) (0.028) [0.484]

Taste for science subjects (index) −0.049 0.040 0.293 −0.007 0.031 0.658
(0.051) (0.056) [0.440] (0.063) (0.053) [0.822]

Self-concept in maths (index) 0.063 −0.045 0.145 0.092∗ 0.019 0.249
(0.049) (0.051) [0.339] (0.048) (0.041) [0.484]

Science-related career aspirations (index) 0.064 0.134∗∗ 0.397 0.042 0.071 0.730
(0.049) (0.060) [0.511] (0.056) (0.053) [0.822]

N 1,420 1,123 1,340 1,227

Notes: This table reports estimates of the treatment effects of the role model interventions on grade 12 students’ outcomes,
separately by gender and performance in maths. Each row corresponds to a different linear regression performed separately by
gender, with the dependent variable listed on the left. Students’ performance in maths is measured from the grades obtained on
the final maths exam of the baccalauréat. Columns 1 and 2 (for girls) and columns 4 and 5 (for boys) report the LATE estimates
for students below and above the median level of performance in maths, respectively. They are obtained from a regression of the
outcome of interest on the interaction between a classroom visit indicator and indicators for the student being below or above
the median level of performance in maths, using treatment assignment (interacted with the maths performance dummies) as an
instrument for treatment receipt. The regression includes school fixed effects (to account for the fact that randomisation was
stratified by school) and the student characteristics listed in Table 1. Standard errors (shown in parentheses) are adjusted for
clustering at the unit of randomisation (class). Columns 3 and 6 report both the cluster-robust model-based p-value for the
difference between the treatment effect estimates for students above versus below the median performance in maths and, in square
brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using the FDR control method. Specifically, we use the
sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05,
* p < 0.1.
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Despite these small imbalances, Table 9 shows that the significantly larger impact of
professionals on selective STEM enrolment for grade 12 girls is robust to controlling for a full
set of interactions between the treatment group dummy and the observable characteristics of
students and schools (columns 1 and 2), as well as for interactions between the treatment dummy
and the role models’ characteristics and the month of intervention (column 3). That is, there is
no indication that the heterogeneous treatment effects according to the role models’ background
are confounded by differential selection into schools or by other observable characteristics of the
role models.39 Table 9 further shows that the larger treatment effects for high-achieving girls in
maths are robust to controlling for the same set of interactions.40

6.2 Heterogeneous Effects on Student Perceptions

Role model background: researchers versus professionals. Why were the professionals
more effective than the researchers in influencing female students’ choices of study? To investigate
this question, we examine how the two groups managed to change students’ perceptions. We
consider as potential channels of influence the dimensions studied in Section 4, namely general
perceptions of science-related careers and gender roles in science, taste for science subjects,
self-concept in maths and science-related career aspirations.

For girls in grade 12, a key finding is that professionals and researchers were equally successful
in debunking stereotypes on gender differences in maths aptitude, and that they reinforced
students’ perceptions that ‘women do not really like science’ and that ‘women face discrimination
in science-related jobs’ to a comparable extent (Table 7, panel B).41 These results suggest that
the ‘gender debiasing’ component of the classroom interventions, which emphasised men’s and
women’s equal predisposition for science, cannot explain, alone, why the interventions increased
girls’ enrolment in selective STEM; otherwise, the two groups of role models would be expected
to have had the same effect on enrolment outcomes, which is not what we find. By contrast,
Table 7 reveals that in grade 12, the professionals improved female students’ perceptions of
science-related jobs more than the researchers and stimulated their aspirations for such careers
more strongly. These dimensions thus seem more likely to explain why the professionals had a

39The significantly larger impact of professionals on grade 12 girls’ probability of enrolling in STEM programs
in general is also robust to controlling for these interactions (results available upon request).

40We also explored whether the effects of the interventions could be mediated by the subsequent interactions
between the students and the teacher who was present during the visit. For instance, science teachers might be
inclined to reiterate the role model’s messages about science-related careers while female teachers might amplify
the effects of the interventions for female students. Using data from the role model survey, we find no support
for these hypotheses (results available upon request): the treatment effects on the STEM enrolment outcomes of
girls in grade 12 do not vary significantly according to the teacher’s gender or subject taught.

41The results for girls and boys in grade 10 are presented in Appendix Table K1. In this grade level, the
effects of the two types of role model on girls’ perceptions are more similar and are not significantly different
after adjusting for multiple hypothesis testing.
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Table 9 – Treatment Effects (ITT) on Enrolment in a Selective STEM Program for Grade 12
Students: Heterogeneity by Student and Role Model Characteristics

Dependent variable: enrolled in a selective STEM program

Girls Boys

(1) (2) (3) (4) (5) (6)

Treatment group indicator (T ) interacted
with student characteristics

T×bacclauréat percentile rank in maths (/100, 0.138∗∗∗ 0.153∗∗∗ 0.155∗∗∗ 0.060 0.015 0.013
demeaned) (0.048) (0.055) (0.054) (0.055) (0.057) (0.059)

T×bacclauréat percentile rank in French (/100, −0.036 −0.030 0.083 0.082
demeaned) (0.043) (0.043) (0.056) (0.056)

T×high SES, demeaned 0.032 0.026 −0.013 −0.018
(0.026) (0.027) (0.031) (0.031)

Treatment group indicator (T ) interacted
with role model characteristics

T×professional 0.059∗∗∗ 0.066∗∗∗ 0.102∗∗∗ 0.055∗∗ 0.048∗ 0.070∗
(0.020) (0.020) (0.025) (0.027) (0.028) (0.036)

T×participated in the program the year before −0.047∗∗ 0.024
(0.023) (0.042)

T×age (demeaned) 0.001 −0.000
(0.001) (0.002)

T×non-French −0.022 −0.006
(0.026) (0.050)

T×has children 0.029 0.034
(0.026) (0.035)

T×has a PhD degree 0.091∗∗∗ 0.057
(0.023) (0.039)

T×field: maths, physics, engineering −0.040∗ −0.035
(0.024) (0.030)

Other controls
Treatment group indicator (T ) Yes Yes Yes Yes Yes Yes
Student characteristics Yes Yes Yes Yes Yes Yes
School fixed effects Yes Yes Yes Yes Yes Yes
T interacted with school characteristics No Yes Yes No Yes Yes
T interacted with month of intervention No No Yes No No Yes

Observations 2,827 2,827 2,827 2,924 2,924 2,924

Adjusted R-squared 0.125 0.125 0.127 0.196 0.195 0.194

Notes: Each column corresponds to a separate regression. The sample is restricted to students in grade 12 (science track).
The outcome variable is an indicator for being enrolled in a selective STEM undergraduate program in the year following high
school graduation, i.e., 2016/17. The models are estimated separately for girls (columns 1–3) and boys (columns 4–6). The
coefficients reported in columns 1 and 4 are from a regression of the outcome variable on a treatment group indicator (T ), student
characteristics, school fixed effects and the treatment group indicator interacted with the student’s baccalauréat percentile rank
in maths (between 0 and 1) and with an indicator for the role model being a professional. The specification in columns 2 and
5 includes further interactions between the treatment group indicator and both student and school characteristics. Finally, the
specification in columns 3 and 6 adds interactions between the treatment group indicator and the characteristics of role models as
well as interactions between the treatment group indicator and dummies for the month of intervention. The student characteristics
are those listed in Table 1 as well as the student’s percentile ranks on the baccalauréat final exams in maths and French. The role
model characteristics consist of age and a set of indicators for being a professional, having participated in the program the year
before, being non-French, having children, holding a PhD degree, and having graduated from a male-dominated STEM field (maths,
physics, engineering). The school characteristics are dummies for the regional education authority where the high school is located
(Paris, Créteil and Versailles) and a dummy for whether the school is private. School characteristics are only included through their
interactions with the treatment group indicator, as these characteristics are absorbed by the school fixed effects. Since each high
school was visited by at most one role model, role model and month-of-visit fixed effects are also absorbed by the school fixed effects.
Standard errors (in parentheses) are adjusted for clustering at the class level. Observations with some missing characteristics are
included in the regressions. An arbitrary value is assigned to all the missing characteristics and a set of dummy variables is created,
with each variable being equal to one if the corresponding information is missing. *** p < 0.01, ** p < 0.05, * p < 0.1.
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stronger influence on female students’ choices of study.42

High versus low achievers in maths. The differences in the effects on students’ perceptions
are less pronounced between girls above and below the median of maths performance in grade 12
(Table 8, panel B). Although the differences are not statistically significant, it is interesting
to note that high-achieving girls seem to have been more receptive to the messages that the
professionals were better at conveying. Indeed, the point estimates suggest that perceptions
of science-related careers improved more among the girls with above-median performance in
maths. Aspirations for science-related careers also increased more among these girls, whereas
awareness of female under-representation in science-related jobs increased less.

6.3 A Generalisation Using Machine Learning Techniques

Investigating treatment effect heterogeneity by splitting the sample into subgroups inevitably
entails the risk of data mining. To address this concern, we carry out a systematic exploration
of heterogeneous treatment effects using machine learning (ML) methods (see Athey and
Imbens, 2017 for a review). Specifically, we adopt the approach developed by Chernozhukov
et al. (2018) to estimate conditional average treatment effects. A detailed description can be
found in Appendix L. Essentially, this approach allows us to compare the characteristics of
the students whose educational choices were the most and the least affected by the classroom
interventions. This first step serves to confirm, in a more agnostic way, the insights obtained
from the comparison between professionals and researchers and between high and low achievers
in maths. Building on Chernozhukov et al. (2018), we then use a novel method to estimate the
correlation between the treatment effects on enrolment outcomes and the effects on student
perceptions. This second step takes advantage of the predicted heterogeneity in treatment
effects by student and role model characteristics to identify the messages that had the greatest
impact on students’ educational choices.

Heterogeneous treatment effects on enrolment outcomes. The results from the esti-
mation of heterogeneous treatment effects on enrolment outcomes after grade 12 are reported in
Appendix Tables L1 and L2 and are described in detail in Appendix L. The ML approach of
Chernozhukov et al. (2018) confirms that there is considerable heterogeneity in treatment effects
on selective STEM enrolment among girls in grade 12: they range from a small negative impact
for the least affected quintile of girls to a large and significant 13.9 pp increase for the most

42The results for boys in grade 10 (Appendix Table K1, columns 4 to 6) and grade 12 (Table 7, columns 4
to 6) do not show substantial differences in effects. If anything, the professionals seem to have been slightly
more effective than the researchers in increasing grade 10 boys’ taste for science and debunking their stereotyped
views on gender differences in maths aptitude.
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affected quintile.43 Consistent with the results discussed in Section 6.1, the comparison of the
characteristics of the most and least affected quintiles confirms that role model background and
student maths performance are the two main observable dimensions of heterogeneity: the average
gap in maths performance rank between girls in the top and bottom quintiles of predicted
treatment effects on selective STEM enrolment is as much as 63 percentiles, and the difference
in the probability that the class was visited by a professional is 14.8 pps.

Heterogeneous treatment effects on potential channels. The results for heterogeneous
treatment effects on student perceptions are reported in Appendix Table L3. For each possible
channel, we compare the average maths performance of grade 12 girls in the top and bottom
quintiles of predicted treatment effects, as well as their probability of being exposed to a
professional rather than a researcher. The results confirm that the role models with a professional
background conveyed a positive image of science and raised girls’ aspirations for science careers
significantly more than the researchers. The ML approach also shows that the professionals
were significantly less likely than the researchers to increase grade 12 girls’ awareness of the
under-representation of women in science-related jobs: compared to the least affected quintile of
girls for this outcome, the most affected quintile is 11.2 pps more likely to have been visited
by a researcher. These results are consistent with the notion that gender-neutral messages
about careers in science are more effective than gender-related messages in steering girls towards
STEM.

Regarding maths performance, the ML approach broadly confirms the insights from the
subgroup comparisons presented in Section 6.2, but it appears better suited to reveal significant
contrasts. Average maths performance is found to be significantly better among the girls
whose perceptions of science-related careers and taste for science subjects improved the most.
Conversely, maths performance is significantly poorer among those whose awareness of female
under-representation in STEM and perception of gender discrimination increased the most.

Correlation between treatment effects. So far, our discussion of the channels of influence
has sought to identify the main dimensions of treatment effect heterogeneity on STEM enrolment
outcomes and has investigated how the effects on student perceptions vary along these dimensions.
We now present results from a more general approach that builds on Chernozhukov et al. (2018)
to produce a direct estimate of the correlation between the treatment effects on different
outcomes conditional on exogenous observable characteristics. This approach, whose details are
provided in Appendix L.3, constitutes a methodological contribution that can be used in other
randomised controlled trials to relate treatment effects on different outcomes. In our context,

43The lesser heterogeneity in the effects on enrolment in male-dominated STEM is also confirmed, with no
statistically significant difference between the top and bottom quintiles of predicted treatment effects.
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the method allows us to determine whether, given their observable characteristics, the students
with the largest treatment effects for a potential channel of influence Y A are the same as those
who exhibit the largest treatment effects on enrolment outcome Y B.

We use this approach to estimate the correlation between the treatment effects for girls in
grade 12 (see Appendix Table L5). The results confirm that some channels are more important
than others in steering female students towards STEM studies. In particular, we find that the
treatment effects on girls’ enrolment in selective STEM exhibit a strong and significant positive
correlation with the improvement in their perceptions of science-related careers (ρ̂ = 0.96) and
a weaker positive correlation with their increased aspirations for such careers (ρ̂ = 0.36). By
contrast, debiasing girls’ attitudes towards gender differences in maths aptitude is not strongly
associated with increased enrolment in selective STEM programs (ρ̂ = 0.19) and, if anything,
reinforcing the belief that women suffer discrimination in science careers tends to deter girls
from enrolling in these programs (ρ̂ = −0.34).

Overall, the results based on the correlations between treatment effects are consistent with
and extend those obtained earlier. They suggest that the most effective role models were those
who managed to convey a positive image of science careers and raise students’ aspirations
without stressing women’s under-representation and its possible causes too strongly. These
features are in line with the main mechanisms usually considered necessary for role models to
work: generating a sense of fit while moderating the effects of stereotype threat.

7 Conclusion

Based on a large-scale randomised field experiment involving 56 female role models and nearly
twenty thousand grade 10 and grade 12 students, this paper shows that a one-hour in-class
exposure to a woman scientist can improve students’ perceptions of science careers and signifi-
cantly increase female participation in STEM fields of study at college enrolment. Remarkably,
the positive enrolment effects are observed only in the academic tracks with the most severe
gender imbalance, which are the most prestigious and selective, and those that are most maths
intensive. These effects can be expected to increase the future earnings of the target population,
since the selective and male-dominated STEM programs offer large wage premiums relative to
other programs.

We analyse the channels that could explain these significant effects on enrolment outcomes.
We show that the classroom interventions had no discernable effect on students’ academic
performance and improved their self-concept in maths only slightly, ruling these factors out
as primary causes. By contrast, the visits significantly challenged students’ stereotyped views
of science careers and gender differences in aptitude for science. These effects, however, are
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observed for both genders in both grades, suggesting that by themselves they cannot explain
why the role model interventions affected only the educational choices of girls in grade 12.
Rather, our results offer substantial evidence that female students’ responses to the role model
interventions were mediated by their ability to identify with the female scientists to whom they
were exposed. Girls in grade 12 were more receptive than the other groups of students to the
appealing image of science-related careers embodied by the role models, and their aspirations
for such careers increased substantially. This process of identification was less likely to occur
among grade 10 girls, who are further away from career choices, and for boys at both grade
levels, who may have found it more difficult to identify with women scientists.

A central finding is that the effects on grade 12 girls’ educational choices varied markedly with
the scientists who conducted the classroom visits. This significant heterogeneity demonstrates
that role model interventions are not reducible to information provision and highlights the
importance of the role models’ profile in generating a sense of fit among students. In our
experiment, women with a professional background were more effective than researchers in
conveying an attractive image of careers in science and elevating girls’ aspirations. Our results
thus suggest that these are critical skills to target when choosing role models (teachers, instructors,
career women, etc.). While our ability to pinpoint the attributes that were to the advantage of
the professionals in our setting is limited, a likely explanation is that they were better established
in their careers and had better paying jobs than the researchers. The role played by these
channels would be a fruitful topic for future research.

Another important insight from the study is that by heightening awareness of the under-
representation of women in STEM, while at the same time observing that men and women
have equal aptitude for science, the interventions may have unintentionally reinforced students’
beliefs that women dislike science and face discrimination in STEM careers. That is, there is
suggestive evidence that overemphasising gender can be counter-productive and that gender-
neutral messages might be more effective in steering girls towards STEM fields. In our setting, the
role models who reinforced the perception that women are under-represented and discriminated
against in science had the least effect on selective STEM enrolment for female students in
grade 12, whereas those who improved girls’ perceptions of science careers the most had the
greatest impact. These findings suggest that role model interventions need to be carefully
designed to limit the potential discouragement effect of overemphasis on gender imbalances.

More generally, our heterogeneity analysis warns against the temptation to view role models
as a one-size-fits-all remedy for women’s under-representation in STEM fields. We find that the
role model effects on enrolment outcomes are concentrated among high-achieving girls in maths.
The effectiveness of this type of intervention in increasing female participation in STEM among
lower-performing students remains an open question that warrants further research.
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A Gender Pay Gap Among College Graduates in France
This appendix provides descriptive evidence on the entry-level gender pay gap among French
college graduates holding a master’s degree and analyses the contribution of gender segregation
in college majors to this gap. The objective of this analysis is to better understand whether the
effects of the role model interventions on female students’ choice of study can be expected to
reduce the gender pay gap. Section A.1 describes the data sources, while Section A.2 discusses
the empirical results.

A.1 Data
Unfortunately, we cannot rely exclusively on administrative data to provide empirical evidence
on the gender pay gap by field of study in France, as it is currently not possible to link
administrative data on students enrolled in higher education with administrative data on wages
and income tax returns. Instead, our analysis is based on the combination of aggregate statistics
on student enrolment by college major and gender with survey information on the starting
wages of recent cohorts of college graduates.

Data sources. In France, gender segregation and gender pay gaps by college major can
be analysed for the population of college graduates who obtained their master’s degree (or
equivalent) in 2015 or 2016. For this purpose, we combine several administrative and survey
data sources.

SISE Résultats 2015. This individual-level administrative dataset covers all students enrolled
in public universities during the academic year 2015/16 (MESRI-DGESIP/DGRI-SIES, 2017)
and provides detailed information on each student’s degree program and field of study.

Enquête d’Insertion Professionnelle à 30 Mois des Diplômés de Master 2015 (EIPDM).
This survey was conducted in December 2017 by the Ministry of Higher Education (MESRI,
2018) to collect information on the transition of master’s graduates to the labour market. The
survey was targeted at students who obtained their master’s degree in 2015 and who entered the
labour market within one year after graduation, with an overall response rate of 70%. As part
of this survey, master’s graduates were asked to report their annual earnings 18 months after
graduation. Our analyses are based on the survey’s public use files, which provide aggregate
statistics by gender and college major.A.1

Enquête sur l’Insertion des Diplômés des Grandes Écoles 2018 (EIDGE). This survey was
conducted in 2018 by the Conférence des Grandes Écoles (CGE, 2018), a not-for-profit association
representing French elite graduate schools. The grandes écoles, which award a diploma equivalent
to a master’s degree, recruit their students through highly competitive national exams taking
place at the end of two-year undergraduate selective STEM and non-STEM preparatory courses
(classes préparatoires aux grandes écoles or CPGE). The survey was targeted at students who
graduated between 2015 and 2017 from one of the 184 grandes écoles that were members
of the CGE in 2018, with an overall response rate of 48%. Our analyses are based on the
aggregate statistics published by the CGE separately by gender and by type of grande école
(i.e., engineering schools, business schools and other schools).A.2 We only consider students who
graduated from a grande école in 2016, since annual earnings 24 months after graduation are
only available for this cohort.

A.1https://data.enseignementsup-recherche.gouv.fr/explore/dataset/fr-esr-insertion_
professionnelle-master_donnees_nationales/information/ (last accessed: 2 August 2019).

A.2https://www.cge.asso.fr/themencode-pdf-viewer/?file=https://www.cge.asso.fr/wp-content/
uploads/2018/06/2018-06-19-Rapport-2018.pdf (last accessed: 2 August 2019).
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Grouping of college majors. The above data sources can be combined to compute the
number of female and male master’s students who graduated from university in 2015 or from a
grande école in 2016, separately by college major.

The Ministry of Higher Education’s official classification comprises 54 college majors. For
the purpose of our analysis, we group these college majors into the following broad categories:

• Non-STEM majors (35 in total): this category includes master’s degree programs in law,
economics, management, humanities, psychology, social sciences, medicine, pharmacy,
sports studies as well as degrees from non-STEM grande écoles (e.g., business schools,
schools of journalism, schools of architecture).

• STEM majors (19 in total): this category includes master’s degree programs in STEM
fields as well as degrees from engineering schools (grandes écoles d’ingénieurs).

• Among STEM majors, we distinguish between engineering schools (all of which are selective
and are classified as a single major) and non-selective STEM master’s degrees at university
(18 in total).

• Among non-selective STEM majors, we further distinguish between male-dominated
majors (16 in total) and female-dominated majors (2 in total: chemistry and earth and
life sciences), based on whether the share of female students among master’s graduates in
the corresponding field of study is below or above 50%. This distinction does not apply to
selective STEM majors, since almost all engineering schools are male-dominated.

Earnings information. The EIPDM and EIDGE surveys provide information on graduates’
average median gross salary (salaire brut annuel médian) separately by gender and college major.
Starting wages are measured 18 months after graduation for master’s graduates and 24 months
after graduation for grandes écoles graduates. Note that since we do not have access to the
individual-level survey data, median earnings by broad categories of college majors can only
be approximated as the average of the median earnings in each of the majors that form these
broad categories.

A.2 College Majors and the Gender Pay Gap
Combining the above data sources, we provide descriptive evidence on the median starting
wages of female and male graduates across the broad categories of college majors. We then
analyse the contribution of gender segregation in college majors to the overall entry-level gender
pay gap.

Gender composition of STEM and non-STEM majors. The first three columns of
Table A1 show the distribution of master’s-level graduates across the broad categories of
college majors defined above, along with the share of female graduates in each category. The
summary statistics indicate that while female students represent 52% of master’s level graduates,
they are strongly under-represented in STEM majors (34%). Female under-representation is
more pronounced in selective (male-dominated) STEM majors (female share: 30%) than in
non-selective STEM majors (female share: 40%). Among non-selective STEM majors, female
students represent only 29% of graduates in male-dominated fields such as mathematics, physics
or computer science, compared to 60% of graduates in female-dominated fields such as chemistry
and earth and life sciences.

Starting wages of STEM and non-STEM graduates. The comparison of starting wages
by broad college major category confirms that female graduates tend to be over-represented in
lower-paying majors (see columns 3–5 of Table A1). Female graduates holding a STEM degree
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have a median starting wage of e29,984, which is 7.4% higher than the median starting wage
of female graduates holding a non-STEM degree (e27,913). Strikingly, the wage premium for
female graduates in STEM appears to be almost entirely driven by selective (male-dominated)
STEM degrees (16.4%). By contrast, the wage premium attached to non-selective STEM
degrees is close to zero (−0.5%). The low apparent return to non-selective STEM degrees
masks substantially different returns between male-dominated and female-dominated majors:
while the wage premium attached to male-dominated non-selective STEM majors is of 4.2%
for female graduates compared to non-STEM majors, a wage penalty of 4.7% is attached to
female-dominated non-selective STEM majors.

Female under-representation in STEM: contribution to the gender pay gap. The
last three columns of Table A1 indicate that across all categories of programs, male graduates
earn a median annual starting wage of e32,122, compared to e28,411 for female graduates.
This amounts to an overall gender pay gap of e3,711 per year, or 11.6% of male pay.

Although the over-representation of female graduates in lower-paying non-STEM and female-
dominated STEM majors is a likely contributor to the overall gender pay gap, it is clearly not
the sole cause, as gender differences in median earnings are observed within each broad category
of college majors. Interestingly, however, the gender wage gap is lower in each category of STEM
majors than in non-STEM majors. This finding is consistent with similar evidence for the U.S.
(Beede et al., 2011).

To shed light on the contribution of gender segregation in fields of study to the overall
entry-level gender pay gap, we adopt a method similar to that used by McDonald and Thornton
(2007) in estimating what the overall female-male starting wage gap would be if female graduates
had the same distribution of college majors as male graduates.

Since our interest is in measuring the specific contribution of the different dimensions of
female under-representation in STEM majors (STEM versus non-STEM, selective versus non-
selective STEM, male-dominated versus female-dominated non-selective STEM), we construct
counterfactual wage gaps by considering increasingly disaggregated groups of majors.

We start by estimating the counterfactual wage gap if female graduates had the same
distribution of STEM versus non-STEM majors as male graduates, while keeping fixed females’
marginal distribution of majors within each of these two broad categories. Put differently, we
apply female median earnings in STEM versus non-STEM degrees to the male distribution
of graduates in both categories of majors to recalculate the overall gender pay gap. This
counterfactual wage gap, which we denote by ∆̃w, is constructed as follows:

∆̃w = 1− (w̄fsNm
s + w̄fnsN

m
ns)

(w̄ms Nm
s + w̄mnsN

m
ns)

,

where w̄gk and N g
k denote the median earnings and the number of graduates of gender g (m:

males; f : females) in college major category k (s: STEM; ns: non-STEM), respectively. The
contribution of female under-representation in STEM programs to the gender pay gap is then
measured as ∆w− ∆̃w, where ∆w denotes the observed overall pay gap between male and female
graduates.

To measure the contribution of gender segregation between selective and non-selective
STEM majors, we construct a second counterfactual wage gap similarly, except that college
majors are now grouped into three categories: non-STEM, selective STEM and non-selective
STEM. To measure the contribution of gender segregation between male-dominated and female-
dominated STEM majors, we repeat this exercise after grouping college majors into four
categories: non-STEM, selective STEM, non-selective male-dominated STEM and non-selective
female-dominated STEM. The contribution of gender segregation between majors within both
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male- and female-dominated non-selective STEM is measured by ungrouping all STEM majors.
Finally, we ungroup all non-STEM majors to evaluate the contribution of gender segregation
between non-STEM majors. The corresponding counterfactual measures what the overall gender
gap would be if women had the same distribution as men across all 54 STEM and non-STEM
college majors.

Results. The results of this decomposition exercise are shown in Table A2 along with the
observed gender pay gap. The contributions of gender segregation between the different categories
of college majors to the gender pay gap are reported in column 1 and are expressed as percentages
of the total in column 2. We find that the gender imbalances across all college majors ‘explain’
40% of the gender pay gap among college graduates. Two-thirds of this explained part (27.7%
of the total wage gap) can be attributed to the unequal representation of female and male
graduates in STEM versus non-STEM majors, on the one hand, and between the different
majors within STEM, on the other hand. The remain third of the explained part of the gap
(12.3% of the total) is due to gender segregation between non-STEM majors, the lowest-paying
majors (humanities) being typically more female-dominated (77%) than the highest-paying ones
(law and economics, where the female share is 59%).

The 27.7% STEM-related gender pay gap can be decomposed as follows. Increasing the
share of female graduates holding a STEM degree to that of males without changing females’
marginal distribution of STEM majors is associated with a 14.0% reduction in the gender
pay gap. In line with the evidence from Table A1, further reassigning female graduates from
non-selective STEM majors to (male-dominated) selective STEM majors in order to match the
relative shares of selective and non-selective STEM majors among male graduates would reduce
the gender gap by an additional 6.5% from the baseline. Finally, reassigning female graduates
from non-selective female-dominated STEM majors to non-selective male-dominated STEM
majors would trigger an extra 4.3% reduction in the gender pay gap, while further reassigning
female students between majors within male- and female-dominated programs would result in
an extra 2.9% reduction from the baseline.

Altogether, these findings suggest that the under-representation of female students in STEM
majors accounts for approximately 28% of the entry-level gender pay gap among college graduates
in France. Almost half of this STEM-related gender pay gap can be attributed to the fact that
within STEM majors, female graduates are relatively less likely than males to be enrolled in
those with the largest wage premium, i.e., the selective and male-dominated STEM majors.
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Table A1 – Starting Wage Among College Graduates Holding a Master’s Degree or Equivalent, Classes of 2015/16

Graduates: classes of 2015/16 Wage 18/24 months after graduation (survey)

Female graduates Male graduates

Number of
graduates

% of
total

Female
share
(%)

Median
wage
(euros)

Relative
Median
wage

(non-STEM
majors: 100)

Median
wage
(euros)

Relative
Median
wage

(non-STEM
majors: 100)

Gender
pay gap
(%)

(1) (2) (3) (4) (5) (6) (7) (8)

All majors (54) 166,600 100.0 51.5 28,411 - 32,122 - 11.6

Non-STEM majors (35) 106,997 64.2 61.1 27,913 100.0 31,302 100.0 10.8

STEM majors (19) 59,603 35.8 34.3 29,984 107.4 32,972 105.3 9.1

of which:

Selective (male-dominated) STEM 31,463 18.9 29.7 32,500 116.4 34,800 111.2 6.6
majors (Engineering schools)

Non-Selective STEM 28,140 16.9 39.6 27,767 99.5 30,530 97.5 9.1
majors (18)

of which:

Male-dominated majors (15) 18,874 11.3 29.4 29,077 104.2 31,371 100.2 7.3

Female-dominated majors (3) 9,266 5.6 60.3 26,596 95.3 27,581 88.1 3.6
Notes: This table reports summary statistics on gender segregation and gender pay gaps for the population of college graduates who obtained their master’s degree (or equivalent) in 2015 or 2016.
The 54 college majors are grouped into two broad categories: non-STEM majors (master’s degrees in economics, management, humanities, psychology, social sciences, sports studies, medicine,
pharmacy and non-STEM grandes écoles such as business schools or schools of journalism) and STEM majors (master’s degrees in STEM fields and degrees from engineering schools); STEM majors
are further broken down between selective (engineering schools) and non-selective majors (master’s degree at university); among non-selective majors, we distinguish between male-dominated and
female-dominated majors, based on whether the share of female graduates in the corresponding field of study is below or above 50%. Column 1 shows the number of graduates per broad category
of college majors using the administrative dataset SISE 2015/16 (for university graduates who obtained their master’s degree in 2016) and the EIDGE survey (for students who graduated from
grandes écoles in 2016). Median gross annual wages (columns 4 and 6) are computed from aggregate statistics by gender and college major from the EIPDM and EIDGE surveys. Entry-level wages
are measured 18 months after graduation for master’s graduates and 24 months after graduation for grandes écoles graduates. Median wages by broad categories of college majors are approximated
as the average of the median wages in each of the majors that form these broad categories.
Sources: Columns 1–3: SISE 2015/16 and Enquête sur l’Insertion des Diplômés des Grandes Écoles 2018 (EIDGE) (CGE, 2018); columns 4–8: Enquête d’Insertion Professionnelle à 30 Mois des
Diplômés de Master 2015 (EIPDM) (MESRI, 2018) and EIDGE.
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Table A2 – Contribution of Gender Segregation in College Majors to the Entry-Level Gender
Wage Gap Among College Graduates, Classes of 2015/16

Gender
pay gap

(relative to
male pay)

Share
of the
gender

wage gap
(1) (2)

Total wage gap 0.116 100.0%

Contribution of gender segregation in college majors to the wage gap:

Explained by unequal gender distribution between majors 0.046 40.0%

of which:

between STEM/non-STEM majors and between majors within STEM 0.032 27.7%

of which:

between STEM and non-STEM majors 0.016 14.0%
between selective and non-selective STEM majors 0.007 6.5%
between male- and female-dominated non-selective STEM majors 0.005 4.3%
between majors within male- and female-dominated non-selective STEM 0.003 2.9%

between majors within non-STEM 0.014 12.3%

Unexplained by unequal gender distribution between majors 0.069 60.0%
Notes: This table provides a decomposition of the total entry-level wage gap between male and female college graduates who
obtained their master’s degree or equivalent in 2015 (university graduates) or in 2016 (grandes écoles graduates). Entry-level
wages are measured as median annual gross wages by gender and college major, 18 months after graduation for master’s graduates,
and 24 months after graduation for grandes écoles graduates. To measure the contribution of the unequal gender representation
across college majors, counterfactual wage gaps are constructed using increasingly disaggregated groups of college majors. The
contribution of gender segregation between STEM and non-STEM majors is measured as the observed gender wage gap minus
the counterfactual wage gap that would be observed if female graduates had the same distribution of STEM and non-STEM
majors as male graduates, while keeping fixed females’ marginal distribution of majors within each of these two broad categories.
The contribution of gender segregation between selective and non-selective STEM majors is estimated similarly, except that the
counterfactual gender wage gap is estimated by reassigning female graduates from non-selective STEM majors to selective STEM
majors to match the relative shares of selective and non-selective STEM majors among male graduates. The other components of
the gender wage gap are measured by sequentially ungrouping college majors to compute counterfactual gender wage gaps. The
contributions of gender segregation between the different categories of college majors to the gender wage gap are shown in column 1
and are expressed as percentages of the total in column 2.
Sources: See notes of Table A1.
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B Program Details

A. First Video: ‘Jobs in Science: Beliefs or Reality?’

B. Second Video: ‘Are we All Equal in Science?’

Figure B1 – Screenshots of the Two Videos Shown During the Role Model Interventions
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Figure B2 – Screenshots of the Slides Provided to the Role Models to Describe their own
Experience

Créteil

Versailles

Paris

Figure B3 – Participating High Schools
Notes: The thick lines represent the boundaries of the three education districts (académies) of the Paris region (Paris, Créteil and
Versailles). The solid circles show the location of the 98 high schools that participated in the program evaluation. The shapefile
for the administrative divisions of the Paris region (départements) were obtained from APUR (2018).
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C Student-Level Administrative Data
This appendix describes the administrative data that we use to complement the information
from the student survey (Section C.1) and provides details about the classification of STEM
undergraduate programs (Section C.2).

C.1 Data Sources
For the purpose of the empirical analysis, we matched the data from our post-intervention
student survey with three administrative datasets. These data were linked using an encrypted
version of the French national student identifier (Identifiant National Élève).

High school enrolment data. Students’ socio-demographic characteristics and enrolment
status are obtained from the Bases Élèves Académiques (BEA) for academic years 2012/13
to 2016/17 (DAPEP, 2017; PAPP, 2017; SSA, 2017). These comprehensive administrative
registers, which were provided by the three education districts of the Paris region (Paris, Créteil
and Versailles), cover the universe of students enrolled in the public and private high schools
operating in the three districts. They also cover students enrolled in selective undergraduate
programs, i.e., classes préparatoires aux grandes écoles (CPGE) and sections de technicien
supérieur (STS), as these programs are located in high schools. The BEA data provide basic
information on students’ demographics (gender, date and country of birth, number of siblings),
their parents’ two-digit occupation and detailed information on their enrolment status (school
and class attended, elective courses taken). Students’ socioeconomic status (SES) is measured
using the French Ministry of Education’s official classification, which uses the occupation of the
child’s legal guardian to define four groups of SES: high (company managers, executives, liberal
professions, engineers, intellectual occupations, arts professions), medium-high (technicians
and associate professionals), medium-low (farmers, craft and trades workers, service and sales
workers) and low (manual workers and persons without employment).

University enrolment data. To track grade 12 (science track) students’ enrolment outcomes
in non-selective undergraduate programs (licence), we use a separate administrative data source,
the Système d’Information sur le Suivi de l’Étudiant (SISE) (MESRI-DGESIP/DGRI-SIES,
2017), which is managed by the Statistical Office of the French Ministry of Higher Education
(Sous-Direction des Systèmes d’Information et des Études Statistiques). This dataset, which
covers the academic years 2012/13 to 2016/17, records all students enrolled in the French higher
education system outside CPGE and STS, except for the small fraction of students enrolled in
undergraduate programs leading to paramedical and social care qualifications.

Data on student performance. The third dataset, the Organisation des Concours et Exa-
mens Académiques et Nationaux (OCEAN) (MENJ-DEPP, 2017), contains students’ individual
exam results for the diplôme national du brevet (DNB), which middle school students take at
the end of grade 9, and for the baccalauréat, which high school students take at the end of
grade 12. Access to this dataset, which covers the exams years 2010 to 2016, was provided
by the Statistical Office of the French Ministry of Education (Direction de l’Évaluation, de la
Prospective et de la Performance).

C.2 Classification of STEM Undergraduate Programs
The enrolment status of grade 12 (science track) students in the year following the intervention,
i.e., 2016/17, is measured by combing the information from the BEA and SISE datasets. For the
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purpose of our analysis, we use two alternative classifications of STEM undergraduate programs,
based on whether they are (i) selective or non-selective and (ii) male- or female-dominated.

Selective versus non-selective STEM programs.

• Selective STEM : This category includes all CPGE programs with a specialisation in
STEM, i.e., mathematics, physics and engineering science (MPSI), physics, chemistry and
engineering science (PCSI), biology, chemistry, physics and earth sciences (BCPST), and
physics, technology and engineering science (PTSI). It also includes a small number of
selective programs in engineering schools that recruit their students directly after high
school graduation, as well as selective technical/vocational undergraduate programs (STS)
that specialise in STEM fields.

• Non-selective STEM : This category includes non-selective university bachelor’s degree
programs (licence) that specialise in STEM fields: maths, physics, chemistry, earth and
life sciences, and computer science. Undergraduate programs in medicine and pharmacy
are not included in this category.

Male- versus female-dominated STEM programs.

• Male-dominated STEM : STEM programs are classified as being male dominated if the
share of female students in the corresponding field is below 50%. This category includes the
selective programs (CPGE and STS) and non-selective programs (licence) that specialise
in mathematics, physics, chemistry, computer science and engineering.

• Female-dominated STEM : STEM programs are classified as being female dominated if the
share of female students in the corresponding field is above 50%. This category includes
both selective (CPGE and STS) and non-selective programs (licence) that specialise in
earth and life sciences.

If a student is enrolled in multiple higher education programs, we only consider the most
selective among these programs, with CPGE taking precedence over STS, and STS taking
precedence over university undergraduate degree programs.

Note that selective STEM programs and male-dominated STEM programs are partly overlap-
ping: in 2016/17, 49% of undergraduate students in male-dominated STEM fields were enrolled
in selective programs, while 95% of students in selective programs were in male-dominated
STEM fields.
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D Construction of Synthetic Indices and Multiple Hy-
pothesis Testing

This appendix discusses the construction of the synthetic indices that we use to measure the
effects of role model interventions on students’ perceptions (Section D.1) and provides further
details on the adjustment of p-values to correct for multiple hypothesis testing (Section D.2).

D.1 Construction of Synthetic Indices
The student survey questionnaire aimed at measuring the effects of role model interventions
on students’ perceptions and self-concept along five dimensions: (i) general perceptions of
science-related careers, (ii) perceptions of gender roles in science, (iii) taste for science subjects,
(iv) self-concept in maths and (v) science-related career aspirations.

We use the survey items listed below to construct synthetic indices for each of these five
dimensions. When responses are measured on a Likert scale, i.e., when respondents specify their
level of agreement or disagreement with a statement on a symmetric agree-disagree scale, the
item responses are recoded so that higher values correspond to less stereotypical or negative
perceptions (see details below). We then take the average of each student’s responses to the
different questions.A.3 We checked that the indices yield similar results if item responses are
converted to binary variables before taking the average across items. Finally, to facilitate
interpretation, we normalise each index to have a mean of zero and a standard deviation of one
in the control group.

Below is the list of the individual items that are included in each of the five synthetic
indices. Unless otherwise specified, these items use a four-point Likert response scale such that
1=Strongly agree, 2=Agree, 3=Disagree and 4=Strongly disagree. Items marked with a ∗ have
been recoded such that a value of 1 means ‘Strongly disagree’ and 4 means ‘Strongly agree’.

1. Positive perceptions of science-related careers (5 items): ‘Science-related jobs require more
years of schooling’; ‘Science-related jobs are monotonous’; ‘Science-related jobs are rather
solitary’; ‘Science-related jobs pay higher wages∗’; ‘It is difficult to have a fulfilling family
life when working as a scientist’.

2. Equal gender aptitude for maths (2 items): ‘Women and men are born with different
brains’; ‘Men are more gifted than women in mathematics’.

3. Taste for science subject (4 items): Enjoys maths (on a scale from 0 ‘not at all’ to 10
‘very much’); Enjoys physics and chemistry (on a scale from 0 to 10); Enjoys earth and
life sciences (on a scale from 0 to 10); ‘I like science in general∗’.

4. Self-concept in maths (4 items): Self-assessed performance in match (very weak/weak/average/
good/very good); ‘I feel lost when I try to solve a maths problem’; ‘I often worry that I
will struggle in maths class’; ‘If I make enough effort, I can do well in science subjects’.

5. Science-related career aspirations (4 items): ‘Some jobs in science are interesting∗’; ‘I
could see myself working in a science-related job later in life∗’; Interested in at least one
of six STEM job out of a list of ten STEM and non-STEM occupationsA.4 (0/1 variable);
‘Career and earnings prospects play an important role in my choice of study’ (on a scale
from 0 ‘not at all’ to 10 ‘very much’).

A.3This procedure is inspired from the KidIQol test used in the psychological literature to measure children’s
life satisfaction (Gayral-Taminh et al., 2005).

A.4The STEM occupations in the list were: chemist, computer scientist, engineer, industrial designer, renewable
energy technician and researcher in biology. The non-STEM occupations were lawyer, pharmacist, physician and
psychologist.
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D.2 Multiple Hypothesis Testing
Consistent with the recent applied literature, we systematically use the False Discovery Rate
(FDR) control, which designates the expected proportion of all rejections that are type-I errors.
Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and
described in Anderson (2008).

We study nine main outcomes throughout the paper: (i) enrolment in a STEM track (for
grade 10 students) or STEM major (for grade 12 students); (ii) five synthetic indices capturing
positive perceptions of science-related careers, equal gender aptitude for maths, taste for science
subjects, self-concept in maths and science-related career aspirations (see Section D.1); and
(iii) three variables capturing different facets of gender role in science that cannot be combined
into a single index, which are based on the survey items asking students whether they agree or
disagree with the statements ‘There are more men than women in science-related jobs’, ‘Women
do not really like science’ and ‘Women face discrimination in science-related jobs’. These nine
outcomes are our primary outcomes of interest and we therefore systematically provide (along
with standard p-values) p-values that are adjusted for multiple testing across them (q-values),
separately by grade level and gender.

For each of the five synthetic indices described in the previous section, we report separate
treatment effect estimates for the individual components of the index and provide standard
p-values for the corresponding estimates along with p-values adjusted for multiple testing across
the index components, separately by grade level and gender.

As we further split enrolment in STEM into different types of STEM tracks or majors (e.g.,
selective STEM, non-selective STEM, male-dominated STEM and female-dominated STEM
in grade 12), we provide adjusted p-values for multiple testing across these different STEM
tracks or majors, separately by grade level and gender. Given the importance of some of these
specific STEM majors in our analyses, it could also be justified to consider them jointly with the
primary outcomes described above. We have checked that, in practice, this alternative choice
has little effect on the reported q-values.

Finally, treatment effects on other outcomes, such as the probabilities of being enrolled in
a non-STEM major or of not being enrolled in an education program in the year following
the classroom interventions, are also reported in the paper for the sake of completeness and
clarity. Since these are not outcomes of direct interest in our study or are complements of other
outcomes of interest, we do not consider them in the multiple testing corrections.
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E Summary Statistics and Balancing Tests

Table E1 – Experimental Sample: Summary Statistics (School-Level)

High schools operating Participating
in the Paris region high schools

(1) (2)
Number of high schools 489 98
Share private 0.339 0.173
Education district: Paris 0.243 0.153
Education district: Créteil 0.348 0.296
Education district: Versailles 0.409 0.551
Number of students 644 924
Share of female students 0.524 0.526
Share of high SES students 0.423 0.391
Share of medium-high SES students 0.116 0.128
Share of medium-low SES students 0.243 0.239
Share of low SES students 0.218 0.241
Pass rate on baccalauréat exam in 2015 0.913 0.910

Notes: This table compares the characteristics of high schools that participated in the program evaluation in 2015/16 to the
characteristics of all general-track high schools operating in the Paris region. The summary statistics are computed from the Bases
Élèves académiques of the three education districts of Paris, Créteil and Versailles for the academic year 2015/16. The baccalauréat
pass rate is computed for students who were enrolled in grade 12 in 2014/15, i.e., in the year before the intervention, and who took
the exams in the general or technical tracks.
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Table E2 – Experimental Sample: Summary Statistics (Student-Level)

High schools
operating in
the Paris
region

Participating high schools

Classes
selected

for random
assignment

Classes
not selected
for random
assignment

Diff.
(2)−(3)

p-value
of diff.
(2)−(3)

(1) (2) (3) (4) (5)

Panel A. Grade 10
Number of students 115,720 13,700 19,147
Number of classes 3,627 416 592
Female 0.525 0.529 0.525 0.004 0.503
Age (years) 15.14 15.13 15.14 −0.016 0.004
Non-French 0.063 0.060 0.068 −0.008 0.005
High SES 0.403 0.381 0.361 0.020 0.000
Medium-high SES 0.118 0.128 0.127 0.001 0.713
Medium-low SES 0.239 0.241 0.248 −0.006 0.203
Low SES 0.240 0.249 0.265 −0.015 0.002
Number of siblings 1.44 1.49 1.50 −0.016 0.255
Class size 32.22 33.25 32.48 0.753 0.000
DNB percentile rank in maths 57.69 58.48 55.10 3.382 0.000
DNB percentile rank in French 57.23 57.85 55.75 2.096 0.000

Panel B. Grade 12 (science track)
Number of students 38,582 5,751 5,623
Number of classes 1,267 185 179
Female 0.459 0.492 0.417 0.075 0.000
Age (years) 17.11 17.12 17.10 0.023 0.043
Non-French 0.045 0.051 0.037 0.014 0.000
High SES 0.527 0.464 0.535 −0.071 0.000
Medium-high SES 0.115 0.136 0.126 0.010 0.113
Medium-low SES 0.198 0.209 0.180 0.029 0.000
Low SES 0.160 0.192 0.160 0.032 0.000
Number of siblings 1.43 1.50 1.44 0.054 0.007
Class size 31.43 31.97 32.08 −0.153 0.069
DNB percentile rank in maths 76.25 74.06 76.20 −2.127 0.000
DNB percentile rank in French 70.78 69.61 69.78 −0.169 0.704

Notes: This table compares the characteristics of grade 10 and grade 12 (science track) students enrolled in the high schools
that participated in the program evaluation to the characteristics of all grade 10 and grade 12 (science track) students enrolled
in general-track high schools in the Paris region. In participating schools, the classes that were selected by principals for random
assignment to treatment are compared to classes that were not selected. The summary statistics are computed from the Bases
Élèves académiques of the three education districts of Paris, Créteil and Versailles for the academic year 2015/16. French and
maths scores are from the exams of the diplôme national du brevet (DNB) that middle school students take at the end of grade 9.
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Table E3 – Post-Intervention Role Model Survey: Summary Statistics

Role model background

All Profes-
sionals

Resear-
chers

Difference
(3)−(2)

p-value
of diff.

(1) (2) (3) (4) (5)

A. Adults present during the intervention

Teacher was present 0.890 0.883 0.896 0.014 0.773
Teacher’s subject: sciencea 0.600 0.596 0.603 0.007 0.922
Teacher’s gender: female 0.551 0.533 0.565 0.032 0.653
Teacher showed interest 0.696 0.634 0.745 0.111 0.098
Other adult present beside teacher 0.348 0.392 0.315 −0.077 0.236

B. General atmosphere during the intervention

Students were very interested 0.423 0.425 0.422 −0.004 0.963
Students were very engaged in the discussion 0.386 0.378 0.392 0.014 0.838
Students were inattentive 0.169 0.197 0.147 −0.050 0.353
Powerpoint worked well 0.963 0.938 0.982 0.045 0.172
Videos worked well 0.888 0.891 0.886 −0.004 0.940
Logistical problems 0.160 0.185 0.140 −0.044 0.487
Talk interrupted due to discipline problems 0.068 0.079 0.060 −0.018 0.652

C. Topics addressed during the intervention

‘Science is everywhere’ 1.000 1.000 1.000 0.000 –
‘Jobs in science are fulfilling’ 0.990 1.000 0.982 −0.018 0.080
‘Jobs in science are for girls too’ 1.000 1.000 1.000 0.000 –
‘Jobs in science pay well’ 0.866 0.890 0.849 −0.040 0.516
Short videos 0.980 0.969 0.988 0.019 0.436

D. Students’ responsiveness to topics addressed during the intervention

Very responsive to ‘science is everywhere’ 0.430 0.378 0.470 0.092 0.360
Very responsive to ‘jobs in science are fulfilling’ 0.352 0.402 0.313 −0.088 0.333
Very responsive to ‘jobs in science are for girls too’ 0.375 0.354 0.392 0.037 0.674
Very responsive to ‘jobs in science pay well’ 0.387 0.263 0.476 0.213 0.042
Very responsive to the short videos 0.546 0.488 0.590 0.102 0.339

E. Overall impression of the role model

Were gender stereotypes strong among students?
Yes, very much 0.089 0.039 0.128 0.089 0.057
Rather yes 0.313 0.276 0.341 0.066 0.337
Rather no/not at all 0.598 0.685 0.530 −0.155 0.074

How did the classroom intervention go?
Very well 0.556 0.535 0.572 0.037 0.670
Well 0.369 0.386 0.355 −0.030 0.716
Average/not so well/not well at all 0.075 0.079 0.072 −0.006 0.821

Was the intervention well suited to the students?
Yes, very much 0.474 0.449 0.494 0.045 0.661
Rather yes 0.471 0.504 0.446 −0.058 0.574
Rather no/not at all 0.055 0.047 0.060 0.013 0.592

Number of role models 56 21 35
Number of classroom interventions 290 124 166
Notes: The summary statistics are computed from the post-intervention role model survey that was administered online to collect
feedback about the classroom visits. The unit of observation is a classroom intervention. a The science subjects taught in high
school are mathematics, physics and chemistry, and earth and life sciences.
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Table E4 – Compliance with Random Assignment

Classes assigned to

All
classes

Control
group

Treatment
group

(1) (2) (3)

Panel A. Grade 10

Number of classes visited by a role model 199 2 197
Number of classes not visited by a role model 217 205 12
Number of students 13,700 6,801 6,899
Student-level compliance with random assignment 0.97 0.99 0.94

Panel B. Grade 12 (science track)

Number of classes visited by a role model 91 2 89
Number of classes not visited by a role model 94 90 4
Number of students 5,751 2,853 2,898
Student-level compliance with random assignment 0.97 0.98 0.95
Notes: This table reports compliance with the random assignment of grade 10 and grade 12 (science track) classes to the treatment
and control groups. Two-way non-compliance was due to either classes in the treatment not being visited by a role model or to
classes in the control group being visited by a role model.

Table E5 – Student Post-Treatment Survey: Response Rates

Within school

Control
group

Treatment
group

Difference
T−C

p-value
of diff.

(1) (2) (3) (4)

Panel A. Grade 10

Survey response rate 0.879 0.905 0.026 0.026
(0.012)

Number of students 6,801 6,899 13,700

Panel B. Grade 12 (science track)

Survey response rate 0.909 0.912 0.005 0.693
(0.012)

Number of students 2,853 2,898 5,751

Notes: This table reports the student survey response rate for students in the grade 10 and grade 12 (science track) classes that
participated in the program. The response rates are computed based on the list of all students who were recorded in the Bases
Élèves académiques as being enrolled in the participating classes during the academic year 2015/16. Columns 1 and 2 show the
response rate of students in the control and treatment groups, respectively. Column 3 reports the coefficient from the regression
of survey participation on the treatment group indicator, with p-values reported in column 4. The regression controls for school
fixed effects to account for the fact that randomisation was stratified by school. Standard errors (in parentheses) are adjusted for
clustering at the unit of randomisation (class).
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Table E6 – Treatment-Control Balance: Survey Respondents

Within school

Control
group

Treatment
group

Difference
T−C

p-value
of diff.

(1) (2) (3) (4)

Panel A. Grade 10

Student characteristics
Female 0.538 0.521 −0.014 0.160
Age (years) 15.12 15.11 −0.01 0.248
Non-French 0.057 0.060 0.003 0.528
High SES 0.382 0.389 0.005 0.496
Medium- high SES 0.133 0.127 −0.006 0.248
Medium-low SES 0.245 0.235 −0.009 0.200
Low SES 0.240 0.248 0.010 0.158
Number of siblings 1.483 1.482 −0.001 0.954
Class size 33.23 33.25 0.02 0.837
At least one science elective course 0.394 0.402 0.009 0.693
At least one standard elective course 0.773 0.738 −0.032 0.132
DNB percentile rank in maths 59.09 59.04 −0.18 0.760
DNB percentile rank in French 58.14 58.41 0.08 0.893

Test of joint significance F -statistic: 0.634 (p-value: 0.813)

Predicted track in grade 11
Grade 11: science track 0.454 0.459 0.004 0.577
Grade 11: science–general track 0.381 0.385 0.003 0.666
Grade 11: science–technical track 0.073 0.074 0.001 0.670

N 5,981 6,245 12,226

Panel B. Grade 12 (science track)

Student characteristics
Female 0.504 0.489 −0.014 0.319
Age (years) 17.13 17.09 −0.05 0.001
Non-French 0.053 0.046 −0.008 0.129
High SES 0.446 0.481 0.038 0.001
Medium-high SES 0.138 0.138 −0.000 0.979
Medium-low SES 0.219 0.196 −0.022 0.001
Low SES 0.197 0.184 −0.016 0.086
Number of siblings 1.502 1.487 −0.021 0.355
Class size 31.69 32.12 0.30 0.314
DNB percentile rank in maths 74.52 74.00 −0.09 0.874
DNB percentile rank in French 69.59 70.00 0.68 0.248

Test of joint significance F -statistic: 1.218 (p-value: 0.282)

Predicted undergraduate major
Major: STEM 0.395 0.395 0.001 0.807
Major: selective STEM 0.181 0.184 0.005 0.189
Major: male-dominated STEM 0.283 0.284 0.002 0.561

N 2,594 2,642 5,236
Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left, separately for students
in grade 10 (panel A) and in grade 12 (panel B). The sample is restricted to students who answered the post-intervention survey.
Columns 1 and 2 show the average value for students in the control and treatment groups, respectively. Column 3 reports the
coefficient from the regression of each variable on the treatment group indicator, with the p-value reported in column 4. The
regression controls for school fixed effects to account for the fact that randomisation was stratified by school, and standard errors
are adjusted for clustering at the unit of randomisation (class). The F -statistic is from a test of the joint significance of the
coefficients in a regression of the treatment group indicator on all student characteristics. High school tracks (panel A) and
undergraduate majors (panel B) are predicted for each student using the coefficients from a linear regression of the corresponding
binary variable (e.g., enrolment in a STEM major) on all student characteristics listed in the table. This model is fitted separately
by grade level on the sample of students in the control group.
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Table E7 – Balancing Test: High Schools Visited by Professionals and Researchers, Grade 10
Students

High school visited by Difference
(2)−(1)

p-value
of diff.Researcher Professional

(1) (2) (3) (4)

School characteristics
Education district: Paris 0.165 0.167 0.002 0.958
Education district: Créteil 0.273 0.317 0.044 0.321
Education district: Versailles 0.562 0.516 −0.046 0.348
Private school 0.092 0.224 0.132 0.000
Share of female students in 2015/16 0.523 0.527 0.005 0.627
Pass rate on baccalauréat exam in 2015a 0.904 0.916 0.012 0.041
Grade 10 students: science track in grade 11b 0.405 0.412 0.006 0.597
Grade 10 students: general science track in grade 11b 0.341 0.337 −0.005 0.672
Grade 10 students: technical science track in grade 11b 0.064 0.075 0.011 0.135

Student characteristics
Female 0.525 0.531 0.007 0.623
Age (years) 15.12 15.13 0.01 0.598
Non-French 0.065 0.057 −0.008 0.185
High SES 0.345 0.410 0.064 0.002
Medium-high SES 0.132 0.125 −0.007 0.322
Medium-low SES 0.250 0.235 −0.015 0.124
Low SES 0.272 0.231 −0.042 0.013
Number of siblings 1.482 1.488 0.007 0.862
Class size 33.38 33.14 −0.25 0.343
At least one science elective course 0.416 0.376 −0.040 0.250
At least one standard elective course 0.772 0.738 −0.034 0.197
DNB percentile rank in maths 57.80 59.02 1.22 0.380
DNB percentile rank in French 56.77 58.71 1.93 0.120

Predicted track in grade 11
Grade 11: science track 0.448 0.454 0.006 0.668
Grade 11: science–general track 0.374 0.375 0.002 0.915
Grade 11: science–technical track 0.074 0.079 0.005 0.517

N 6,059 7,641 13,700
Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left for students enrolled in
grade 10 in 2015/16. Columns 1 and 2 show the average value for students whose high school was visited by a role model with
a professional or a research background, respectively. Column 3 reports the coefficient from the regression of each variable on an
indicator that takes the value one if the school was visited by a professional and zero if the school was visited by a researcher, with
the p-value reported in column 4. Standard errors are adjusted for clustering at the class level. High school tracks in grade 11 are
predicted for each student using the coefficients from a linear regression of the corresponding binary variable (e.g., enrolment in
the general science track) on all the school and student characteristics listed in the table. This model is fitted on the sample of
students in the control group. a The baccalauréat pass rate is computed for students who were enrolled in grade 12 in 2014/15, i.e.,
in the year before the intervention, and who took the exams in the general or technical tracks. b The share of students enrolled in
the science track in grade 11 is computed for students who were enrolled in grade 10 in 2014/15.
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Table E8 – Balancing Test: High Schools Visited by Professionals and Researchers, Grade 12
Students

High school visited by Difference
(2)−(1)

p-value
of diff.Researcher Professional

(1) (2) (3) (4)

School characteristics
Education district: Paris 0.164 0.163 −0.001 0.985
Education district: Créteil 0.223 0.321 0.098 0.138
Education district: Versailles 0.614 0.517 −0.097 0.195
Private school 0.096 0.244 0.148 0.007
Share of female students in 2015/16 0.533 0.543 0.010 0.379
Pass rate on baccalauréat exam in 2015a 0.911 0.912 0.002 0.849
Grade 12 (science track) students: STEM major in higher ed.b 0.409 0.384 −0.025 0.050
Grade 12 (science track) students: selective STEM in higher ed.b 0.191 0.202 0.010 0.484
Grade 12 (science track) students: male-dom. STEM in higher ed.b 0.309 0.299 −0.010 0.431

Student characteristics
Female 0.474 0.505 0.032 0.114
Age (years) 17.14 17.11 −0.03 0.323
Non-French 0.057 0.046 −0.010 0.272
High SES 0.437 0.484 0.046 0.169
Medium-high SES 0.146 0.128 −0.018 0.138
Medium-low SES 0.213 0.205 −0.009 0.544
Low SES 0.203 0.184 −0.019 0.428
Number of siblings 1.454 1.532 0.079 0.100
Class size 32.67 31.44 −1.22 0.026
DNB percentile rank in maths 72.96 74.90 1.94 0.213
DNB percentile rank in French 68.00 70.83 2.83 0.057

Predicted undergraduate major
Major: STEM 0.392 0.378 −0.013 0.062
Major: selective STEM 0.170 0.181 0.011 0.347
Major: male-dominated STEM 0.277 0.274 −0.003 0.731

N 2,492 3,259 5,751
Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left for students enrolled
in grade 12 (science track) in 2015/16. Columns 1 and 2 show the average value for students whose high school was visited by a
role model with a professional or a research background, respectively. Column 3 reports the coefficient from the regression of each
variable on an indicator that takes the value one if the school was visited by a professional and zero if the school was visited by
a researcher, with the p-value reported in column 4. Standard errors are adjusted for clustering at the class level. Undergraduate
majors are predicted for each student using the coefficients from a linear regression of the corresponding binary variable (e.g.,
enrolment in a STEM major) on all the school and student characteristics listed in the table. This model is fitted on the sample of
students in the control group. a The baccalauréat pass rate is computed for students who were enrolled in grade 12 in 2014/15, i.e.,
in the year before the intervention, and who took the exams in the general or technical tracks. b The share of students enrolled in a
STEM undergraduate major in higher education is computed for students who were enrolled in grade 12 (science track) in 2014/15.
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Table E9 – Timing of Visits: Summary Statistics by Role Model Background

All role
models

Researchers
(PhD/
Postdoc)

Professionals
(employed by
sponsoring

firm)

Difference
(3)−(2)

p-value
of diff.
(3)−(2)

(1) (2) (3) (4) (5)

Panel A. Timing of classroom interventions

November 2015 0.17 0.20 0.15 −0.05 0.51
(0.08)

December 2015 0.26 0.28 0.24 −0.05 0.60
(0.09)

January 2016 0.40 0.35 0.43 0.08 0.42
(0.10)

February 2016 0.17 0.15 0.19 0.04 0.62
(0.08)

March 2016 0.01 0.02 0.00 −0.02 0.32
(0.02)

Average nb of days since 46.1 44.1 47.6 3.49 0.56
first visit (17 Nov 2015) (6.04)

N 573 243 330

Panel B. Time lag between intervention and student survey

Average nb of days between 67.6 71.8 64.5 −7.35 0.25
visit and survey (6.31)

N 557 239 318

Notes: Panel A reports the distribution of classroom visits by month of intervention and the average number of days since the first
visit (17 November 2015). Panel B reports the average number of days between the classroom visit and the date of the student
survey. The statistics are computed for all role models (column 1) and separately for researchers (column 2) and professionals
(column 3). Column 4 reports the coefficient from the regression of each variable on an indicator that takes the value one if the
classroom was visited by a professional and zero if the school was visited by a researcher, with the p-value reported in column 5.
Standard errors (shown in parentheses) are adjusted for clustering at the role model × high school visit level. The date of the visit
is missing for 7 out of the 98 participating schools, while the date of the survey is missing for 6 schools.
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F Effects of Role Model Interventions: Additional Re-
sults

Table F1 – Perceptions of Science-Related Careers

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

Panel A. Grade 10

Positive perceptions of science-related −0.020 0.245∗∗∗ 0.000 0.023 0.162∗∗∗ 0.000 0.013
careers (index) (0.027) [0.001] (0.027) [0.001]

Science-related jobs require more years 0.839 −0.087∗∗∗ 0.000 0.849 −0.075∗∗∗ 0.000 0.404
of schooling (0.010) [0.001] (0.010) [0.001]

Science-related jobs are monotonous 0.290 −0.034∗∗∗ 0.003 0.318 −0.003 0.788 0.065
(0.011) [0.005] (0.013) [0.788]

Science-related jobs are solitary 0.325 −0.057∗∗∗ 0.000 0.303 −0.059∗∗∗ 0.000 0.870
(0.012) [0.001] (0.011) [0.001]

Science-related jobs pay higher wages 0.637 0.009 0.496 0.668 0.015 0.222 0.718
(0.014) [0.496] (0.013) [0.279]

Hard to maintain work-life balance 0.297 −0.027∗∗ 0.014 0.283 −0.029∗∗∗ 0.009 0.916
(0.011) [0.018] (0.011) [0.016]

N 6,475 5,751

Panel B. Grade 12 (science track)

Positive perceptions of science-related −0.003 0.296∗∗∗ 0.000 0.003 0.171∗∗∗ 0.000 0.002
careers (index) (0.032) [0.001] (0.033) [0.001]

Science-related jobs require more years 0.666 −0.113∗∗∗ 0.000 0.719 −0.096∗∗∗ 0.000 0.401
of schooling (0.016) [0.001] (0.014) [0.001]

Science-related jobs are monotonous 0.169 −0.013 0.290 0.233 −0.022 0.185 0.615
(0.012) [0.291] (0.017) [0.185]

Science-related jobs are solitary 0.228 −0.083∗∗∗ 0.000 0.206 −0.053∗∗∗ 0.000 0.080
(0.012) [0.001] (0.013) [0.001]

Science-related jobs pay higher wages 0.531 0.063∗∗∗ 0.001 0.576 0.038∗∗ 0.018 0.327
(0.018) [0.002] (0.016) [0.030]

Hard to maintain work-life balance 0.225 −0.046∗∗∗ 0.002 0.167 −0.015 0.174 0.092
(0.015) [0.003] (0.011) [0.185]

N 2,600 2,636
Notes: This table reports estimates of the treatment effects of classroom interventions on students’ perceptions of science-related
careers, separately by grade level and gender. The sample is restricted to students who completed the post-intervention questionnaire.
Each row corresponds to a different linear regression performed separately by gender, with the dependent variable listed on the left.
Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the LATE estimates. They are
obtained from a regression of the outcome of interest on a classroom visit indicator, using treatment assignment as an instrument
for treatment receipt. The regression includes school fixed effects (to account for the fact that randomisation was stratified by
school) and the student characteristics listed in Table 1. Standard errors (shown in parentheses) are adjusted for clustering at the
unit of randomisation (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in square
brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using the False Discovery Rate (FDR) control method.
Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). The
q-values associated with the synthetic index (highlighted in bold) are adjusted for multiple testing across the study’s nine main
outcomes of interest, separately by grade level and gender (see Appendix D for details). The q-values for the individual components
of the index are adjusted for multiple testing across the index components, separately by grade level and gender. The p-value of
the difference between the treatment effects by gender is reported in column 7. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table F2 – Gender Differences in Aptitude for Mathematics

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

Panel A. Grade 10

Equal gender aptitude for 0.115 0.111∗∗∗ 0.000 −0.134 0.142∗∗∗ 0.000 0.383
maths (index) (0.024) [0.001] (0.030) [0.001]

M and W are born with different 0.211 −0.048∗∗∗ 0.000 0.209 −0.044∗∗∗ 0.000 0.742
brains (0.010) [0.001] (0.011) [0.001]

Men are more gifted in maths than 0.186 −0.028∗∗∗ 0.007 0.299 −0.048∗∗∗ 0.000 0.196
women (0.010) [0.007] (0.014) [0.001]

N 6,475 5,751

Panel B. Grade 12 (science track)

Equal gender aptitude for 0.158 0.078∗∗∗ 0.004 −0.161 0.124∗∗∗ 0.003 0.348
maths (index) (0.028) [0.007] (0.042) [0.006]

M and W are born with different 0.143 −0.024∗∗ 0.026 0.180 −0.032∗∗ 0.027 0.618
brains (0.011) [0.026] (0.014) [0.055]

Men are more gifted in maths than 0.163 −0.028∗∗ 0.021 0.266 −0.029∗ 0.064 0.947
women (0.012) [0.026] (0.016) [0.064]

N 2,600 2,636
Notes: This table reports estimates of the treatment effects of the role model interventions on students’ perceptions regarding
the aptitude of men and women for mathematics, separately by grade level and gender. The sample is restricted to students
who completed the post-intervention questionnaire. Each row corresponds to a different linear regression performed separately by
gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value for students in the control group.
Columns 2 and 5 report the LATE estimates. They are obtained from a regression of the outcome of interest on a classroom
visit indicator, using treatment assignment as an instrument for treatment receipt. The regression includes school fixed effects (to
account for the fact that randomisation was stratified by school) and the student characteristics listed in Table 1. Standard errors
(shown in parentheses) are adjusted for clustering at the unit of randomisation (class). Columns 3 and 6 report the cluster-robust p-
value of the estimated treatment effect and, in square brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using
the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et
al. (2006) and described in Anderson (2008). The q-values associated with the synthetic index (highlighted in bold) are adjusted
for multiple testing across the study’s nine main outcomes of interest, separately by grade level and gender (see Appendix D for
details). The q-values for the individual components of the index are adjusted for multiple testing across the index components,
separately by grade level and gender. The p-value of the difference between the treatment effects by gender is reported in column 7.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table F3 – Taste for Science Subjects

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

Panel A. Grade 10

Taste for science subjects (index) −0.169 −0.033 0.275 0.197 −0.021 0.431 0.704
(0.031) [0.414] (0.026) [0.555]

Enjoys maths (z-score) −0.147 0.003 0.924 0.186 −0.005 0.844 0.818
(0.030) [0.924] (0.027) [0.973]

Enjoys physics-chemistry (z-score) −0.170 −0.042 0.222 0.223 −0.022 0.448 0.566
(0.034) [0.445] (0.029) [0.896]

Enjoys earth and life sciences (z-score) −0.042 −0.052 0.162 0.086 −0.027 0.438 0.492
(0.037) [0.445] (0.034) [0.896]

Enjoys science in general 0.661 −0.011 0.384 0.790 −0.000 0.972 0.453
(0.013) [0.512] (0.011) [0.973]

N 6,475 5,751

Panel B. Grade 12 (science track)

Taste for science subjects (index) −0.002 0.018 0.583 0.002 0.014 0.733 0.924
(0.033) [0.583] (0.040) [0.825]

Enjoys maths (z-score) −0.097 0.086∗∗ 0.019 0.100 0.087∗∗ 0.027 0.976
(0.036) [0.076] (0.039) [0.055]

Enjoys physics-chemistry (z-score) −0.089 −0.005 0.911 0.102 −0.003 0.944 0.966
(0.043) [0.911] (0.040) [0.945]

Enjoys earth and life sciences (z-score) 0.203 −0.040 0.288 −0.215 −0.070 0.246 0.603
(0.038) [0.576] (0.061) [0.328]

Enjoys science in general 0.918 −0.002 0.770 0.930 0.022∗∗∗ 0.008 0.036
(0.009) [0.911] (0.008) [0.034]

N 2,600 2,636
Notes: This table reports estimates of the treatment effects of the role model interventions on students’ taste for science subjects
taught at school, separately by grade level and gender. The sample is restricted to students who completed the post-intervention
questionnaire. Each row corresponds to a different linear regression performed separately by gender, with the dependent variable
listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the LATE
estimates. They are obtained from a regression of the outcome of interest on a classroom visit indicator, using treatment assignment
as an instrument for treatment receipt. The regression includes school fixed effects (to account for the fact that randomisation
was stratified by school) and the student characteristics listed in Table 1. Standard errors (shown in parentheses) are adjusted for
clustering at the unit of randomisation (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect
and, in square brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using the False Discovery Rate (FDR) control
method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in Anderson
(2008). The q-values associated with the synthetic index (highlighted in bold) are adjusted for multiple testing across the study’s
nine main outcomes of interest, separately by grade level and gender (see Appendix D for details). The q-values for the individual
components of the index are adjusted for multiple testing across the index components, separately by grade level and gender. The
p-value of the difference between the treatment effects by gender is reported in column 7. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table F4 – Self-Concept in Maths

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

Panel A. Grade 10

Self-concept in maths (index) −0.198 −0.001 0.981 0.231 0.033 0.250 0.324
(0.028) [0.982] (0.029) [0.375]

Self-assessed performance in maths (z-score) −0.127 −0.013 0.663 0.168 0.016 0.555 0.375
(0.029) [0.663] (0.027) [0.700]

Lost in front of a maths problem 0.553 0.008 0.531 0.344 −0.005 0.700 0.437
(0.013) [0.663] (0.012) [0.700]

Worried when thinking about maths 0.617 −0.029∗∗ 0.025 0.420 −0.030∗∗ 0.027 0.919
(0.013) [0.093] (0.014) [0.109]

Can succeed in science subjects if puts 0.843 0.018∗∗ 0.046 0.883 −0.005 0.511 0.061
in effort (0.009) [0.093] (0.008) [0.700]

N 6,475 5,751

Panel B. Grade 12 (science track)

Self-concept in maths (index) −0.184 0.051 0.139 0.187 0.068∗∗ 0.038 0.695
(0.035) [0.157] (0.033) [0.057]

Self-assessed performance in maths (z-score) −0.126 0.044 0.202 0.123 0.080∗∗ 0.017 0.387
(0.034) [0.270] (0.034) [0.035]

Lost in front of a maths problem 0.486 −0.032∗ 0.091 0.325 −0.032∗∗ 0.050 0.980
(0.019) [0.183] (0.016) [0.067]

Worried when thinking about maths 0.560 −0.037∗∗ 0.044 0.384 −0.050∗∗∗ 0.001 0.575
(0.018) [0.175] (0.016) [0.006]

Can succeed in science subjects if puts 0.942 −0.002 0.751 0.949 0.007 0.341 0.396
in effort (0.008) [0.752] (0.007) [0.341]

N 2,600 2,636
Notes: This table reports estimates of the treatment effects of the role model interventions on students’ self-concept in maths,
separately by grade level and gender. The sample is restricted to students who completed the post-intervention questionnaire.
Each row corresponds to a different linear regression performed separately by gender, with the dependent variable listed on the left.
Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the LATE estimates. They are
obtained from a regression of the outcome of interest on a classroom visit indicator, using treatment assignment as an instrument
for treatment receipt. The regression includes school fixed effects (to account for the fact that randomisation was stratified by
school) and the student characteristics listed in Table 1. Standard errors (shown in parentheses) are adjusted for clustering at the
unit of randomisation (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in square
brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using the False Discovery Rate (FDR) control method.
Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). The
q-values associated with the synthetic index (highlighted in bold) are adjusted for multiple testing across the study’s nine main
outcomes of interest, separately by grade level and gender (see Appendix D for details). The q-values for the individual components
of the index are adjusted for multiple testing across the index components, separately by grade level and gender. The p-value of
the difference between the treatment effects by gender is reported in column 7. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table F5 – Science-Related Career Aspirations

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

Panel A. Grade 10

Science-related career −0.103 0.005 0.851 0.120 0.004 0.871 0.977
aspirations (index) (0.029) [0.970] (0.027) [0.872]

Some jobs in science are interesting 0.845 0.018∗∗ 0.042 0.854 −0.005 0.586 0.059
(0.009) [0.167] (0.009) [0.636]

Would consider a job in science 0.466 −0.003 0.823 0.587 0.023∗ 0.056 0.107
(0.013) [0.825] (0.012) [0.224]

Interested in at least one STEM joba 0.642 0.003 0.825 0.849 0.009 0.332 0.671
(0.012) [0.825] (0.009) [0.636]

Wage prospects important in career −0.045 −0.019 0.514 0.038 0.013 0.636 0.406
choice (z-score) (0.030) [0.825] (0.027) [0.636]

N 6,475 5,751

Panel B. Grade 12 (science track)

Science-related career −0.045 0.106∗∗∗ 0.004 0.046 0.068∗ 0.055 0.410
aspirations (index) (0.037) [0.007] (0.035) [0.071]

Some jobs in science are interesting 0.961 0.012∗∗ 0.029 0.940 0.026∗∗∗ 0.001 0.138
(0.005) [0.059] (0.008) [0.005]

Would consider a job in science 0.721 0.023∗ 0.078 0.762 0.038∗∗∗ 0.006 0.404
(0.013) [0.104] (0.014) [0.012]

Interested in at least one STEM joba 0.817 0.002 0.863 0.899 0.003 0.779 0.963
(0.011) [0.863] (0.009) [0.779]

Wage prospects important in career −0.043 0.112∗∗∗ 0.002 0.037 0.062∗ 0.055 0.295
choice (z-score) (0.036) [0.009] (0.032) [0.074]

N 2,600 2,636
Notes: This table reports estimates of the treatment effects of the role model interventions on students’ self-reported science-related
career aspirations, separately by grade level and gender. The sample is restricted to students who completed the post-intervention
questionnaire. Each row corresponds to a different linear regression performed separately by gender, with the dependent variable
listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the LATE
estimates. They are obtained from a regression of the outcome of interest on a classroom visit indicator, using treatment assignment
as an instrument for treatment receipt. The regression includes school fixed effects (to account for the fact that randomisation
was stratified by school) and the student characteristics listed in Table 1. Standard errors (shown in parentheses) are adjusted for
clustering at the unit of randomisation (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect
and, in square brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using the False Discovery Rate (FDR) control
method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in Anderson
(2008). The q-values associated with the synthetic index (highlighted in bold) are adjusted for multiple testing across the study’s
nine main outcomes of interest, separately by grade level and gender (see Appendix D for details). The q-values for the individual
components of the index are adjusted for multiple testing across the index components, separately by grade level and gender. The
p-value of the difference between the treatment effects by gender is reported in column 7. *** p < 0.01, ** p < 0.05, * p < 0.1.
a The STEM occupations in the list were chemist, computer scientist, engineer, industrial designer, renewable energy technician
and researcher in biology. The non-STEM occupations were lawyer, pharmacist, physician and psychologist.
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Table F6 – Grade 12 Students: Enrolment Status the Following Year (Detailed)

Grade 12 (science track) students

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

Panel A. STEM undergraduate programs

All undergraduate STEM majors
Major: STEM 0.289 0.020 0.139 0.470 −0.002 0.925 0.310

(0.014) [0.157] (0.019) [0.926]

Selective STEM majors
Maths, physics, engineering, computer science (CPGE) 0.084 0.022∗∗ 0.019 0.211 0.012 0.397 0.548

(0.009) [0.049] (0.014) [0.663]

Earth and life sciences (CPGE) 0.020 0.007 0.172 0.010 0.001 0.768 0.293
(0.005) [0.272] (0.003) [0.769]

Sciences - vocational (STS) 0.006 0.002 0.519 0.011 −0.005∗ 0.099 0.092
(0.003) [0.520] (0.003) [0.247]

Non-selective STEM majors
Maths, physics, computer science 0.077 0.010 0.217 0.157 0.006 0.625 0.764

(0.008) [0.272] (0.011) [0.769]

Earth and life sciences 0.103 −0.022∗∗ 0.019 0.081 −0.016∗ 0.064 0.620
(0.009) [0.049] (0.009) [0.247]

Panel B. Non-STEM undergraduate programs

All undergraduate non-STEM majors
Major: non-STEM 0.507 −0.031∗∗ 0.049 0.293 −0.008 0.571 0.286

(0.016) (0.015)

Selective non-STEM majors
Business and economics (CPGE) 0.021 0.001 0.826 0.017 0.006 0.220 0.453

(0.004) (0.005)

Humanities (CPGE) 0.014 −0.002 0.584 0.003 −0.001 0.439 0.877
(0.003) (0.001)

Other vocational (STS) 0.011 −0.009∗∗∗ 0.002 0.008 −0.005∗∗ 0.027 0.306
(0.003) (0.002)

Non-selective non-STEM majors
Medicine and pharmacy 0.259 −0.008 0.623 0.108 0.005 0.653 0.506

(0.016) (0.011)

Law and economics 0.107 −0.006 0.580 0.079 −0.000 0.975 0.677
(0.010) (0.008)

Humanities and psychology 0.080 −0.008 0.394 0.040 −0.007 0.265 0.924
(0.009) (0.006)

Sports studies 0.018 −0.003 0.473 0.036 −0.005 0.441 0.814
(0.004) (0.006)

Not enrolled in higher education 0.206 0.011 0.430 0.237 0.012 0.425 0.957
(0.013) (0.015)

N 2,827 2,924

Notes: This table reports estimates of the treatment effects of the role model interventions on science track grade 12 (science track)
students’ enrolment outcomes in the academic year following the classroom interventions, i.e., 2016/17, separately by gender. The
enrolment outcomes are measured using student-level administrative data. Each row corresponds to a different linear regression
performed separately by gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value for
students in the control group. Columns 2 and 5 report the LATE estimates. They are obtained from a regression of the outcome of
interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression includes
school fixed effects (to account for the fact that randomisation was stratified by school) and the student characteristics listed
in Table 1. Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomisation (class). Columns 3
and 6 report the cluster-robust p-value of the estimated treatment effect and, in square brackets, the p-value (q-value) adjusted for
multiple hypothesis testing, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage
q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). The q-values associated with the treatment
effect estimates on the probability of enrolling in a STEM undergraduate major (panel A) are adjusted for multiple testing across
the study’s nine main outcomes of interest, separately by gender (see Appendix D for details). The q-values associated with the
estimates for the different selective and non-selective STEM majors (panel A) are adjusted for multiple testing across these different
STEM majors, separately by gender. The p-value of the difference between the treatment effects by gender is reported in column 7.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table F7 – Grade 12 Students: Performance in Baccalauréat Exams

Grade 12 (science track) students

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

Obtained the baccalauréat 0.928 −0.014 0.176 0.877 −0.005 0.576 0.540
(0.011) [0.264] (0.010) [0.577]

Baccalauréat percentile rank 53.54 −1.408∗ 0.071 47.72 0.433 0.569 0.057
(0.780) [0.214] (0.760) [0.577]

Baccalauréat percentile rank in maths 46.21 0.476 0.573 47.47 1.385 0.124 0.330
(0.845) [0.574] (0.901) [0.373]

N 2,827 2,924
Notes: This table reports estimates of the treatment effects of the role model interventions on grade 12 (science track) students’
performance on the baccalauréat exams, separately by gender. The baccalauréat outcomes are measured using student-level admin-
istrative data. Each row corresponds to a different linear regression performed separately by gender, with the dependent variable
listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the LATE
estimates. They are obtained from a regression of the outcome of interest on a classroom visit indicator, using treatment assignment
as an instrument for treatment receipt. The regression includes school fixed effects (to account for the fact that randomisation
was stratified by school) and the student characteristics listed in Table 1. Standard errors (shown in parentheses) are adjusted for
clustering at the unit of randomisation (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect
and, in square brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using the False Discovery Rate (FDR) control
method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in Anderson
(2008). The q-values are adjusted for multiple testing across the three baccalauréat outcomes, separately by gender. The p-value of
the difference between the treatment effects by gender is reported in column 7. *** p < 0.01, ** p < 0.05, * p < 0.1.
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G Robustness Checks

Table G1 – Treatment Effects on Student Perceptions: Estimates without Controlling for
Baseline Characteristics

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

Panel A. Grade 10

Positive perceptions of science-related careers (index) −0.020 0.245∗∗∗ 0.000 0.023 0.167∗∗∗ 0.000 0.026
(0.028) [0.001] (0.029) [0.001]

More men in science-related jobs 0.628 0.156∗∗∗ 0.000 0.629 0.168∗∗∗ 0.000 0.455
(0.013) [0.001] (0.014) [0.001]

Equal gender aptitude for maths (index) 0.115 0.109∗∗∗ 0.000 −0.134 0.148∗∗∗ 0.000 0.273
(0.025) [0.001] (0.030) [0.001]

Women do not really like science 0.157 0.059∗∗∗ 0.000 0.198 0.103∗∗∗ 0.000 0.003
(0.011) [0.001] (0.013) [0.001]

W face discrimination in science-related jobs 0.603 0.127∗∗∗ 0.000 0.527 0.153∗∗∗ 0.000 0.123
(0.013) [0.001] (0.014) [0.001]

Taste for science subjects (index) −0.169 −0.038 0.294 0.197 −0.019 0.533 0.627
(0.036) [0.442] (0.031) [0.685]

Self-concept in maths (index) −0.198 −0.008 0.806 0.231 0.039 0.217 0.225
(0.031) [0.807] (0.032) [0.326]

Science-related careers aspirations (index) −0.103 0.012 0.695 0.120 0.007 0.801 0.906
(0.030) [0.807] (0.029) [0.902]

N 6,475 5,751

Panel B. Grade 12 (science track)

Positive perceptions of science-related careers (index) −0.003 0.312∗∗∗ 0.000 0.003 0.155∗∗∗ 0.000 0.000
(0.034) [0.001] (0.033) [0.001]

More men in science-related jobs 0.712 0.125∗∗∗ 0.000 0.717 0.149∗∗∗ 0.000 0.209
(0.016) [0.001] (0.015) [0.001]

Equal gender aptitude for maths (index) 0.158 0.095∗∗∗ 0.001 −0.161 0.132∗∗∗ 0.001 0.447
(0.028) [0.002] (0.040) [0.002]

Women do not really like science 0.074 0.044∗∗∗ 0.000 0.146 0.073∗∗∗ 0.000 0.089
(0.009) [0.001] (0.015) [0.001]

W face discrimination in science-related jobs 0.624 0.095∗∗∗ 0.000 0.600 0.072∗∗∗ 0.000 0.344
(0.020) [0.001] (0.018) [0.001]

Taste for science subjects (index) −0.002 0.016 0.632 0.002 −0.000 0.998 0.721
(0.034) [0.633] (0.039) [0.999]

Self-concept in maths (index) −0.184 0.050 0.202 0.187 0.072∗∗ 0.041 0.634
(0.039) [0.228] (0.035) [0.062]

Science-related careers aspirations (index) −0.045 0.113∗∗∗ 0.002 0.046 0.050 0.131 0.161
(0.037) [0.003] (0.033) [0.169]

N 2,600 2,636

Notes: This table reports estimates of the treatment effects of the role model interventions on students’ perceptions, separately
by grade level and gender, and without controlling for students’ baseline characteristics. The sample is restricted to students
who completed the post-intervention questionnaire. Each row corresponds to a different linear regression performed separately by
gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value for students in the control group.
Columns 2 and 5 report the LATE estimates. They are obtained from a regression of the outcome of interest on a classroom visit
indicator, using treatment assignment as an instrument for treatment receipt. The regression controls for school fixed effects to
account for the fact that randomisation was stratified by school. Standard errors (shown in parentheses) are adjusted for clustering
at the unit of randomisation (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and,
in square brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using the False Discovery Rate (FDR) control
method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in Anderson
(2008). The q-values are adjusted for multiple testing across the study’s nine main outcomes of interest, separately by grade level
and gender (see Appendix D for details). The p-value of the difference between the treatment effects by gender is reported in
column 7. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table G2 – Treatment Effects on Enrolment Outcomes: Estimates without Controlling for
Baseline Characteristics

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

p-value
of diff.
(5)−(2)

(1) (2) (3) (4) (5) (6) (7)

Panel A. Grade 10

All STEM tracks
Grade 11: science track 0.355 −0.004 0.753 0.551 −0.002 0.910 0.876

(0.014) [0.807] (0.015) [0.910]

General versus technical STEM track
Grade 11: science–general track 0.328 0.001 0.942 0.416 0.007 0.613 0.699

(0.013) [0.942] (0.014) [0.614]

Grade 11: science–technical track 0.026 −0.005 0.128 0.135 −0.009 0.300 0.693
(0.003) [0.256] (0.008) [0.601]

N 7,241 6,459

Panel B. Grade 12 (science track)

All undergraduate STEM majors
Major: STEM 0.289 0.024∗ 0.080 0.470 0.003 0.886 0.332

(0.014) [0.103] (0.020) [0.998]

Selective versus non-selective STEM
Major: selective STEM 0.110 0.035∗∗∗ 0.002 0.232 0.020 0.200 0.387

(0.011) [0.004] (0.016) [0.283]

Major: non-selective STEM 0.178 −0.011 0.322 0.239 −0.017 0.212 0.745
(0.011) [0.322] (0.014) [0.283]

Male- versus female-dominated STEM
Major: male-dominated STEM 0.166 0.038∗∗∗ 0.002 0.379 0.017 0.387 0.287
(maths, physics, computer science) (0.012) [0.004] (0.019) [0.388]

Major: female-dominated STEM 0.123 −0.015 0.158 0.091 −0.014 0.119 0.952
(earth and life sciences) (0.010) [0.211] (0.009) [0.283]

N 2,827 2,924
Notes: This table reports estimates of the treatment effects of the role model interventions on students’ enrolment outcomes
in the academic year following the classroom interventions, i.e., 2016/17, separately by grade level and gender, and without
controlling for student baseline characteristics. The enrolment outcomes are measured using student-level administrative data.
Each row corresponds to a different linear regression performed separately by gender, with the dependent variable listed on the left.
Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the LATE estimates. They are
obtained from a regression of the outcome of interest on a classroom visit indicator, using treatment assignment as an instrument
for treatment receipt. The regression controls for school fixed effects to account for the fact that randomisation was stratified
by school. Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomisation (class). Columns 3
and 6 report the cluster-robust p-value of the estimated treatment effect and, in square brackets, the p-value (q-value) adjusted for
multiple hypothesis testing, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage
q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). The q-values associated with the treatment effect
estimates on ‘Grade 11: Science track’ (panel A) and ‘Major: STEM’ (panel B) are adjusted for multiple testing across the study’s
nine main outcomes of interest, separately by grade level and gender (see Appendix D for details). The q-values associated with
the treatment effect estimates for the different STEM tracks (panel A) or the different STEM majors (panel B) are adjusted for
multiple testing across these different STEM tracks or majors, separately by grade level and gender. The p-value of the difference
between the treatment effects by gender is reported in column 7. *** p < 0.01, ** p < 0.05, * p < 0.1.
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H Randomisation Inference
This appendix evaluates the robustness of our results to computing p-values using non-parametric
randomisation inference tests rather than model-based cluster-robust inference.

Randomisation inference, which was first proposed by Fisher (1935) and was later developed
by Rosenbaum (2002), has been used in a number of recent RCT studies in economics and
political science as an alternative to model-based inference. The intuition behind this approach
is relatively straightforward. In RCTs, researchers know exactly how the randomisation was
performed. Randomisation inference uses this knowledge to assess whether observed outcomes
in a given sample are likely to have occurred by chance even if the treatment had no effect.
This can be obtained numerically through Monte Carlo methods, by computing the treatment
effects for varying random draws of the treatment assignment, whose data-generating process is
known. This test is non-parametric since it does not make distributional assumptions.A.5

In our setting, the ITT effect under the observed assignment to treatment is estimated using
the following reduced-form specification:

Yics = α + βTcs + Xicsπ + θs + εics, (A.1)

where Yics is the observed outcome of student i in class c and school s, Tcs the observed treatment
assignment of the student’s class, Xics the student characteristics in Table 1and θs the school
fixed effects. The ITT estimate under the observed treatment assignment is denoted by β̂.

To conduct randomisation inference, we proceed as follows. Taking into account the fact
that randomisation was stratified by school and grade level, we first re-assign treatment
R =2,000 times among participating classes using the exact same stratified procedure.A.6
Let {P r}Rr=1 denote the set of R random placebo assignments from the randomisation process.
We then re-estimate the ITT effects of these placebo treatments using the following reduced-form
specification, which is estimated separately by grade level and gender:

Yics = αr + βrP
r
cs + Xicsπr + λs + ηics, r = 1, ..., R, (A.2)

where P r
cs indicates assignment to a placebo treatment group for random draw r. School fixed

effects, λs, are included to account for the fact that the randomisation is stratified by school.
Since Pr is a randomly generated placebo, E(βr) = 0. Let F (β̂r) denote the empirical c.d.f. of

all elements of {Pr}Rr=1. We test the null hypothesis that the program had no effect on outcome Y
by checking if the ITT estimate that we obtain for the observed treatment assignment is in the
tails of the distribution of placebo treatments. We can reject H0: β̂ = 0 with a confidence level
of 1− α if β̂ ≤ F−1

(
α
2

)
or β̂ ≥ F−1

(
1− α

2

)
. Since the placebo assignments only vary across

randomisation units (here classes), this method accounts for correlation within units. Following
Davison and Hinkley (1997), we compute the p-values from a two-sided randomisation inference
test of zero treatment effects as p = (1 +∑R

r=1 1(|β̂r| ≥ |β|))/(1 +R).
Table H1 presents the results of randomisation inference tests of the hypotheses that the role

model interventions had no effect on student perceptions and enrolment outcomes, separately by
grade level and gender. The ITT estimates β̂ are shown in columns 1 and 4. The cluster-robust
model-based p-values are reported and columns 2 and 5, while those based on randomisation
inference are in columns 3 and 6. The results of the randomisation inference tests yield p-values
that are generally close to the cluster-robust model-based p-values. Although they tend to
be slightly more conservative, they confirm the program’s statistically significant effects on
enrolment in selective and male-dominated STEM programs for girls in grade 12.

A.5For more details on randomisation inference, see Rosenbaum (2010) and Imbens and Rubin (2015).
A.6See Paz and West (2019) for the number of draws to be used.
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Table H1 – Randomisation Inference for Intention-to-Treat Estimates

Girls Boys

ITT p-value:
model-
based

p-value:
rand.

inference

ITT p-value:
model-
based

p-value:
rand.

inference

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Student perceptions
Positive perceptions of science-related careers (index) 0.227 0.000 0.000 0.151 0.000 0.000
More men in science-related jobs 0.143 0.000 0.000 0.158 0.000 0.000
Equal gender aptitude for maths (index) 0.103 0.000 0.000 0.132 0.000 0.000
Women do not really like science 0.052 0.000 0.000 0.094 0.000 0.000
Women face discrimination in science-related jobs 0.116 0.000 0.000 0.143 0.000 0.000
Taste for science subjects (index) −0.031 0.280 0.320 −0.019 0.436 0.500
Self-concept in maths (index) −0.001 0.981 0.980 0.031 0.255 0.320
Science-related career aspirations (index) 0.005 0.852 0.870 0.004 0.873 0.880

Enrolment outcomes
Grade 11: science track −0.002 0.863 0.880 −0.005 0.643 0.690
Grade 11: science–general track 0.003 0.796 0.810 0.004 0.713 0.740
Grade 11: science–technical track −0.004 0.193 0.270 −0.009 0.240 0.300

N 7,241 6,459

Panel B. Grade 12 (science track)

Student perceptions
Positive perceptions of science-related careers (index) 0.279 0.000 0.000 0.160 0.000 0.000
More men in science-related jobs 0.115 0.000 0.000 0.140 0.000 0.000
Equal gender aptitude for maths (index) 0.074 0.007 0.050 0.117 0.004 0.030
Women do not really like science 0.039 0.000 0.000 0.069 0.000 0.000
Women face discrimination in science-related jobs 0.080 0.000 0.000 0.070 0.000 0.000
Taste for science subjects (index) 0.017 0.592 0.710 0.013 0.738 0.810
Self-concept in maths (index) 0.048 0.150 0.300 0.064 0.042 0.140
Science-related career aspirations (index) 0.100 0.005 0.040 0.064 0.061 0.160

Enrolment outcomes
Undergraduate major: STEM 0.019 0.154 0.310 −0.002 0.927 0.950
Undergraduate major: selective STEM 0.029 0.008 0.050 0.008 0.583 0.690
Undergraduate major: non-selective STEM −0.010 0.341 0.510 −0.010 0.456 0.570
Undergraduate major: male-dominated STEM 0.031 0.005 0.030 0.012 0.495 0.610
Undergraduate major: female-dominated STEM −0.014 0.175 0.350 −0.014 0.129 0.270

N 2,827 2,924
Notes: This table presents the results of randomisation inference tests of the hypotheses that the program had no effect on student
perceptions and enrolment outcomes. We randomly re-assign treatment 2,000 times among participating classes within each school
and grade level, and re-estimate the ITT effects of these placebo treatments. The regression includes school fixed effects (to account
for the fact that randomisation was stratified by school) and the student characteristics listed in Table 1 in the main text. The
ITT estimates under the observed assignment are reported in columns 1 and 4 separately by gender. The associated cluster-robust
model-based p-values are shown in columns 2 and 5. The randomisation inference p-values are reported in columns 3 and 6. They
are computed from a two-sided randomisation inference test of zero treatment effects as p =

(
1 +
∑R

r=1 1(|β̂r| ≥ |β|)
)
/(1 + R),

where {β̂r}R
r=1 is the set of R placebo ITT estimates, β̂ is the ITT estimate under the observed assignment and 1(·) is the indicator

function.
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I Information, Persistence, Timing: Additional Results

I.1 Intensity of Information Provision

Figure I1 – Screenshots of the Slides Providing General Information on STEM Careers (‘Regular
Slides’)

Figure I2 – Screenshots of the Additional Slides Providing General Information on STEM
Careers (‘Augmented Slides’)
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Table I1 – Balancing Test: Classrooms Assigned to Role Models who were Provided with the
Regular versus Augmented Sets of Slides

Set of slides Difference
(2)−(1)

p-value
of diff.Regular Augmented

(1) (2) (3) (4)

Panel A. Grade 10

Student characteristics
Female 0.532 0.526 −0.006 0.651
Age (years) 15.10 15.14 0.04 0.002
Non-French 0.052 0.067 0.015 0.014
High SES 0.396 0.369 −0.027 0.193
Medium-high SES 0.136 0.122 −0.014 0.059
Medium-low SES 0.238 0.244 0.006 0.559
Low SES 0.229 0.265 0.035 0.030
Number of siblings 1.467 1.500 0.033 0.383
Class size 33.86 32.76 −1.10 0.000
At least one science elective course 0.387 0.399 0.012 0.722
At least one standard elective course 0.746 0.759 0.012 0.648
DNB percentile rank in maths 58.37 58.57 0.20 0.886
DNB percentile rank in French 56.79 58.69 1.90 0.122

Predicted track in grade 11
Grade 11: science track 0.443 0.457 0.014 0.248
Grade 11: science–general track 0.366 0.380 0.014 0.326
Grade 11: science–technical track 0.077 0.077 0.000 0.923

N 6,047 7,653 13,700

Panel B. Grade 12 (science track)

Student characteristics
Female 0.491 0.492 0.001 0.951
Age (years) 17.12 17.13 0.01 0.673
Non-French 0.044 0.057 0.014 0.133
High SES 0.475 0.453 −0.022 0.519
Medium-high SES 0.140 0.132 −0.008 0.517
Medium-low SES 0.209 0.208 −0.001 0.936
Low SES 0.176 0.207 0.031 0.197
Number of siblings 1.479 1.516 0.037 0.454
Class size 32.13 31.83 −0.29 0.602
DNB percentile rank in maths 74.19 73.94 −0.25 0.870
DNB percentile rank in French 69.45 69.75 0.30 0.843

Predicted undergraduate major
Major: STEM 0.384 0.382 −0.002 0.735
Major: selective STEM 0.179 0.175 −0.004 0.684
Major: male-dominated STEM 0.276 0.274 −0.001 0.856

N 2,748 3,003 5,751
Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left for students enrolled in
grade 10 in 2015/16 (panel A) and in grade 12 (panel B). Columns 1 and 2 show the average value for students whose high school
was visited by a role model provided with the regular or augmented set of slides, respectively. Column 3 reports the coefficient
from the regression of each variable on an indicator that takes the value one if the school was visited by a role model who received
the augmented slides and zero if the school was visited by a role model who received the regular slides, with the p-value reported
in column 4. Standard errors are adjusted for clustering at the class level. High school tracks in grade 11 are predicted for each
student using the coefficients from a linear regression of the corresponding binary variable (e.g., enrolment in the general science
track) on all the student characteristics listed in the table. This model is fitted on the sample of students in the control group.
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Table I2 – Treatment Effects (ITT) for Grade 12 Students: Regular versus Augmented Slides

Girls Boys
(1) (2)

Major: STEM

Treatment group indicator (T ) 0.024 −0.021
(0.023) (0.029)

T*Augmented slides −0.006 0.029
(0.037) (0.040)

Major: selective STEM

Treatment group indicator (T ) 0.038∗∗∗ 0.021
(0.014) (0.024)

T*Augmented slides −0.016 −0.018
(0.021) (0.035)

Major: male-dominated STEM

Treatment group indicator (T ) 0.048∗∗ −0.003
(0.019) (0.030)

T*Augmented slides −0.025 0.020
(0.026) (0.039)

Science-related jobs pay higher wages

Treatment group indicator (T ) 0.012 0.056∗∗∗
(0.032) (0.021)

T*Augmented slides 0.087∗ −0.055
(0.049) (0.036)

Positive perceptions of science-related careers (index)

Treatment group indicator (T ) 0.312∗∗∗ 0.173∗∗∗
(0.057) (0.052)

T*Augmented slides −0.042 −0.058
(0.082) (0.088)

Equal gender aptitude for maths (index)

Treatment group indicator (T ) 0.116∗∗∗ 0.046
(0.041) (0.061)

T*Augmented slides −0.056 0.131
(0.070) (0.103)

N 2,827 2,924

Notes: This table reports estimates of the treatment effects (ITT) of the role model interventions on student outcomes for grade 12
students, separately by gender and by the type of slides (regular or augmented) that were provided to the female role model who
visited the classroom. For each outcome of interest, the reported coefficients are obtained from a regression of the outcome on
a treatment group indicator (T ) and the interaction between this indicator and an indicator that takes the value one if the role
model was provided with the augmented set of slides. The specification includes school fixed effects (to account for the fact that
randomisation was stratified by school), month-of-visit fixed effects interacted with the treatment group indicator (to account for
the fact that the additional slides were provided slightly later in the experiment) and the student characteristics listed in Table 1.
Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomisation (class). *** p < 0.01, ** p < 0.05,
* p < 0.1.
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I.2 Persistence of the Effects and Timing of Visits

Table I3 – Persistence of Effects on Student Perceptions

Girls Boys
Days since intervention Days since intervention

≤63 days >63 days p-value
of diff. ≤63 days >63 days p-value

of diff.
(1) (2) (3) (4) (5) (6)

Panel A. Grade 10
Positive perceptions of science-related 0.289∗∗∗ 0.200∗∗∗ 0.083 0.162∗∗∗ 0.162∗∗∗ 0.999
careers (index) (0.037) (0.038) (0.037) (0.039)
More men in science-related jobs 0.146∗∗∗ 0.163∗∗∗ 0.479 0.188∗∗∗ 0.149∗∗∗ 0.138

(0.016) (0.019) (0.019) (0.019)
Equal gender aptitude for maths (index) 0.143∗∗∗ 0.078∗∗ 0.182 0.173∗∗∗ 0.108∗∗∗ 0.258

(0.031) (0.037) (0.041) (0.042)
Women do not really like science 0.080∗∗∗ 0.031∗∗ 0.022 0.114∗∗∗ 0.087∗∗∗ 0.292

(0.015) (0.015) (0.016) (0.020)
W face discrimination in science-related jobs 0.139∗∗∗ 0.112∗∗∗ 0.262 0.165∗∗∗ 0.142∗∗∗ 0.379

(0.017) (0.018) (0.018) (0.020)
Taste for science subjects (index) −0.000 −0.068∗ 0.254 −0.028 −0.013 0.775

(0.045) (0.040) (0.036) (0.037)
Self-concept in maths (index) −0.050 0.051 0.063 −0.039 0.112∗∗∗ 0.005

(0.036) (0.042) (0.042) (0.035)
Science-related career aspirations (index) 0.006 0.005 0.983 −0.023 0.035 0.274

(0.038) (0.042) (0.036) (0.039)
N 3,119 3,356 2,856 2,895
Panel B. Grade 12 (science track)
Positive perceptions of science-related 0.349∗∗∗ 0.249∗∗∗ 0.108 0.217∗∗∗ 0.125∗∗∗ 0.157
careers (index) (0.044) (0.044) (0.049) (0.043)
More men in science-related jobs 0.125∗∗∗ 0.120∗∗∗ 0.867 0.130∗∗∗ 0.167∗∗∗ 0.235

(0.021) (0.023) (0.017) (0.026)
Equal gender aptitude for maths (index) 0.090∗∗ 0.068∗∗ 0.696 0.090 0.158∗∗∗ 0.420

(0.045) (0.032) (0.059) (0.060)
Women do not really like science 0.072∗∗∗ 0.015 0.003 0.080∗∗∗ 0.067∗∗∗ 0.697

(0.015) (0.011) (0.022) (0.021)
W face discrimination in science-related jobs 0.105∗∗∗ 0.068∗∗ 0.345 0.112∗∗∗ 0.038 0.038

(0.024) (0.030) (0.023) (0.027)
Taste for science subjects (index) −0.073 0.100∗∗ 0.010 0.048 −0.019 0.398

(0.049) (0.044) (0.056) (0.057)
Self-concept in maths (index) 0.075 0.030 0.512 0.046 0.089∗ 0.504

(0.049) (0.049) (0.037) (0.053)
Science-related career aspirations (index) −0.021 0.221∗∗∗ 0.000 0.115∗∗∗ 0.022 0.182

(0.056) (0.041) (0.042) (0.056)
N 1,201 1,399 1,255 1,381
Notes: This table reports estimates of the treatment effects of the role model interventions on student perceptions, separately by
grade level, gender and by the number of days between the date of the classroom visit and the date when students completed the
survey. The sample is split at the median of this time interval, i.e., 63 days. On average, students below this threshold completed
the survey 46 days after the intervention while those above completed it 93 days after, i.e., an additional 47 days. The sample
is restricted to students who completed the post-intervention questionnaire. Each coefficient is obtained from a linear regression
of the outcome of interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt.
The regression includes school fixed effects (to account for the fact that randomisation was stratified by school) and the student
characteristics listed in Table 1. Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomisation
(class). The p-value of the difference between the treatment effects for students who took the before/after the 63 days threshold
since the intervention is reported in columns 3 and 6, separately by gender. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table I4 – Effects on Enrolment Outcomes by Timing of Classroom Visits: Grade 12 Students

Girls Boys
Month of visit Month of visit

Nov-Dec
2015

Jan-Feb
2016

p-value
of diff.

Nov-Dec
2015

Jan-Feb
2016

p-value
of diff.

(1) (2) (3) (4) (5) (6)
Major: STEM 0.038∗ 0.003 0.210 0.054 −0.029 0.053

(0.020) (0.019) (0.037) (0.022)
Major: selective STEM 0.046∗∗ 0.019 0.266 0.030 −0.002 0.324

(0.019) (0.015) (0.028) (0.017)
Major: male-dominated STEM 0.038∗∗ 0.024 0.548 0.058 −0.011 0.098

(0.018) (0.016) (0.035) (0.021)
N 1,253 1,461 1,257 1,575
Notes: This table reports estimates of the treatment effects of the role model interventions on the enrolment outcomes of grade 12
students in the year following high school graduation, i.e., 2016/17, separately by gender and by whether the classroom visit took
place before or after 31 December 2015. The enrolment outcomes are measured using student-level administrative data. Each
coefficient is obtained from a linear regression of the outcome of interest on a classroom visit indicator, using treatment assignment
as an instrument for treatment receipt. The regression includes school fixed effects (to account for the fact that randomisation
was stratified by school) and the student characteristics listed in Table 1. Standard errors (shown in parentheses) are adjusted for
clustering at the unit of randomisation (class). The p-value of the difference between the treatment effects for classroom visits that
took place before versus after 31 December 2015, is reported in columns 3 and 6, separately by gender. *** p < 0.01, ** p < 0.05,
* p < 0.1.
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J Spillover Effects
This appendix investigates whether the program could have had spillover effects for students
who were not exposed to the role model interventions in participating schools. Section J.1
provides survey evidence suggesting that the scope for spillover effects was relatively limited.
Section J.2 describes the difference-in-differences (DiD) approach that we use to estimate the
magnitude of spillovers, the results of which point to non-statistically significant effects.

J.1 Survey Evidence
To get some sense of the scope for spillover effects in the context of our study, we included in the
last section of the survey a series of questions asking students in the treatment group whether
they had talked about the classroom interventions with their classmates, with schoolmates from
other classes or with friends from other schools. We also asked students in the control group
whether they had heard about a science-related awareness-raising program and, more specifically,
whether they knew about other classes in the school being visited by a female or male scientist.

Overall, the summary statistics from the survey data suggest relatively limited opportunities
for spillover effects (see Table J1). In the treatment group, 58% of grade 10 students and 63% of
science track grade 12 students report having talked about the classroom intervention with their
classmates, but only 24% (27%) with schoolmates from other classes and 20% with students
from other schools. Interestingly, these proportions are higher for girls than for boys: in grade 10,
66% of girls in the treatment group report having discussed the program with their classmates
and 28% with schoolmates from other classes versus respectively 50% and 20% among boys;
in grade 12, 70% of girls in the treatment group report having discussed the program with
their classmates and 33% with schoolmates from other classes versus respectively 56% and 21%
among boys.

In the control group, only 14% of students in grade 10 report having heard of classroom visits
in other classes, mostly in a vague manner (12%). In grade 12, students in the control group
are more likely to report being at least vaguely aware of such visits (34%), but less than 5% of
boys and girls have a precise recollection. Gender differences in these proportions are small and
barely statistically significant. The fact that students in grade 12 are more likely to report being
aware of classroom visits could be at least partly due to the fact that the share of students
assigned to the treatment group among all students from the same grade level was typically
larger in grade 12 than in grade 10, on average 32% versus 25%. Despite these differences, the
overall picture that emerges from the survey is that students in the control group had only
limited awareness of the classroom interventions in other classes.

J.2 Differences-in-Differences Estimates of Spillover Effects
We complement the survey evidence by investigating more formally whether the role model
interventions could have affected the higher education choices of grade 12 students whose classes
were not assigned to the treatment group. These students are either in the classes that were not
selected by school principals to participate in the program evaluation or in the participating
classes that were randomly assigned to the control group.

Our experimental design does not include a ‘super control’ group composed of students
enrolled in schools randomly chosen to have zero probability of assignment to the treatment
among the classes selected by school principals. Spillover effects cannot, therefore, be identified
by comparing the control group classes in participating schools with such supercontrol group
classes, as in the design pioneered by Duflo and Saez (2003).A.7 Instead, our approach builds on

A.7Vazquez-Bare (forthcoming) develops a potential-outcome-based non-parametric framework to identify
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the following intuition: for schools that participated in the evaluation, the random assignment
of treatment to participating classes makes it possible to estimate the average outcome that
would have been observed if all students from these schools had only been exposed to the
spillover effects of role model interventions, without being directly exposed to a female role
model. This unobserved ‘spillover-only’ counterfactual can be estimated at the school level using
an appropriately weighted average of non-treated classes: it suffices to compute the weighted
average outcome of students in the non-participating classes and in the participating classes
that were randomly assigned to the control group, with respective weights equal to the share of
participating and of non-participating classes in the school. Average spillover effects can then be
estimated by comparing this ‘spillover-only’ counterfactual to a ‘no-treatment’ counterfactual.
This second counterfactual is constructed under the assumption that absent treatment, mean
outcomes in participating school would have followed the same evolution as in non-participating
schools. Having verified that this common trends assumption is satisfied in the pre-treatment
period 2012–2014, we implement a difference-in-differences estimator that identifies the difference
between the ‘spillover-only’ and the ‘no-treatment’ counterfactuals. This approach, which is
graphically illustrated in Figure J1, enables us to estimate the average spillover effects of role
model interventions in the participating schools.

Notations. We are interested in measuring the spillover effects of classroom visits. We denote
by Ds a binary indicator for a student’s school s being visited by a female role model and by
Dcs a binary indicator for a role model intervention taking place in the student’s class c. We
consider two time periods, represented by a binary indicator T ∈ {0, 1}, with classroom visits
taking place in period 1 only. For a given realization of the treatment assignment (ds, dcs), the
potential outcome for student i in school s, class c and time t is denoted by Yicst(ds, dcs).

We use the binary indicator Gs to indicate whether school s participated in the experiment
and we denote the sets of participating and non-participating schools by S1 and S0, respectively.
The number of participating (non-participating) schools is denoted byM1 (M0). Only a subset of
the classes in participating schools were (non-randomly) selected by the principals to participate
in the experiment in period 1. The participation status of class c in school s is denoted by
the binary indicator Gcs. Among participating classes (Gcs = 1), the binary indicator Rcs

indicates whether the class was randomly assigned to the treatment group (Rcs = 1) or to the
control group (Rcs = 0). The experimental setting therefore implies that Ds = Gs × T and
Dcs = Rcs × T . A student’s observed outcome can then be written

Yicst = Ds ·Dcs · Yicst(1, 1) +Ds · (1−Dcs) · Yicst(1, 0) + (1−Ds) · Yicst(0, 0). (A.3)

To simplify notation, we assume that each school has the same number of students, N , and
that the number of students is the same in both periods.

Let Ys,t(0, 0) denote the average potential outcome of students in school s and year t under
no treatment. This average potential outcome corresponds to the case in which no student from
school s in year t is exposed to either the direct or spillover effects of classroom visits, i.e.,

Ys,t(0, 0) = 1
N

N∑
i=1

Yicst(0, 0). (A.4)

Let Ys,t(1, 0) denote the average potential outcome of students in school s and year t in the
(non-feasible) scenario in which all students in school s are only exposed to the spillover effects

spillover effects in randomised experiments where units are clustered, without requiring a specific experimental
design. This approach, however, cannot be easily adapted to our setting since it requires that the treatment is
assigned at the individual level within clusters (schools), not at the group level (classes), in order to exploit
variation in all the possible configurations of own and neighbours’ observed treatment assignments.
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of role model interventions in other classes, without themselves being visited by a female role
model. This ‘spillover-only’ average potential outcome is defined as follows:

Ys,t(1, 0) = 1
N

N∑
i=1

Yicst(1, 0). (A.5)

Our parameter of interest is the expected average spillover effect of classroom visits for the
students in participating schools in period 1, i.e.,

∆ = E

 1
M1

∑
s∈S1

(
Ys,1(1, 0)− Ys,1(0, 0)

) . (A.6)

This parameter can be interpreted as the average effect for students in participating schools
of being only exposed to the indirect effects of classroom visits compared to the counterfactual
of no classroom visit in the school.

Identification of spillover effects. Let Ys,t denote the mean observed outcome for students
in school s and year t, i.e.,

Ys,t = 1
N

N∑
i=1

Yicst. (A.7)

For non-participating schools in periods 0 and 1 and for participating schools in period 0, this
mean observed outcome is in expectation equal to the expected average potential outcome under
no treatment. Indeed, Equations (A.3), (A.4) and (A.7) imply that

E(Ys,t) = E
(
Ys,t(0, 0)

)
if s ∈ S0 and t ∈ {0, 1} or if s ∈ S1 and t = 0. (A.8)

For each school s ∈ S1 that participated in the evaluation, we consider the following partition
of students in period 1: let C0

s , CCs and CTs denote respectively (i) the students in the classes
that did not participate in the evaluation (Gs = 0), (ii) the students in the participating classes
that were randomly assigned to the control group (Gs = 1 and Rcs = 0) and (iii) the students
in the participating classes that were randomly assigned to the treatment group (Gs = 1 and
Rcs = 1). By definition, the number of students in each group, which we denote by N0

s , NC
s and

NT
s , respectively, is such that N = N0

s +NC
s +NT

s .
For the purpose of estimating spillover effects, we construct a mean counterfactual outcome

for participating schools in period 1, which we denote by Ỹs,1. As shown in Proposition 1 below,
the expected value of Ỹs,1 coincides with the expected average potential outcome of students
in school s and period 1, had all of its students only been exposed to the spillover effects of
classroom visits in other classes, without being themselves directly exposed to a female role
model. This counterfactual outcome ignores classes in the treatment group and is defined as a
weighted average of the observed outcomes of students in the non-participating classes and the
control group classes (see Figure J1):

Ỹs,1 = 1
N

∑
i∈C0

s

Yics1 +
(

1 + NT
s

NC
s

) ∑
i∈CC

s

Yics1

 , s ∈ S1. (A.9)

The intuition is as follows. The ‘spillover only’ counterfactual measured at the school
level cannot be recovered from the non-participating classes only, since these classes were not
randomly selected by school principals. However, having noted that the mean observed outcome
of students in the control group is an unbiased estimator of the mean (unobserved) ‘spillover-only’
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outcome for students in the treatment group, one can reconstruct the school-level ‘spillover-only’
counterfactual by restricting the set of students to those in non-participating classes and control
group classes. To estimate the mean outcome that would have been observed if all students had
only been exposed to the spillover effects of classroom visits, it suffices to reweight students
in the control group so that they match the total number of students in the participating
classes (i.e., treatment and control) and then combine this reweighted sample with the sample
of students in non-participating classes to compute the average outcome.

Assumption 1. Random assignment of treatment to participating classes.

E

 1
NT
s

∑
i∈CT

s

Yics1(1, 0)
 = E

 1
NC
s

∑
i∈CC

s

Yics1(1, 0)
 , s ∈ S1.

Assumption 1 states that students in the treatment and control group classes of participating
schools have the same expected average potential outcome under the ‘spillover-only’ treatment.
Our experimental design ensures that this assumption is satisfied.

Proposition 1. Under Assumption 1, the counterfactual Ỹs,1 is an unbiased estimator of the
expected average potential outcome of students in participating school s and period 1 under the
‘spillover-only’ treatment, Ys,1(1, 0):

E(Ỹs,1) = E
(
Ys,1(1, 0)

)
, s ∈ S1.

Proof. From the definition of the ‘spillover-only’ counterfactual in Equation (A.9), we have

E(Ỹs,1) = E

 1
N

∑
i∈C0

s

Yics1 +
(

1 + NT
s

NC
s

) ∑
i∈CC

s

Yics1


= 1
N

∑
i∈C0

s

E(Yics1(1, 0)) +
∑
i∈CC

s

E(Yics1(1, 0)) + NT
s

NC
s

∑
i∈CC

s

E(Yics1(1, 0))


= 1
N

∑
i∈C0

s

E(Yics1(1, 0)) +
∑
i∈CC

s

E(Yics1(1, 0)) +
∑
i∈CT

s

E(Yics1(1, 0))


= 1
N

N∑
i=1

E(Yics1(1, 0))

= E
(
Ys,1(1, 0)

)
.

The second equality follows from Equation (A.3), the third equality follows from Assumption 1,
while the last equality follows from Equation (A.5). The key intuition for this result is that by
virtue of the random assignment of treatment to participating classes, the mean observed outcome
of students assigned to the control group is an unbiased estimator of the mean unobserved
‘spillover-only’ outcome of students assigned to the treatment group.

Identifying spillover effects requires comparing the ‘spillover-only’ counterfactual with the
‘no-treatment’ counterfactual. To this end, we define the following difference-in-differences
estimator, which we denote by ∆̂:

∆̂ = 1
M1

∑
s∈S1

(Ỹs,1 − Ys,0)− 1
M0

∑
s∈S0

(Ys,1 − Ys,0). (A.10)

This estimator compares the evolution of the mean outcome of students in participating schools

A-41



between period 0 and period 1 (using the ‘spillover-only’ counterfactual for period 1) with the
corresponding evolution in non-participating schools.

Assumption 2. Common trends between participating and non-participating schools.

E

 1
M1

∑
s∈S1

(
Ys,1(0, 0)− Ys,0(0, 0)

) = E

 1
M0

∑
s∈S0

(
Ys,1(0, 0)− Ys,0(0, 0)

) .
Assumption 2 states that in the absence of role model visits to the school, average outcomes

in participating and non-participating schools would have followed parallel trends. Although this
assumption cannot be directly tested, it can be indirectly assessed by comparing the evolution
of mean outcomes in participating and non-participating schools in the pre-intervention period.

Proposition 2. Under Assumptions 1 and 2, ∆̂ is an unbiased estimator of the average spillover
effect, ∆:

E(∆̂) = ∆.

Proof. From the definition of the difference-in-differences estimator in Equation (A.10), we
have

E(∆̂) = E

 1
M1

∑
s∈S1

(
Ỹs,1 − Ys,0

)
− 1
M0

∑
s∈S0

(
Ys,1 − Ys,0

)
= E

 1
M1

∑
s∈S1

(
Ys,1(1, 0)− Ys,0(0, 0)

)− E

 1
M0

∑
s∈S0

(
Ys,1(0, 0)− Ys,0(0, 0)

)
= E

 1
M1

∑
s∈S1

(
Ys,1(1, 0)− Ys,0(0, 0)

)− E

 1
M1

∑
s∈S1

(
Ys,1(0, 0)− Ys,0(0, 0)

)
= E

 1
M1

∑
s∈S1

(
Ys,1(1, 0)− Ys,1(0, 0)

)
= ∆.

The second equality follows from Equation (A.8) and from Proposition 1, the third equality
follows from Assumption 2 (common trends between participating and non-participating schools),
while the last equality follows from Equation (A.6).

Empirical specification. In the context of our study, the spillover effects estimator (A.10)
can be conveniently implemented using a difference-in-differences regression specification. We
apply this estimator to investigate whether the classroom interventions affected the college
decisions of science track grade 12 students whose classes were not visited by a female role
model.

In our empirical application, we consider the four cohorts of grade 12 students that were
enrolled in the high schools of the Paris region in the year of the intervention (2015) and in the
three preceding years (2012, 2013 and 2014).

One complication is that the ‘For Girls in Science’ program was first implemented on a small
scale in 2014, i.e., one year before the evaluation was conducted. As a result, some of the schools
that participated in the program evaluation in 2015, as well as some of the schools that did not
participate in the evaluation, could have been visited by female role models in 2014. Although
we cannot precisely identify these schools, the contamination effect is likely to be small since
the interventions were carried out by a small number of role models and were not specifically
targeted at students enrolled in grade 10 and grade 12 (science track). Nonetheless, to ensure
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that our difference-in-differences estimates are not biased due to these prior interventions, we use
2012 as the reference year. The baseline differences between participating and non-participating
schools are therefore measured at a point in time in which the program was not in place.

Let Ys,t denote the average outcome of grade 12 students in school s and year t. For each
participating school s ∈ S1, we use Equation (A.9) to construct the ‘spillover-only’ mean
counterfactual outcome in 2015, which we denote by Ỹs,t. Our dependent variable, denoted by
Y ∗s,t, is then defined as follows:

Y ∗s,t =
{
Ỹs,t if s ∈ S1 and t = 2015
Ys,t otherwise

The spillover effects of classroom visits are then estimated using the following difference-in-
differences regression model:

Y ∗s,t = α + θs + θt +
2015∑

k=2013
βk · 1{s ∈ S1 and t = k}+ εs,t, (A.11)

where θs are school fixed effects and θt are year fixed effects (using 2012 as the reference
year); 1{s ∈ S1 and t = k} is a dummy variable that takes the value one if the observation
corresponds to a participating school observed in year k; and εs,t is the error term. Under the
common trend assumption, the coefficient β̂2015 identifies the average spillover effects among the
non-treated students in participating schools. The coefficients β̂2013 and β̂2014 provide an indirect
test of this assumption: if it holds, the evolution of mean outcomes between 2012 and 2014
(pre-intervention period) should be parallel between participating and non-participating schools,
and the coefficients on the pre-interventions ‘placebos’ should not be jointly significant.A.8

Selection of non-participating schools. To ensure that non-participating schools are as
similar as possible to the participating schools, we use a nearest neighbour matching procedure
(with replacement) on the estimated propensity score. We consider all public and private high
schools operating in the Paris region that had at least two science track grade 12 classes in
2015, as this restriction was used in our experimental design to select participating schools (see
Section 2 in the main text). We then estimate the probability that the school participated in the
experiment in 2015 given a vector of exogenous school characteristics Xst (measured every year
between 2012 and 2015) and a vector of the pre-intervention outcomes Yst (measured in 2012
and 2013) for which spillover effects are measured.A.9 We then match each participating school
with the non-participating school having the closest propensity score among the schools with
the same status (public or private) and located in the same education district (Paris, Créteil or
Versailles) as that of the participating school.

A.8Strictly speaking, the parallel trend assumption only requires the coefficient β2013 to be non-statistically
significant since, as explained above, the comparison between participating and non-participating schools in 2014
could be contaminated by the classroom interventions that were carried on a small scale that year. As shown
below, the results show that the parallel trend assumption also holds between 2013 and 2014, suggesting that
the contamination effects of these prior interventions are negligible, if any.

A.9The vector of exogenous school characteristics Xst includes the school’s education district (Paris, Créteil or
Versailles), whether it is public or private, and the following time-varying characteristics every year between 2012
and 2015: the number of students in grade 12 (science track), the fraction of female students and the fraction
of high-SES students. The vector of pre-intervention outcomes Yst in 2012 and 2013 includes the fraction of
science track grade 12 students who enrolled in a STEM program after graduating from high school, the fraction
who enrolled in a selective STEM program and the fraction who enrolled in a male-dominated STEM program
(computed separately by year and gender). We do not control for pre-intervention outcomes in 2014 to avoid any
contamination by classroom interventions that could have been carried out that year.
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Results. We use Equation (A.11) to estimate the spillover effects of classroom visits on the
college enrolment outcomes of grade 12 students in non-treated classes. The model is estimated
separately by gender and we consider the three main outcomes for which we document significant
direct effects of the interventions: enrolment in a STEM undergraduate program, enrolment in a
selective STEM program and enrolment in a male-dominated STEM program. The observations
are school-by-year averages weighted by school size. Standard errors are clustered at the school
level to account for serial correlation across years.

The results are reported in Table J2. Panel A shows that the non-participating schools
selected by the nearest-neighbour matching procedure are reasonably similar to the participating
schools in terms of the average college enrolment outcomes of female and male students in the
pre-intervention period 2012-2013.

The estimates from the DiD regression are reported in panel B. In all specifications, the
coefficients on (participating school × t=2013) and on (participating school × t=2014) are close
to zero and are neither individually nor jointly significant, which lends support to the assumption
of common trends between participating and non-participating schools. Overall, the results
provide no evidence of significant spillover effects from the classroom visits in participating
schools: for all considered outcomes, the coefficient β̂2015 on (participating school × t = 2015) is
close to zero and not statistically significant for both female and male students.

It should, however, be noted that although our estimates are relatively precise, we cannot
rule out small to moderate spillover effects. In the presence of positive spillovers, the treatment
effects reported in the main text would under-estimate the true direct effect of classroom visits,
since the ‘contamination’ of the control group would push the difference between treatment
and control classes towards zero. Denoting by Φ the average direct effect of the classroom
interventions and by ∆ (> 0) their average indirect effect (through spillovers), the treatment-
control difference in mean outcomes, denoted by β̂, estimates Φ−∆ instead of Φ. If we estimate
the spillover effects to be at most ∆̂UB, this implies that the size of spillover effects is at most
∆̂UB/(β̂ + ∆̂UB) of the size of the direct effect. When we consider the effects on the probability
that female students enrol in a selective STEM program, the comparison of treatment and
control classes yields an estimated direct effect of β̂ = 0.031 (see Table 6 in the main text,
column 2). Based on the results in column 2 of Table J2, the upper bound of the 95% confidence
interval for the spillover effects is estimated to be ∆̂UB = 0.017. Hence, in the case of selective
STEM enrolment, we cannot reject spillover effects that would be at most 35% of the size of the
‘true’ direct effect β̂ + ∆̂UB, which in this case would be of 4.8 percentage points. A similar
calculation for the spillover effects on male-dominated STEM enrolment yields an upper bound
of ∆̂UB = 0.025. Since the estimated direct effect is β̂ = 0.034, we cannot reject spillover effects
of at most 42% of the size of the ‘true’ direct effect β̂ + ∆̂UB, which in that case would be of 5.9
percentage points.
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Figure J1 – Spillover Effects of Role Model Interventions: Empirical Strategy
Notes: This figure illustrates the difference-in-differences strategy we implement to estimate the spillover effects of role model
interventions for students who were enrolled in participating schools but whose classes were not assigned to the treatment group.
These students are either in the classes that were not selected by school principals to participate in the program evaluation or in the
participating classes that were randomly assigned to the control group. Our approach consists in comparing the evolution of mean
student outcomes (at the school level) in participating (s ∈ S1) and non-participating schools (s ∈ S0), between the year before
the intervention (T = 0) and the year of the intervention (T = 1). For T = 1, we use a weighted average of non-treated classes in
each participating school to estimate the counterfactual ‘spillover-only’ outcome that would have been observed if all the students
from that school had only been exposed to the spillover effects of classroom interventions, without being directly exposed to a
female role model. Average spillover effects are then estimated by comparing this ‘spillover-only’ counterfactual to a ‘no-treatment’
counterfactual. Under the assumption that absent treatment, mean outcomes in participating school would have followed the same
evolution as in non-participating schools, the average spillover effects can be estimated by comparing the evolution between T = 0
and T = 1 of the mean outcome of students in participating schools (using the ‘spillover-only’ counterfactual for period 1) with the
corresponding evolution in non-participating schools.

A-45



Table J1 – Scope for Spillover Effects: Summary Statistics from the Student Survey

Within class

All Boys Girls Difference
(3)−(2)

p-value
of diff.

(1) (2) (3) (4) (5)

Panel A. Grade 10

Treatment Group

Discussed the classroom visit?
with classmates 0.580 0.498 0.656 0.145 0.000
with other students from the school 0.240 0.200 0.277 0.072 0.000
with other students outside the school 0.203 0.155 0.247 0.098 0.000

Exposed to other science outreach program?
this school year 0.128 0.138 0.120 −0.011 0.297
in the past 0.182 0.218 0.149 −0.059 0.000

N 6,245 2,989 3,256

Control Group

Heard of classroom visits in other classes?
Yes, definitely 0.018 0.017 0.020 0.001 0.862
Yes, vaguely 0.122 0.117 0.127 0.009 0.244
No 0.859 0.866 0.853 −0.010 0.271

Exposed to programs about science or jobs in science?
this school year 0.146 0.144 0.148 0.011 0.283
before the end of this school year 0.052 0.059 0.047 −0.014 0.019
in the past 0.322 0.309 0.333 0.025 0.066

N 5,981 2,762 3,219

Panel B. Grade 12 (science track)

Treatment Group

Discussed the classroom visit?
with classmates 0.629 0.556 0.705 0.131 0.000
with other students from the school 0.269 0.206 0.334 0.114 0.000
with other students outside the school 0.202 0.133 0.275 0.136 0.000

Exposed to other science outreach programs?
this school year 0.202 0.200 0.204 0.005 0.797
in the past 0.324 0.349 0.299 −0.053 0.025

N 2,642 1,350 1,292

Control Group

Heard of classroom visit in other classes?
Yes, definitely 0.047 0.049 0.045 −0.004 0.645
Yes, vaguely 0.292 0.275 0.308 0.037 0.048
No 0.661 0.676 0.646 −0.033 0.085

Exposed to programs about science or jobs in science?
this school year 0.287 0.291 0.284 0.011 0.515
before the end of this school year 0.096 0.104 0.088 −0.009 0.403
in the past 0.488 0.461 0.514 0.054 0.028

N 2,594 1,286 1,308

Notes: The summary statistics in this table are computed from the post-treatment student survey administered in all participating
classes between one and six months after the role model interventions. Columns 1, 2 and 3 report average values for all respondents
and for boys and girls, respectively, separately by grade level and treatment assignment. The within-class difference in the responses
of girls and boys, reported in column 4, is obtained from a regression of the variable of interest on a female dummy, controlling for
class fixed effects and clustering standard errors at the school level. The associated p-value is reported in column 5.
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Table J2 – Difference-in-Differences Estimates of the Spillover Effects of Role Model Interven-
tions on College Enrolment Outcomes, Grade 12 Students, Years 2012–2015

Grade 12 (science track) students

Girls Boys

Underg. Selective Male-dom. Underg. Selective Male-dom.
STEM STEM STEM STEM STEM STEM
(1) (2) (3) (4) (5) (6)

Panel A. Baseline means (2012–2013)

Participating schools
Mean 0.274 0.145 0.163 0.489 0.265 0.409
Number of schools 88 88 88 87 87 87
Average number of grade 12 students 107 107 107 108 108 108

Non-participating schools
Mean 0.265 0.141 0.157 0.473 0.257 0.395
Number of schools 62 62 62 61 61 61
Average number of grade 12 students 99 99 99 99 99 99

Panel B. Regression estimates

Pre-trends: participating versus non-
particip. schools (relative to 2012)

β̂2013: Particip. school × (t=2013) 0.006 −0.001 0.013 0.003 −0.023 −0.015
(0.017) (0.014) (0.014) (0.022) (0.017) (0.021)

β̂2014: Particip. school × (t=2014) 0.015 0.001 0.014 0.002 −0.020 −0.017
(0.019) (0.014) (0.014) (0.018) (0.015) (0.017)

Spillover effects: non-treated students

β̂2015: Particip. school × (t=2015) −0.011 −0.014 −0.009 0.008 −0.011 −0.018
(0.021) (0.016) (0.017) (0.023) (0.019) (0.024)

Year fixed effects (omitted: 2012) Yes Yes Yes Yes Yes Yes
School fixed effects Yes Yes Yes Yes Yes Yes

Number of observations (school×year) 601 601 601 593 593 593

Test: common trends (β̂2013=β̂2014=0)
F -statistic 0.33 0.01 0.67 0.01 1.22 0.51
p-value 0.72 0.99 0.52 0.99 0.30 0.60

Notes: This table reports the estimated spillover effects of the role model interventions for students in the non-treated classes of
the schools that participated in the program evaluation in 2015, separately for male and female students in grade 12 (science track).
The outcomes we consider are those for which we document significant direct effects of the interventions, i.e., enrolment in a STEM
undergraduate program, enrolment in a selective STEM program and enrolment in a male-dominated STEM program. The results
are based on a difference-in-differences specification that compares the outcomes of students in participating and non-participating
schools over the period 2012 to 2015, in which the first three years correspond to the pre-intervention period. Non-participating
schools are selected among high schools in the Paris region using a nearest neighbour matching procedure (with replacement)
on the estimated propensity score. The baseline mean outcomes in participating and non-participating over the pre-intervention
period 2012-2013 are reported in panel A. The regression estimates are reported in panel B. In all specifications, the dependent
variable is the school-by-year average outcome of non-treated students. For non-participating schools throughout the period and
for participating schools in the pre-intervention period, this mean outcome is simply the average outcome of all students enrolled
in grade 12 (science track) in the considered year. For participating schools in 2015 (the year of the intervention), this variable is
computed as the weighted average outcome of students in the non-participating classes and in the participating classes that were
randomly assigned to the control group, with respective weights equal to the share of participating and of non-participating classes
(i.e., treatment and control) in the school. The dependent variable is regressed on school fixed effects, year fixed effects (using 2012
as the reference year) and three dummy variables that take the value one if the observation corresponds to a participating school
observed in 2013, 2014 and 2015, respectively. The coefficients on the first two dummy variables capture the differential pre-trends
between participating and non-participating schools, whereas the coefficient on the third dummy variable measures the spillover
effects of role model interventions. All regressions are weighted by school size. Standard errors (in parentheses) are clustered at
the school level. The number of schools being used in the regressions for female and male students differs because one of the
participating schools and one of the non-participating schools are female-only. *** p < 0.01, ** p < 0.05, * p < 0.1.
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K Heterogeneous Treatment Effects: Subgroup Analysis
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Figure K1 – Grade 12 Students: Enrolment in Selective and Male-Dominated STEM Under-
graduate Programs, by Gender and Role Model Background
Notes: The figure shows the fraction of grade 12 (science track) students enrolled in selective (panel A) and in male-dominated
(panel B) STEM undergraduate programs after graduating from high school, separately for girls and boys. The filled bars indicate
the baseline enrolment rates among students in the control group, both overall and separately by type of female role model who
visited the classroom (researcher or professional). The solid dots show the estimated treatment effects (added to the control group
means), with 95% confidence intervals denoted by vertical capped bars. The local average treatment effects are estimated from a
regression of the outcome of interest on interactions between a classroom visit indicator and two indicators for role model type,
using treatment assignment (interacted with role model type) as an instrument for treatment receipt. The regression includes
school fixed effects (to account for the fact that randomisation was stratified by school) and the student characteristics listed in
Table 1. Standard errors are adjusted for clustering at the unit of randomisation (class).

A. Enrolment in selective STEM

0%

20%

40%

60%

80%

All Q1 Q2 Q3 Q4
Quartile of maths performance

Girls

0%

20%

40%

60%

80%

All Q1 Q2 Q3 Q4
Quartile of maths performance

Boys

Control group mean Control group mean + treatment effect 95% CI

B. Enrolment in male-dominated STEM
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Figure K2 – Grade 12 Students: Enrolment in Selective and Male-Dominated STEM Under-
graduate Programs, by Gender and Quartiles of Baccalauréat Performance in Maths
Notes: The figure shows the fraction of grade 12 (science track) students enrolled in selective (panel A) and in male-dominated
(panel B) STEM undergraduate programs in the year following high school graduation, separately for girls and boys. The filled bars
indicate the baseline enrolment rates among students in the control group, both overall and separately by quartile of baccalauréat
performance in maths. The solid circles show the estimated treatment effects (added to the control group means), with 95%
confidence intervals denoted by vertical capped bars. The local average treatment effects are estimated from a regression of the
outcome of interest on interactions between a classroom visit indicator and the quartile of maths performance, using treatment
assignment (interacted with the quartiles of maths performance) as an instrument for treatment receipt. The regression includes
school fixed effects (to account for the fact that randomisation was stratified by school) and the student characteristics listed in
Table 1. Standard errors are adjusted for clustering at the unit of randomisation (class).
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Table K1 – Heterogeneous Treatment Effects on Grade 10 Students’ Outcomes, by Role Model
Background

Girls Boys
Role model background Role model background

Resear-
chers

Profes-
sionals

p-value
of diff.

[q-value]

Resear-
chers

Profes-
sionals

p-value
of diff.

[q-value]
(1) (2) (3) (4) (5) (6)

Panel A. Enrolment Outcomes

Grade 11: science track 0.005 −0.007 0.557 −0.028 0.012 0.102
(0.015) (0.015) [0.956] (0.018) (0.017) [0.307]

N 3,180 4,061 2,879 3,580

Panel B. Student perceptions

Positive perceptions of science-related careers (index) 0.225∗∗∗ 0.262∗∗∗ 0.474 0.119∗∗∗ 0.197∗∗∗ 0.152
(0.038) (0.036) [0.956] (0.043) (0.033) [0.342]

More men in science-related jobs 0.146∗∗∗ 0.160∗∗∗ 0.562 0.166∗∗∗ 0.172∗∗∗ 0.809
(0.018) (0.017) [0.956] (0.020) (0.019) [0.810]

Equal gender aptitude for maths (index) 0.056 0.155∗∗∗ 0.035 0.060 0.208∗∗∗ 0.015
(0.035) (0.033) [0.317] (0.048) (0.037) [0.080]

Women do not really like science 0.053∗∗∗ 0.059∗∗∗ 0.774 0.090∗∗∗ 0.111∗∗∗ 0.405
(0.017) (0.014) [0.956] (0.018) (0.018) [0.521]

W face discrimination in science-related jobs 0.123∗∗∗ 0.128∗∗∗ 0.851 0.136∗∗∗ 0.167∗∗∗ 0.244
(0.020) (0.016) [0.956] (0.021) (0.017) [0.367]

Taste for science subjects (index) 0.009 −0.067 0.213 −0.092∗∗ 0.036 0.018
(0.045) (0.042) [0.956] (0.039) (0.036) [0.080]

Self-concept in maths (index) 0.005 −0.005 0.864 0.010 0.051 0.473
(0.045) (0.037) [0.956] (0.041) (0.039) [0.533]

Science-related career aspirations (index) 0.004 0.007 0.956 −0.030 0.032 0.244
(0.043) (0.038) [0.956] (0.039) (0.037) [0.367]

N 2,933 3,542 2,608 3,143

Notes: This table reports estimates of the treatment effects of the role model interventions on the outcomes of grade 10 students,
separately by gender and by background of the female role model who visited the classroom (professional or researcher). Each
row corresponds to a different linear regression performed separately by gender, with the dependent variable listed on the left.
Columns 1 and 2 (for girls) and columns 4 and 5 (for boys) report the LATE estimates for students whose class was visited by
a researcher or a professional, respectively. They are obtained from a regression of the outcome of interest on the interaction
between a classroom visit indicator and indicators for the role model being either a researcher or a professional, using treatment
assignment (interacted with the role model background indicator) as an instrument for treatment receipt. The regression includes
school fixed effects (to account for the fact that randomisation was stratified by school) and the student characteristics listed in
Table 1. Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomisation (class). Columns 3 and 6
report both the cluster-robust model-based p-value for the difference between the treatment effect estimates for students visited by
a professional versus a researcher and, in square brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using the
False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al.
(2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table K2 – Heterogeneous Treatment Effects on Grade 10 Students’ Outcomes, by Maths
Performance

Girls Boys
Performance in maths Performance in maths

Below
median

Above
median

p-value
of diff.

[q-value]

Below
median

Above
median

p-value
of diff.

[q-value]
(1) (2) (3) (4) (5) (6)

Panel A. Enrolment outcomes

Grade 11: science track −0.007 0.002 0.682 −0.017 0.006 0.364
(0.014) (0.017) [0.897] (0.019) (0.016) [0.469]

N 3,584 3,484 3,221 3,075

Panel B. Student perceptions

Positive perceptions of science-related careers (index) 0.226∗∗∗ 0.262∗∗∗ 0.535 0.180∗∗∗ 0.146∗∗∗ 0.559
(0.043) (0.036) [0.897] (0.041) (0.039) [0.630]

More men in science-related jobs 0.167∗∗∗ 0.142∗∗∗ 0.310 0.188∗∗∗ 0.152∗∗∗ 0.144
(0.019) (0.017) [0.699] (0.020) (0.017) [0.325]

Equal gender aptitude for maths (index) 0.060 0.159∗∗∗ 0.047 0.105∗∗ 0.178∗∗∗ 0.242
(0.037) (0.033) [0.211] (0.044) (0.042) [0.363]

Women do not really like science 0.058∗∗∗ 0.054∗∗∗ 0.842 0.107∗∗∗ 0.096∗∗∗ 0.692
(0.016) (0.014) [0.897] (0.019) (0.017) [0.692]

W face discrimination in science-related jobs 0.170∗∗∗ 0.084∗∗∗ 0.001 0.177∗∗∗ 0.131∗∗∗ 0.098
(0.019) (0.017) [0.008] (0.020) (0.019) [0.325]

Taste for science subjects (index) −0.036 −0.029 0.896 −0.071∗ 0.029 0.032
(0.043) (0.038) [0.897] (0.037) (0.033) [0.287]

Self-concept in maths (index) −0.007 0.005 0.813 −0.006 0.070∗ 0.122
(0.038) (0.037) [0.897] (0.039) (0.036) [0.325]

Science-related career aspirations (index) −0.032 0.040 0.186 −0.030 0.037 0.216
(0.040) (0.039) [0.559] (0.041) (0.035) [0.363]

N 3,142 3,191 2,825 2,794

Notes: This table reports estimates of the treatment effects of the role model interventions on grade 10 students’ outcomes,
separately by gender and performance in maths. Each row corresponds to a different linear regression performed separately by
gender, with the dependent variable listed on the left. Students’ performance in maths is measured from the grades obtained on
the final maths exam of the diplôme national du Brevet at the end of middle school. Columns 1 and 2 (for girls) and columns 4
and 5 (for boys) report the LATE estimates for students below and above the median level of maths performance, respectively.
They are obtained from a regression of the outcome of interest on the interaction between a classroom visit indicator and indicators
for the student being below or above the median level of performance in maths, using treatment assignment (interacted with the
maths performance dummies) as an instrument for treatment receipt. The regression includes school fixed effects (to account for
the fact that randomisation was stratified by school) and the student characteristics listed in Table 1. Standard errors (shown in
parentheses) are adjusted for clustering at the unit of randomisation (class). Columns 3 and 6 report both the cluster-robust model-
based p-value for the difference between the treatment effect estimates for students above versus below the median performance
in maths and, in square brackets, the p-value (q-value) adjusted for multiple hypothesis testing, using the False Discovery Rate
(FDR) control method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described
in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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L Heterogeneous Treatment Effects: Machine Learning
Methods

This appendix provides additional information on the machine learning methods we use to
(i) describe the heterogeneity in treatment effects and (ii) estimate the correlation between
treatment effects on different outcomes. Section L.1 gives an overview of the generic approach
developed by Chernozhukov et al. (2018) to estimate, and make inference about, key features of
heterogeneous effects in randomised experiments. Section L.2 provides further details on how
we implement this method in the context of our study. Section L.3 explains how we extend this
method to estimate the correlation between treatment effects. Finally, Section L.4 provides a
detailed discussion of the results.

L.1 Description of the Method of Chernozhukov et al. (2018)
Motivation. Reporting treatment effects for various subgroups of participants opens the
possibility of overfitting due to the large number of potential sample splits. To address this
issue, one option is to specify a certain number of groups ex ante in a pre-analysis plan and
to tie one’s hands to analyse treatment effect heterogeneity only across these groups, while
correcting standard errors for multiple testing.

This approach, however, has the drawback of restricting the analysis to a small number of
groups and bears the risk of missing important sources of heterogeneity. Machine Learning (ML)
methods provide an attractive alternative to explore treatment effect heterogeneity in a more
comprehensive manner (see Athey and Imbens, 2017, for a review). We adopt the approach
developed by Chernozhukov et al. (2018) as it appears well suited for our objective. First, this
approach makes it possible to conduct valid statistical inference on several objects of interest,
such as average treatment effects by heterogeneity groups or the characteristics of individuals
with large and small predicted treatment effects. Second, it can be implemented using any ML
algorithm, allowing us to test algorithms of different degrees of sophistication, ranging from
simple linear models to neural networks. Third, as described in Section L.3, this approach can
be extended to estimate the correlation between treatment effects on different outcomes.

Concepts and estimation procedure. Consider an outcome variable denoted by Y . Let
Y (1) and Y (0) denote the potential outcomes of a student when her class is and is not visited
by a role model, respectively. Let Z be a vector of covariates that characterise the student and
the role model who visited the class. The conditional average treatment effect (CATE), denoted
by s0(Z), is defined as follows:

s0(Z) ≡ E[Y (1)− Y (0)|Z].

The approach developed by Chernozhukov et al. (2018) uses the following procedure:

1. Randomly split the data into a training sample and an estimation sample of equal size
(using stratified splitting to balance the proportions of treated and control units in each
subsample).

2. Use the training sample to predict the CATE using various ML algorithms. Obtain a ML
predictor proxy predictor S(Z).

3. Estimate and perform inference on features of the CATE on the estimation sample (see
the definition of the features below).

4. Repeat steps 1 to 3 n times and keep track of the estimates obtained for each feature as
well as their associated p-values and 95% confidence intervals.
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5. For each feature, compute the final estimate as the median of the n available estimates.
Compute the p-value for this final estimate as the median of the n available p-values
multiplied by two. Compute a 90% confidence interval for the final estimate as the median
of the n 95% confidence intervals.

Three features of the CATE. The CATE s0(Z) is a function for which it is difficult to
obtain uniformly valid inference without making strong assumptions. It is, however, possible to
obtain inference results on specific features of the CATE, such as the expectation of s0(Z) for
heterogeneity groups induced by the ML proxy predictor S(Z).

The Best Linear Predictor (BLP). The first feature of the CATE s0(Z) is its Best Linear
Predictor (BLP) based on the ML proxy predictor S(Z). It is formally defined as follows:

BLP[s0(Z)|S(Z)] ≡ arg min
f(Z)∈Span(1,S(Z))

E[s0(Z)− f(Z)]2.

Chernozhukov et al. (2018) show that one can identify the BLP of s0(Z) given S(Z), as well
as the projection parameters β1 = E[s0(Z)] and β2 = Cov(s0(Z), S(Z))/Var(S(Z)), using the
following weighted linear projection:

Y = α0 +αB(Z)+β1(T −p(Z))+β2(T −p(Z))(S(Z)−E[S(Z)])+ ε, E[w(Z)εX] = 0, (A.12)

where T is the treatment group indicator; B(Z) is a ML predictor of Y (0) obtained from the
training sample; p(Z) is the propensity score (i.e., the conditional probability of being assigned
to the treatment group); w(Z) ≡ {p(Z)(1− p(Z))}−1 is the weight; and X is the vector of all
regressors (X ≡ [1, B(Z), T − p(Z), (T − p(Z))(S(Z)− E[S(Z)])]).

Equation (A.12) can be estimated using weighted least squares, after replacing E[S(Z)] by
its empirical expectation with respect to the estimation sample.

The coefficient β2 is informative about the correlation between the true CATE, s0(Z), and
the predicted CATE, S(Z). It is equal to one if the prediction is perfect and to zero if S(Z)
has no predictive power or if there is no treatment effect heterogeneity, that is if s0(Z) = s.
The main purpose of estimating β2 is to check if the trained ML algorithms are able to detect
heterogeneity.A.10

Sorted Group Average Treatment Effects (GATEs). The ML predictor of the CATE, S(Z), can
be used to identify groups of individuals with small and large predicted treatment effects. In our
setting, this is achieved by sorting students in the estimation sample (indexed by i) according to
S(Zi), the predicted value of their treatment effect given their observable characteristics. We con-
sider the top and bottom quintiles of S(Zi) and provide ITT estimates for both groups of students.

Classification Analysis (CLAN). The third feature consists in comparing the distribution of
observable characteristics of students with the smallest and largest predicted treatment effects.

The three above features—the BLP, the GATEs and the CLAN—all rely on the existence of a
ML predictor S(Z). The BLP provides a means to check if S(Z) detects significant heterogeneity
in treatment effects. If it fails to do so, the GATEs and CLAN are not particularly relevant for
the analysis, as these features would provide a description of students for whom the predicted
treatment effect only differs from the unobserved CATE because of a poor-quality prediction.
A.10The intuition behind the formula for β2 can be grasped by noting that Equation (A.12) is a variant of the
simpler equation Y = α0 +αB(Z) +β′2T ·S(Z) + ε. This simpler model implies that s0(Z) = β′2S(Z), suggesting
that β′2 provides an estimate for how close the machine learning predictor S(Z) is to the CATE s0(Z).
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L.2 Implementation of the Method
This section provides details on the implementation of the method of Chernozhukov et al. (2018)
in our empirical setting.

Population of interest. In the main text, we focus on the sample of girls in grade 12 (science
track), since this group of students is the only one for which we find significant treatment effects
on enrolment outcomes. We identify which of these female students were most affected by the
program and investigate the messages to which they were particularly responsive. Results for
boys in grade 12 can be found in Table L2.

Sample splits and iterations. We perform n = 100 iterations of the procedure described in
the previous section, which consists in (i) splitting the sample into a training and an estimation
subsample of equal size; (ii) predicting the CATE on the training sample using ML methods;
and (iii) estimating the three features of the CATE (BLP, GATEs and CLAN) in the estimation
sample.A.11 The sample splits are stratified by class, which is the randomisation unit in our
experimental setting: half of the girls in each grade 12 class are randomly assigned to the
training sample, while the other half are assigned to the estimation sample.

Propensity score. For each student, we estimate the probability that his or her class was
randomly assigned to the treatment group. This propensity score p(Z) is equal to one half in
most cases, since the treatment was generally assigned to two grade 10 classes out of four and
to one grade 12 class out of two among the classes that were selected by the school principals.
In other cases, the propensity score is not exactly one half.

Machine learning methods. We consider five alternative machine learning methods to
estimate the proxy predictor S(Z): Elastic Net, Random Forest, Boosted Trees, Neural Network
with feature extraction and a simple linear model estimated via OLS. These methods are
implemented in R using the caret package written by Kuhn (2008), while the general approach
of Chernozhukov et al. (2018) is implemented by adapting the codes made available online by
the authors (Demirer, 2018).

For each machine learning method, the predictor S(Z) is constructed in several steps. First,
the model is fitted separately on the treatment and control group students in the training
sample. The two fitted models are then applied to the estimation sample to obtain the predicted
outcomes Ŷi(0) and Ŷi(1) for each individual. Finally, S(Z) is obtained by taking the difference
between the two predictions.A.12

For each outcome, we estimate the BLP of the CATE based on the ML method whose
associated predictor S(Z) has the highest correlation with the CATE s0(Z) in the estimation
sample. In practice, the best ML method for the BLP targeting of the CATE is chosen in the
estimation sample by maximising the following performance measure:

Λ ≡ |β2|2Var(S(Z)) = Corr2(s0(Z), S(Z))Var(s0(Z)).
A.11The medians of the estimated features of the CATE change little when we repeat the entire procedure using
a different seed number to randomly split the data into the training and estimation samples, suggesting that
100 iterations are sufficient for the purpose of empirical convergence.
A.12Predicting outcomes for treatment and control individuals separately before taking the difference, as we do
here, may not be the most efficient approach to predict the CATE at finite distance. In our setting, however,
alternative ML methods directly designed to detect heterogeneity in treatment effects, such as the causal forests
proposed by Wager and Athey (2018), did not improve performance. We therefore decided not to rely on these
ML methods for the main analysis.
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The above equation shows that maximising Λ is equivalent to maximising the correlation between
the ML predictor S(Z) and the CATE s0(Z).

The best method for the GATEs targeting of the CATE, and hence also for the CLAN, is
selected based on the following performance measure:

Λ ≡ E
(

K∑
k=1

γk1(S ∈ Ik)
)2

,

where K is the number of (equal-sized) heterogeneity groups, Ik = [lk−1, lk) are non-overlapping
intervals that divide the support of S into regions [lk−1, lk) with equal or unequal masses, and
γk is the GATE for heterogeneity group k. In practice, both performance measures lead to a
similar ranking of ML methods and the methods eventually selected to produce the BLP, the
GATEs/CLAN are almost always the same.

Predictors. The covariates we use to train the ML methods are three indicators for the
education districts of Paris, Créteil and Versailles, four indicators for students’ socio-economic
background (high SES, medium-high SES, medium-low SES and low SES), their age, their
overall percentile rank in the baccalauréat exam, their percentile ranks in the French and maths
tests of the exam, and a vector of 56 role model fixed effects.A.13 Our motivation for including
only a few pre-determined covariates in addition to the role model indicators is that we are
mostly interested in the treatment effect heterogeneity that arises from the 56 role models
(which can be seen as different treatment arms).

L.3 Correlation Between Treatment Effects on Different Outcomes
In this section, we explain how the method of Chernozhukov et al. (2018) can be extended to
estimate the correlation between the treatment effects on different outcomes. We show that a
set of four linear projections of the CATEs for two outcomes Y A and Y B on the ML predictors
of the CATEs for these outcomes can be combined to estimate the correlation between the two
CATEs under a natural assumption about prediction errors. This approach offers a promising
alternative to other methods, such as causal mediation analysis, that are commonly used in
the medical and social sciences literature to identify what factors may be part of the causal
pathway between an intervention and an outcome. Indeed, our proposed method does not rely
on strong identifying assumptions and can be used in any experimental setting, as long as there
is a sufficiently large number of observed exogenous covariates.

A new feature: projecting a CATE on the predictor of another CATE. Let Y A

and Y B denote two distinct outcomes and let sA0 (Z) and sB0 (Z) denote the true CATEs of
a treatment T on these outcomes, given a vector of exogenous covariates Z characterising
the observational units (indexed by i). Let ρA,B|Z ≡ Corr(sA0 (Z), sB0 (Z)) denote the bivariate
correlation between the CATEs on Y A and Y B and consider the following weighted linear
projection:

Y A = α0 + αBB(Z) + β1(T − p(Z)) + β2(T − p(Z))(SB(Z)− E[SB(Z)]) + ε, E[w(Z)εX] = 0,
(A.13)

where BB(Z) and SB(Z) are a ML predictor of outcome Y B for individuals in the control group
and a ML predictor of the CATE on Y B, respectively. Both ML predictors are trained using a
A.13Each student in the control group is assigned to the role model who visited his or her high school to ensure
that the role model indicators are defined for students in both the treatment and control groups. Moreover, to
account for the fact that some grade 12 students have missing baccalauréat grades (less than 2%), we include
indicators for missing grades as controls.
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separate independent sample and are taken as given functions in Equation (A.13). The functions
p(Z) and w(Z) and the vector X have the same meaning as in Equation (A.12). Equation (A.13)
is estimated using weighted least squares, after replacing E[SB(Z)] by its empirical expectation
with respect to the estimation sample.

Adapting the BLP equation of Chernozhukov et al. (2018) (Equation 2.1 p. 8) by replacing
the ML predictor of the CATE on outcome Y A by the ML predictor of the CATE for outcome
Y B, we directly obtain that Equation (A.13) identifies

β
A|B
2 = Cov(sA0 (Z), SB(Z))/Var(SB(Z)).

The sign of βA|B2 is informative of the extent to which the CATE on Y A is positively or negatively
correlated with the CATE on Y B. To show this formally, we denote by ηB the approximation
error in SB(Z) and we write SB(Z) = sB0 (Z) + ηB. Assuming that ηB is independent of sA0 (Z),
we get that βA|B2 = Cov(sA0 (Z), sB0 (Z))/Var(SB(Z)), which implies that βA|B2 and ρA,B|Z have
the same sign.

Combining BLPs to recover the correlation between treatment effects. For any pair
of indices (k, l) ∈ {(A,A), (B,B), (A,B), (B,A)}, we can identify

β
k|l
2 = Cov(sk0(Z), Sl(Z))/Var(Sl(Z))

from the BLP of sk0(Z) on Sl(Z). Writing SA(Z) = sA0 (Z) + ηA, SB(Z) = sB0 (Z) + ηB, and
assuming that the prediction errors ηA and ηB are independent of both the predicted functions
sA0 (Z) and sB0 (Z) in the estimation sample,A.14 we can write

β
k|l
2 = Cov(sk0(Z), sl0(Z))/(Var(sl0(Z)) + Var(ηl(Z))).

Combining the formulas for the four different possible BLPs, we obtain the following expression:

ρ2
A,B|Z = β

A|B
2 β

B|A
2

β
B|B
2 β

A|A
2

,

which implies that the correlation ρA,B|Z is identified as

ρA,B|Z = Sign(βA|B2 )

√
β
A|B
2 β

B|A
2√

β
B|B
2

√
β
A|A
2

. (A.14)

Practical implementation. We use the method of Chernozhukov et al. (2018) to estimate
the four heterogeneity loading parameters βA|A2 , βB|B2 , βA|B2 and β

B|A
2 . At each iteration of

the data-splitting process, the bivariate correlation ρA,B|Z is estimated by plugging the four
parameter estimates into Equation (A.14). In theory, βA|A2 and βB|B2 should both be positive,
while βA|B2 and βB|A2 should have the sign of ρA,B|Z in each iteration of the data-splitting process.
However, it can happen that the estimates β̂A|A2 , β̂B|B2 , β̂A|B2 and β̂

B|A
2 do not satisfy these

conditions due to estimation error, in particular when the predictors SA(Z) and SB(Z) are very
A.14While it is not possible to prove that the out-of-sample prediction error of a ML predictor is independent from
the predicted outcome for any predictor, this assumption seems reasonable when using efficient ML algorithms
such as those considered in this paper. As suggestive evidence, we have checked in Monte Carlo simulations that
this assumption holds for a large set of simulated functions of Z, which are generated manually and predicted
on subsamples of our data. We further checked that the correlation ρA,B|Z is successfully recovered for various
data-generating processes using the formula in Equation (A.14).
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noisy. In such cases, we do not estimate ρA,B|Z and discard the corresponding iteration of the
data-splitting procedure. We iterate until we reach a number of 100 iterations for which ρ̂A,B|Z
can be computed, so that our final estimates are medians computed over an identical number of
iterations.A.15

The estimates based on Equation (A.14) can become very large (well above one in absolute
value) when the estimates of β̂A|A2 or β̂B|B2 are close to 0, which can occur when either or both
of the predictors SA(Z) and SB(Z) are noisy. Reassuringly, we show in Table L7 that the
correlation estimates ρ̂A,B|Z are hardly affected when we exclude data splits that yield a poor
ML prediction of the CATEs on outcomes Y A or Y B, by using only the first 100 iterations of
the data-splitting process for which the estimates of the heterogeneity loading parameters β̂A|A2
and β̂B|B2 are above a minimum threshold t.

In the absence of a closed-form formula for the standard error of ρ̂A,B|Z , we estimate its
95% confidence interval as follows.A.16 At each iteration m of the data-splitting process, we
compute ρ̂(m)

A,B|Z (indexed by m) in the estimation sample. When ρ̂(m)
A,B|Z can be computed, we

estimate its 97.5% confidence interval using a clustered bootstrap procedure, which accounts for
the clustered nature of the treatment assignment (at the class level). This procedure consists in
creating B replications of the estimation sample m by drawing with replacement N (m)

c female
students from each grade 12 class c, where N (m)

c is the number of female students from class c in
the estimation sample m, and computing ρA,B|Z for this bootstrap sample. For each estimation
sample m, this operation is repeated 6,000 times to estimate the 97.5% confidence interval of
ρ̂

(m)
A,B|Z using the bootstrap percentile confidence interval method (Davison and Hinkley, 1997,

chap. 5).A.17 The 95% confidence interval for ρ̂A,B|Z is then computed as the median of the
97.5% confidence intervals over the first 100 iterations for which ρ̂(m)

A,B|Z could be computed—the
price of the splitting uncertainty being reflected in the discounting of the confidence level from
1− α to 1− 2α.

L.4 Detailed Discussion of the Results
Heterogeneous treatment effects on enrolment outcomes. We use the procedure of
Chernozhukov et al. (2018) described in Section L.1 to estimate the different features of the
CATE on enrolment in selective or male-dominated STEM programs for girls in grade 12.

The machine learning results for girls in grade 12 are reported in Table L1. In panel A, the
estimated ATEs of the interventions on grade 12 girls’ enrolment in selective or male-dominated
STEM are very close to those reported in Table 6 in the main text by virtue of the randomisation
of the sample splits. Turning to heterogeneity, the coefficients on the HET parameter indicate
that the ML predictors are strongly and significantly correlated with the CATE on enrolment in
selective STEM but not in male-dominated STEM.

Estimates of the sorted group average treatment effects (GATEs) for the top and bottom
quintiles of the predicted treatment effects S(Z) are reported in panel B. They confirm the
considerable heterogeneity of treatment effects on selective STEM enrolment among grade 12
girls, GATEs ranging from a small negative effect in the bottom 20% to a large and significant
13.9 percentage point effect in the top 20%. The lesser heterogeneity in the effects on enrolment
in male-dominated STEM is also confirmed, with no statistically significant difference between
the top and bottom quintiles of treatment effects.
A.15For each pair of outcomes (Y A, Y B), Table L6 indicates the proportion of random data splits for which the
correlation between CATEs could be computed.
A.16We report confidence intervals rather than p-values because the former are highly skewed, implying that the
p-values obtained from bootstrap under normality assumptions are misleading.
A.17The 97.5% confidence interval of ρ̂(m)

A,B|Z is estimated using only the bootstrap samples for which ρ̂A,B|Z can
be computed.
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Panel C describes the characteristics of the 20% most and least affected students (CLAN).
The main takeaway is that the ML agnostic approach strongly confirms that the treatment
effects on selective STEM enrolment are greater for high-achieving girls in maths and for those
who were exposed to a professional rather than a researcher role model. Between the 20% most
and least affected female students, the average gap in maths performance rank is as much as
63 percentile ranks; the difference in the probability that the class was visited by a professional
is 14.8 percentage points. The results are qualitatively similar for enrolment in male-dominated
STEM, but the differences between groups are smaller, which is consistent with the previous
finding of less heterogeneous treatment effects for this outcome.

The results in panel C disclose heterogeneous effects along other dimensions. The 20% of
girls with the largest treatment effects on selective STEM enrolment perform significantly better
in French and are from higher socioeconomic backgrounds, compared with the least affected 20%.
They are also less likely to have been exposed to role models who have children or who graduated
in a male-dominated STEM field (maths, physics, engineering), and more likely to have been
exposed to role models who participated in the FGiS program the year before. However, the
fact that these characteristics are correlated both with students’ maths performance and with
the role model being either a professional or a researcher makes it difficult to determine their
specific contribution to treatment effect heterogeneity.

Heterogeneous treatment effects on potential channels. The main results of the ML
approach are reported in Table L3. For each potential channel, we compare the characteristics
of students in the top and bottom quintiles of predicted treatment effects. We focus on the
two main sources of heterogeneity in the effects on enrolment in selective STEM, i.e., student
performance in maths and exposure to a role model with a professional background.A.18

The first key finding is that professionals and researchers were equally effective in debunking
stereotypes on gender differences in maths aptitude, while they reinforced students’ perceptions
that ‘women do not really like science’ and that ‘women face discrimination in science-related
jobs’ to a comparable extent. These results suggest that the ‘gender debiasing’ component
of the classroom interventions, which emphasised men’s and women’s equal predisposition for
science, cannot explain, alone, why the interventions increased girls’ enrolment in selective
STEM; otherwise, the two groups of role models would be expected to have similar effects for
this outcome, which is not what we find.

By contrast, Table L3 reveals that the professionals were better than the researchers at
improving female students’ perceptions of science-related jobs and stimulating their aspirations for
such careers, while emphasising less the under-representation of women. Regarding perceptions
of science-related careers, girls in the top quintile of treatment effects are 19.2 percentage points
more likely to have been visited by a professional compared to girls in the bottom quintile,
the difference being statistically significant at the 1% level. Professionals are similarly over-
represented among the role models who had the greatest effects on girls’ taste for science subjects
(22.7 percentage-point gap between the top and bottom quintile of treatment effects), and even
more so among those who raised science-related career aspirations the most (38.9 percentage-
point gap). The opposite holds for heterogeneous treatment effects on the importance of female
under-representation in STEM: compared to the 20% of girls least affected for this outcome, the
20% most affected are 11.2 percentage points more likely to have been visited by a researcher.

The analysis of treatment effect heterogeneity by student maths performance tends to confirm
that the messages conveyed by professionals were more effective in influencing female students’
choice of study. Indeed, the students who were particularly receptive to these messages are also
those for whom we find the strongest impact on STEM enrolment, i.e., high maths achievers.
A.18The heterogeneity loading parameter of the BLP and the GATEs associated with the best ML method are
reported separately for each outcome in Table L4.
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Average maths performance is significantly higher among the students whose perceptions of
science-related careers and taste for science subjects improved the most. Conversely, we find
fewer high achievers among the girls whose awareness of female under-representation in STEM
and perception of gender discrimination increased the most.

While these comparisons on the basis of role model background and student maths per-
formance cannot be given a causal interpretation, they are consistent with the notion that
gender-neutral messages about careers in science are more effective than gender-related messages
to steer girls towards STEM studies.

Correlation between treatment effects. The correlations between treatment effects for
girls in grade 12 are reported in Table L5, where the covariates that we use to predict treatment
effect heterogeneity are the same as in Table L1. The results suggest that some channels were
more important than others in steering female students towards STEM studies. The treatment
effects on girls’ enrolment in selective STEM exhibit a strong positive and significant correlation
with the improvement in their perceptions of science-related careers (ρ̂ = 0.96) and with the
improvement in their taste for science subjects (ρ̂ = 0.71).A.19

While not statistically significant at the 5% level, the remaining correlations give some
indication on the role of other candidate channels.A.20 They confirm in particular that debiasing
girls’ attitudes towards gender differences in aptitude for maths is not associated with increased
enrolment in selective STEM programs (ρ̂ = 0.19 with a 95% confidence interval of [−1.24, 2.05])
and that, if anything, reinforcing the belief that women are discriminated in science careers tends
to deter girls from enrolling in selective STEM programs (ρ̂ = −0.34 [−2.22, 0.56]). By contrast,
raising girls’ aspirations for careers in science is associated with an increased probability that
they enrol in such programs (ρ̂ = 0.36 [−0.51, 2.01]).

A.19The positive correlation between the treatment effects on taste for science and on enrolment in selective
STEM suggests that students whose preferences were affected by the intervention also changed their choice of
study. These effects, however, are highly heterogeneous (see Table L4): while the treatment effects on taste for
science are positive for the 20% most affected girls in grade 12, they are negative for the 20% least affected,
resulting in an average treatment effect close to zero (see Table F3).
A.20We report in Table L5 the lower and upper bounds for the lower and upper limits of the actual 95% confidence
interval associated with each estimated correlation. Note that the (unknown) true confidence intervals are likely
to be smaller than suggested by the bounds reported in this table.
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Table L1 – Heterogeneous Treatment Effects on Selective and Male-Dominated STEM Enrol-
ment for Girls in Grade 12: Estimates based on Machine Learning Methods

Panel A. Best Linear Predictor (BLP) of the CATE s0(Z) given the ML proxy S(Z)

Parameters: ATE HET Best ML
(β1) (β2) method

Undergraduate major: selective STEM 0.038 0.762 Elastic Net
p-value [0.027] [0.031]
Undergraduate major: male-dominated STEM 0.036 0.088 Linear model
p-value [0.064] [0.731]

Panel B. Sorted Group Average Treatment Effects (GATEs): 20% most and least affected students

Heterogeneity group: 20% least 20% most Difference Best ML
affected affected most−least method

Undergraduate major: selective STEM −0.004 0.139 0.149 Elastic Net
p-value [1.000] [0.014] [0.026]
Undergraduate major: male-dominated STEM 0.026 0.061 0.038 Elastic Net
p-value [1.000] [0.464] [1.000]

Panel C. Average characteristics of the 20% most and least affected students (CLAN)

Heterogeneity group: 20% least 20% most Difference p-value
affected affected most−least (upper bound)

Enrolment in selective STEM major
Student characteristics
Baccalauréat percentile rank in maths 17.62 81.39 62.85 0.000
Baccalauréat percentile rank in French 41.45 73.44 32.74 0.000
High SES 0.344 0.637 0.302 0.000
Role model characteristics
Professional 0.494 0.638 0.148 0.001
Participated in the program the year before 0.141 0.233 0.093 0.015
Non-French 0.133 0.183 0.051 0.228
Has children 0.503 0.417 −0.095 0.064
Age 33.09 32.97 −0.11 1.000
Holds/prepares for a PhD 0.692 0.606 −0.080 0.111
Field: maths, physics, engineering 0.316 0.226 −0.099 0.021
Field: earth and life sciences 0.618 0.602 −0.004 1.000

Enrolment in male-dominated major
Student characteristics
Baccalauréat percentile rank in maths 19.88 79.02 59.45 0.000
Baccalauréat percentile rank in French 41.22 72.10 31.10 0.000
High SES 0.335 0.628 0.296 0.000
Role model characteristics
Professional 0.530 0.606 0.078 0.170
Participated in the program the year before 0.142 0.240 0.091 0.021
Non-French 0.153 0.164 0.004 1.000
Has children 0.539 0.418 −0.126 0.010
Age 33.15 32.95 −0.17 1.000
Holds/prepares for a PhD 0.705 0.601 −0.103 0.043
Field: maths, physics, engineering 0.298 0.237 −0.065 0.186
Field: earth and life sciences 0.657 0.585 −0.075 0.170
Notes: This table reports heterogeneous treatment effects of the program on the undergraduate enrolment outcomes of girls in
grade 12 (science track), using the methods developed by Chernozhukov et al. (2018). For each outcome, the conditional average
treatment effect (CATE) of role model interventions, s0(Z), is predicted using five alternative ML methods: Elastic Net, Random
Forest, Linear Model, Boosting and Neural Network. The covariates Z that are used to predict the CATE consist of three indicators
for the educational districts of Paris, Créteil and Versailles, four indicators for students’ socioeconomic background (high, medium-
high, medium-low and low), their age, their overall percentile rank in the baccalauréat exam, their percentile ranks in the French
and maths tests of the exam, and a vector of 56 role model fixed effects. For each outcome, panel A reports the parameter estimates
and p-values (in square brackets) of the Best Linear Predictor (BLP) of the CATE using the best ML method. The coefficients β1
and β2 correspond to the average treatment effect (ATE) and heterogeneity loading (HET) parameters in the BLP, respectively.
Panel B reports the Sorted Group Average Treatment Effects (GATEs), i.e., the average treatment effects among students in the
top and bottom quintiles of the heterogeneous effects induced by the ML proxy predictor S(Z), using the best ML method. Panel C
performs a Classification Analysis (CLAN) by comparing the average characteristics of the 20% most and least affected students
defined in terms of the ML proxy predictor. The parameter estimates and p-values are computed as medians over 100 splits, with
nominal levels adjusted to account for the splitting uncertainty. This adjustment implies that the reported p-values should be
interpreted as upper bounds for the actual p-values.
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Table L2 – Heterogeneous Treatment Effects on Selective and Male-Dominated STEM Enrol-
ment for Boys in Grade 12: Estimates based on Machine Learning Methods

Panel A. Best Linear Predictor (BLP) of the CATE s0(Z) given the ML proxy S(Z)

Parameters: ATE HET Best ML
(β1) (β2) method

Undergraduate major: selective STEM 0.005 0.211 Linear Model
p-value [1.000] [0.029]
Undergraduate major: male-dominated STEM 0.015 0.090 Linear Model
p-value [1.000] [0.706]

Panel B. Sorted Group Average Treatment Effects (GATEs): 20% most and least affected students

Heterogeneity group: 20% least 20% most Difference Best ML
affected affected most−least method

Undergraduate major: selective STEM −0.056 0.061 0.116 Linear Model
p-value [0.358] [0.283] [0.086]
Undergraduate major: male-dominated STEM 0.051 0.010 −0.030 Boosting
p-value [0.771] [1.000] [1.000]

Panel C. Average characteristics of the 20% most and least affected students (CLAN)

Heterogeneity group: 20% least 20% most Difference p-value
affected affected most−least (upper bound)

Enrolment in selective STEM major
Student characteristics
Baccalauréat percentile rank in maths 48.64 53.26 4.03 0.194
Baccalauréat percentile rank in French 39.95 50.94 10.45 0.000
High SES 0.495 0.494 −0.004 1.000
Role model characteristics
Professional 0.395 0.600 0.214 0.000
Participated in the program the year before 0.200 0.275 0.070 0.112
Non-French 0.141 0.188 0.051 0.208
Has children 0.413 0.492 0.080 0.140
Age 32.08 33.73 1.58 0.001
Holds/prepares for a PhD 0.707 0.664 −0.070 0.206
Field: maths, physics, engineering 0.359 0.236 −0.133 0.001
Field: earth and life sciences 0.541 0.688 0.157 0.000

Enrolment in male-dominated major
Student characteristics
Baccalauréat percentile rank in maths 54.72 50.21 −4.46 0.123
Baccalauréat percentile rank in French 45.41 47.25 1.38 1.000
High SES 0.465 0.527 0.068 0.248
Role model characteristics
Professional 0.484 0.531 0.052 0.436
Participated in the program the year before 0.191 0.172 −0.019 1.000
Non-French 0.154 0.124 −0.025 0.820
Has children 0.489 0.489 0.004 1.000
Age 33.32 34.34 0.16 1.000
Holds/prepares for a PhD 0.660 0.682 0.020 1.000
Field: maths, physics, engineering 0.295 0.277 −0.015 1.000
Field: earth and life sciences 0.576 0.654 0.074 0.167
Notes: This table reports heterogeneous treatment effects of the program on the undergraduate enrolment outcomes of boys in
grade 12 (science track), using the methods developed by Chernozhukov et al. (2018). For each outcome, the conditional average
treatment effect (CATE) of role model interventions, s0(Z), is predicted using five alternative ML methods: Elastic Net, Random
Forest, Linear Model, Boosting and Neural Network. The covariates Z that are used to predict the CATE consist of three indicators
for the educational districts of Paris, Créteil and Versailles, four indicators for students’ socioeconomic background (high, medium-
high, medium-low and low), their age, their overall percentile rank in the baccalauréat exam, their percentile ranks in the French
and maths tests of the exam, and a vector of 56 role model fixed effects. For each outcome, panel A reports the parameter estimates
and p-values (in square brackets) of the Best Linear Predictor (BLP) of the CATE using the best ML method. The coefficients β1
and β2 correspond to the average treatment effect (ATE) and heterogeneity loading (HET) parameters in the BLP, respectively.
Panel B reports the Sorted Group Average Treatment Effects (GATEs), i.e., the average treatment effects among students in the
top and bottom quintiles of the heterogeneous effects induced by the ML proxy predictor S(Z), using the best ML method. Panel C
performs a Classification Analysis (CLAN) by comparing the average characteristics of the 20% most and least affected students
defined in terms of the ML proxy predictor. The parameter estimates and p-values are computed as medians over 100 splits, with
nominal levels adjusted to account for the splitting uncertainty. This adjustment implies that the reported p-values should be
interpreted as upper bounds for the actual p-values.
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Table L3 – Heterogeneous Treatment Effects on Student Perceptions: Average Characteristics
of the Most and Least Affected Girls in Grade 12

20% least 20% most Difference p-value
affected affected most−least (upper bound)

(1) (2) (3) (4)

Positive perceptions of science-related careers (index)
Mean baccalauréat percentile rank in maths 26.62 73.29 46.85 0.000
Class visited by professional 0.483 0.675 0.192 0.000

More men in science-related jobs
Mean baccalauréat percentile rank in maths 74.87 25.00 −51.03 0.000
Class visited by professional 0.614 0.511 −0.112 0.031

Equal gender aptitude for maths (index)
Mean baccalauréat percentile rank in maths 42.77 50.58 7.89 0.003
Class visited by professional 0.622 0.563 −0.058 0.403

Women do not really like science
Mean baccalauréat percentile rank in maths 44.47 50.57 5.07 0.090
Class visited by professional 0.592 0.540 −0.035 0.908

Women face discrimination in science-related jobs
Mean baccalauréat percentile rank in maths 52.15 42.79 −8.81 0.001
Class visited by professional 0.568 0.570 0.011 1.000

Taste for science subjects (index)
Mean baccalauréat percentile rank in maths 41.36 54.71 13.63 0.000
Class visited by professional 0.436 0.678 0.227 0.000

Self-concept in maths (index)
Mean baccalauréat percentile rank in maths 52.22 42.10 −10.65 0.000
Class visited by professional 0.512 0.582 0.071 0.240

Science-related career aspirations (index)
Mean baccalauréat percentile rank in maths 44.70 47.78 2.36 0.712
Class visited by professional 0.375 0.762 0.389 0.000

Notes: This table reports the average characteristics of grade 12 girls in the top and bottom quintile of predicted treatment
effects on student perceptions, using the methods developed by Chernozhukov et al. (2018). For each outcome, the conditional
average treatment effect (CATE) of role model interventions, s0(Z), is predicted using five alternative ML methods: Elastic Net,
Random Forest, Linear Model, Boosting and Neural Network. The covariates Z that are used to predict the CATE consist of three
indicators for the educational districts of Paris, Créteil and Versailles, four indicators for students’ socioeconomic background (high,
medium-high, medium-low and low), their age, their overall percentile rank in the baccalauréat exam, their percentile ranks in the
French and maths tests of the exam, and a vector of 56 role model fixed effects. For each outcome, the table compares the average
characteristics of the students in the top and bottom quintile of treatment effects, as predicted by the best ML proxy predictor
based on the Group average treatment effects (GATEs) targeting of the CATE. The characteristics reported in this table are the
students’ average percentile rank in maths in the baccalauréat exams and the share exposed to a role model with a professional
rather a research background. The parameter estimates and p-values are computed as medians over 100 splits, with nominal levels
adjusted to account for the splitting uncertainty. This adjustment implies that the reported p-values should be interpreted as upper
bounds for the actual p-values. The average treatment effects among the 20% most and least affected students can be found in
panel B of Table L4.
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Table L4 – Heterogeneous Treatment Effect on Student Outcomes for Girls in Grade 12:
Estimates Based on Machine Learning Methods

Panel A. Best Linear Predictor (BLP) of the CATE s0(Z) given the ML proxy S(Z)

Parameters: ATE HET Best ML
(β1) (β2) method

(p-values in square brackets)

Undergraduate major: selective STEM 0.038 0.762 Elastic Net
[0.027] [0.031]

Undergraduate major: male-dominated STEM 0.036 0.088 Linear model
[0.064] [0.731]

Positive perceptions of science-related careers (index) 0.298 0.400 Elastic Net
[0.000] [0.555]

More men in science-related jobs 0.119 0.657 Elastic Net
[0.000] [0.593]

Equal gender aptitude for maths (index) 0.117 0.324 Random Forest
[0.010] [0.108]

Women do not really like science 0.044 0.095 Linear model
[0.002] [0.566]

Women face discrimination in science-related jobs 0.105 0.496 Random Forest
[0.000] [0.012]

Taste for science subjects (index) 0.008 0.170 Linear Model
[1.000] [0.137]

Self-concept in maths (index) 0.029 0.257 Linear Model
[0.988] [0.010]

Science-related career aspirations (index) 0.077 0.245 Linear Model
[0.263] [0.013]

Panel B. Average predicted treatment effects among the most/least affected groups (GATEs)

Heterogeneity group: 20% least 20% most Difference Best ML
affected affected most−least method

(p-values in square brackets)

Undergraduate major: selective STEM −0.004 0.139 0.149 Elastic Net
[1.000] [0.014] [0.026]

Undergraduate major: male-dominated STEM 0.026 0.061 0.038 Elastic Net
[1.000] [0.464] [1.000]

Positive perceptions of science-related careers (index) 0.316 0.400 0.104 Elastic Net
[0.037] [0.001] [1.000]

More men in science-related jobs 0.096 0.160 0.065 Elastic Net
[0.048] [0.022] [0.766]

Equal gender aptitude for maths (index) 0.019 0.246 0.210 Random Forest
[1.000] [0.037] [0.332]

Women do not really like science 0.026 0.073 0.039 Linear model
[0.758] [0.078] [0.772]

Women face discrimination in science-related jobs −0.007 0.195 0.197 Random Forest
[1.000] [0.003] [0.038]

Taste for science subjects (index) −0.112 0.138 0.251 Linear model
[0.594] [0.369] [0.196]

Self-concept in maths (index) −0.122 0.191 0.317 Linear model
[0.416] [0.063] [0.035]

Science-related career aspirations (index) −0.142 0.268 0.387 Linear model
[0.394] [0.047] [0.041]

Notes: This table reports heterogeneous treatment effects of the program on student outcomes for girls in grade 12 (science track),
using the methods developed by Chernozhukov et al. (2018). For each outcome, the conditional average treatment effect (CATE)
of role model interventions, s0(Z), is predicted using five alternative ML methods: Elastic Net, Random Forest, Linear Model,
Boosting and Neural Network. The covariates Z that are used to predict the CATE consist of three indicators for the educational
districts of Paris, Créteil and Versailles, four indicators for students’ socioeconomic background (high, medium-high, medium-low
and low), their age, their overall percentile rank in the baccalauréat exam, their percentile ranks in the French and maths tests of
the exam, and a vector of 56 role model fixed effects. For each outcome, panel A reports the parameter estimates and p-values
(in square brackets) of the Best Linear Predictor (BLP) of the CATE using the best ML method. The coefficients β1 and β2
correspond to the average treatment effect (ATE) and heterogeneity loading (HET) parameters in the BLP, respectively. Panel B
reports the Sorted Group Average Treatment Effects (GATEs), i.e., the average treatment effects among students in the top and
bottom quintiles of the heterogeneous effects induced by the ML proxy predictor S(Z), using the best ML method.
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Table L5 – Correlation between Conditional Average Treatment Effects (CATEs) for Girls in
Grade 12

Bivariate correlation with the CATE on
enrolment in a selective STEM program

Estimate 95% confidence
interval

(1) (2)

Conditional average treatment effect (CATE) on:

Positive perception of science-related careers (index) 0.96 [ 0.21, 5.30]

More men in science-related jobs −0.68 [−3.23,−0.01]

Equal gender aptitude for maths (index) 0.19 [−1.24, 2.05]

Women do not really like science 0.21 [−1.43, 3.23]

Women face discrimination in science-related jobs −0.34 [−2.22, 0.56]

Taste for science subjects (index) 0.71 [ 0.04, 3.96]

Self-concept in maths (index) −0.07 [−1.84, 1.40]

Science-related career aspirations (index) 0.36 [−0.51, 2.01]

Notes: This table reports, for girls in grade 12, estimates of the bivariate correlation ρA,B|Z between the Conditional Average
Treatment Effect (CATE) on enrolment in a selective STEM program, denoted by sB

0 (Z), and the CATE on each of the potential
channels listed in the table, denoted by sA

0 (Z). The proxy predictor of the CATE on selective STEM enrolment, denoted by
SB(Z), is estimated using the Elastic Net method, as it has the best performance based on the Best Linear Predictor (BLP)
targeting of the CATE for this outcome. The proxy predictor of the CATE on the potential mediator Y A, denoted by SA(Z), is
estimated using the ML method that has the best performance based on the BLP targeting of the CATE on the corresponding
outcome. An indication of the quality of these predictions is provided by the heterogeneity loading (HET) parameter of the
BLP (see Table L4, panel A). For each random split of the data, the correlation coefficient ρA,B|Z is estimated as ρ̂A,B|Z =
Sign(β̂A|B

2 )(β̂A|B
2 β̂

B|A
2 )

1
2 /(β̂A|A

2 )
1
2 (β̂B|B

2 )
1
2 , where β̂k|l

2 is the estimated heterogeneity loading parameter of the BLP of sk
0(Z)

based on Sl(Z) (with k, l ∈ {A,B}), using the methods in Chernozhukov et al. (2018). The covariates Z that are used to predict
the CATEs consist of three indicators for the educational districts of Paris, Créteil and Versailles, four indicators for students’
socioeconomic background (high, medium-high, medium-low and low), their age, their overall percentile rank in the baccalauréat
exam, their percentile ranks in the French and maths tests of the exam, and a vector of 56 role model fixed effects. For each pair
of outcomes, columns 1 and 2 report the estimated correlation between the CATEs and its 95% confidence interval, respectively.
Estimates and confidence intervals are computed as medians over the first 100 random data splits for which ρ̂A,B|Z can be computed.
For each data split, the confidence intervals are obtained using a clustered bootstrap procedure. The nominal level of the median
of confidence intervals is adjusted to account for the splitting uncertainty, using the method of Chernozhukov et al. (2018). This
adjustment implies that the reported confidence intervals should be interpreted as lower and upper bounds for the true lower and
upper limits of the confidence intervals.
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Table L6 – Proportion of Random Data Splits for which the Correlation between Conditional
Average Treatment Effects (CATEs) can be Computed, Girls in Grade 12

Proportion of data splits such that

ρ̂A,B|Z can
be computed* β̂

B|B
2 > 0 β̂

A|A
2 > 0 β̂

A|B
2 β̂

B|A
2 ≥ 0

(1) (2) (3) (4)

When outcome Y B is enrolment in a selective
STEM program and outcome Y A is:

Positive perception of science-related careers (index) 0.80 1.00 0.86 0.90

More men in science-related jobs 0.68 0.99 0.89 0.73

Equal gender aptitude for maths (index) 0.35 1.00 0.98 0.36

Women do not really like science 0.34 0.99 0.84 0.40

Women face discrimination in science-related jobs 0.62 1.00 1.00 0.62

Taste for science subjects (index) 0.81 0.99 0.97 0.83

Self-concept in maths (index) 0.39 0.99 1.00 0.40

Science-related career aspirations (index) 0.64 0.99 1.00 0.65

Number of data splits 3,000 3,000 3,000 3,000

Notes: This table reports, for the sample of girls in grade 12 (science track), the proportion of random data splits (out of 3,000) for
which the correlation between the Conditional Average Treatment Effects (CATEs) on outcomes Y A and Y B could be computed.
Outcome Y B is always enrolment in selective STEM, while Y A is the outcome listed in the corresponding row of the table.
Conditional on the covariates Z, the CATEs on outcomes Y A and Y B are denoted by sA

0 (Z) and sB
0 (Z), respectively, whereas their

ML proxy predictors are denoted by SA(Z) and SB(Z), respectively. For each random split, the correlation coefficient ρA,B|Z is
estimated as ρ̂A,B|Z = Sign(β̂A|B

2 )(β̂A|B
2 β̂

B|A
2 )

1
2 /(β̂A|A

2 )
1
2 (β̂B|B

2 )
1
2 , where β̂k|l

2 is the estimated heterogeneity loading parameter
of the Best Linear Predictor (BLP) of sk

0(Z) based on Sl(Z) (with k, l ∈ {A,B}), using the methods in Chernozhukov et al. (2018).
Column 1 indicates the fraction of data splits for which ρ̂A,B|Z could be computed. The next three columns report the fraction of
sample splits for which each of the three conditions to compute ρ̂A,B|Z is met, i.e., β̂B|B

2 > 0 (column 2), β̂A|A
2 > 0 (column 3) and

β̂
A|B
2 β̂

B|A
2 ≥ 0 (column 4). The proportion of random splits such that βB|B

2 > 0 varies slightly across rows because for each pair
of outcomes (Y A,Y B), the sample is restricted to observations with non-missing values for both outcomes. Table L5 reports the
median and 95% confidence interval of ρ̂A,B|Z over the first 100 random data splits for which ρ̂A,B|Z can be computed. Details
are provided in Section L.3 of the Appendix.
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Table L7 – Correlation between Conditional Average Treatment Effects (CATEs) for Girls in
Grade 12: Sensitivity Analysis

Bivariate correlation with the CATE on
enrolment in a selective STEM program

(from first 100 valid iterations)

Estimate 95% confidence Proportion of
(ρ̂A,B|Z) interval valid iterations

Panel A. Data splits such that β̂A|A
2 > 0.1, β̂B|B

2 > 0.1 and β̂
A|B
2 β̂

B|A
2 ≥ 0

Conditional average treatment effect (CATE) on:

Positive perception of science-related careers (index) 0.94 [ 0.20, 5.10] 0.73

More men in science-related jobs −0.68 [−3.20,−0.01] 0.65

Equal gender aptitude for maths (index) 0.19 [−1.21, 1.97] 0.33

Women do not really like science 0.18 [−1.40, 2.70] 0.19

Women face discrimination in science-related jobs −0.34 [−2.22, 0.56] 0.61

Taste for science subjects (index) 0.68 [ 0.07, 3.42] 0.66

Self-concept in maths (index) −0.07 [−1.83, 1.40] 0.38

Science-related career aspirations (index) 0.36 [−0.52, 1.99] 0.62

Panel B. Data splits such that β̂A|A
2 > 0.2, β̂B|B

2 > 0.2 and β̂
A|B
2 β̂

B|A
2 ≥ 0

Conditional average treatment effect (CATE) on:

Positive perception of science-related careers (index) 0.93 [ 0.20, 4.89] 0.64

More men in science-related jobs −0.66 [−3.15,−0.03] 0.62

Equal gender aptitude for maths (index) 0.16 [−1.18, 1.80] 0.28

Women do not really like science 0.18 [−0.87, 2.18] 0.05

Women face discrimination in science-related jobs −0.31 [−2.17, 0.62] 0.59

Taste for science subjects (index) 0.59 [ 0.07, 2.48] 0.34

Self-concept in maths (index) −0.07 [−1.71, 1.37] 0.28

Science-related career aspirations (index) 0.32 [−0.44, 1.78] 0.48

Notes: Similarly to Table L5, this table reports, for girls in grade 12 (science track), the estimates of the bivariate correlation
ρA,B|Z between the Conditional Average Treatment Effect (CATE) on enrolment in a selective STEM program, denoted by sB

0 (Z),
and the CATE on each of the potential channels listed in the table, denoted by sA

0 (Z). The difference is that estimates provided
in this table are obtained using only iterations of the data-splitting process for which the estimates of the heterogeneity loading
parameters β̂A|A

2 and β̂
B|B
2 are above a certain threshold. This threshold is set at 0.1 in panel A and at 0.2 in panel B. These

restrictions are applied to check the sensitivity of the correlation estimates to excluding data splits that yield a poor ML prediction
of the CATEs on outcomes Y A or Y B . Column 3 indicates the proportion of data splits satisfying the restrictions specified in each
panel’s heading. The estimates and 95% confidence intervals reported in columns 1 and 2 are obtained using the first 100 data
splits satisfying these restrictions. Additional details are provided in the notes of Table L5.

A-65



Appendix References
Anderson, Michael L., “Multiple Inference and Gender Differences in the Effects of Early
Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training
Projects,” Journal of the American Statistical Association, 2008, 103 (484), 1481–1495.

Atelier Parisien d’Urbanisme (APUR), DEPARTEMENT: Délimitation des 8 départements
d’Île-de-France [database], Atelier Parisien d’Urbanisme, 2018. https://opendata.apur.
org/datasets/Apur::departement (last accessed: 6 June 2020).

Athey, Susan and Guido W. Imbens, “The Econometrics of Randomized Experiments,” in
Esther Duflo and Abhijit V. Banerjee, eds., Handbook of Economic Field Experiments, Vol. 1,
Elsevier, 2017, pp. 73–140.

Beede, David, Tiffany Julian, David Langdon, George McKittrick, Beethika Khan,
and Mark Doms, “Women in STEM: A Gender Gap to Innovation,” 2011. U.S. Department
of Commerce, Economics and Statistics Administration, Issue Brief No. 04-11.

Benjamini, Yoav, Abba M. Krieger, and Daniel Yekutieli, “Adaptive Linear Step-up
Procedures that Control the False Discovery Rate,” Biometrika, 2006, 93 (3), 491–507.

Chernozhukov, Victor, Mert Demirer, Esther Duflo, and Iván Fernández-Val,
“Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized
Experiments,” 2018. NBER Working Paper No. 24678.

Conférence des Grandes Écoles (CGE), L’insertion des diplômés des Grandes
écoles. Résultats de l’enquête 2018, Conférence des Grandes Écoles, Paris, 2018.
https://www.cge.asso.fr/themencode-pdf-viewer/?file=https://www.cge.asso.
fr/wp-content/uploads/2018/06/2018-06-19-Rapport-2018.pdf (last accessed: 28 Au-
gust 2019).

Davison, Anthony C. and David V. Hinkley, Bootstrap Methods and their Application,
Cambridge University Press, 1997.

Demirer, Mert, MLInference [R code], NBER Summer Institute 2018 presentation “Ma-
chinistas meet randomistas: useful ML tools for empirical researchers” by E. Duflo, 2018.
https://github.com/demirermert/MLInference/ (last accessed: 4 May 2018).

Direction des Études, de la Prospective et de la Performance (MENJ-DEPP), Organ-
isation des Concours et Examens Nationaux (OCEAN) [database]: OCEAN-DNB 2010–2015,
OCEAN-BAC 2015 and 2016, Ministère de l’Éducation Nationale et de la Jeunesse, 2017.

Délégation Académique à la Prospective et à l’Évaluation des Performances
(DAPEP), Base Élèves Académique (BEA) [database]: ELH 2012–2014, ELC 2013–2016,
ELG 2015, Rectorat de l’Académie de Versailles, 2017.

Duflo, Esther and Emmanuel Saez, “The Role of Information and Social Interactions in
Retirement Plan Decisions: Evidence from a Randomized Experiment,” The Quarterly Journal
of Economics, 2003, 118 (3), 815–842.

Fisher, Ronald A., The Design of Experiments, McMillan, 1935.
Gayral-Taminh, Martine, Tomohiro Matsuda, Sylvie Bourdet-Loubère, Valérie
Lauwers-Cances, Jean-Philippe Raynaud, and Hélène Grandjean, “Auto-évaluation
de la qualité de vie d’enfants de 6 à 12 ans : construction et premières étapes de validation
du KidIQol, outil générique présenté sur ordinateur,” Santé Publique, 2005, 17 (2), 167–177.

Imbens, Guido W. and Donald B. Rubin, Causal Inference in Statistics, Social, and
Biomedical Sciences, Cambridge University Press, 2015.

Kuhn, Max, “Building Predictive Models in R using the caret Package,” Journal of Statistical
Software, 2008, 28 (5), 1–26.

A-66

https://opendata.apur.org/datasets/Apur::departement
https://opendata.apur.org/datasets/Apur::departement
https://www.cge.asso.fr/themencode-pdf-viewer/?file=https://www.cge.asso.fr/wp-content/uploads/2018/06/2018-06-19-Rapport-2018.pdf
https://www.cge.asso.fr/themencode-pdf-viewer/?file=https://www.cge.asso.fr/wp-content/uploads/2018/06/2018-06-19-Rapport-2018.pdf
https://github.com/demirermert/MLInference/


McDonald, Judith A. and Robert J. Thornton, “Do New Male and Female College
Graduates Receive Unequal Pay?,” Journal of Human Resources, 2007, 42 (1), 32–48.

Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation
(MESRI), Enquête d’Insertion Professionnelle à 30 Mois des Diplômés de Master 2015
[database], Ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation,
2018. https://data.enseignementsup-recherche.gouv.fr/explore/dataset/
fr-esr-insertion_professionnelle-master_donnees_nationales/information/
(last accessed: 28 August 2019).

Paz, Lourenço S. and James E. West, “Should We Trust Clustered Standard Errors? A
Comparison with Randomization-Based Methods,” 2019. NBER Working Paper No. 25926.

Pôle Académique de la Prospective et de la Performance (PAPP), Base Élèves
Académique (BEA) [database]: ELH 2012–2014, ELC 2013–2016, ELG 2015, Rectorat
de l’Académie de Créteil, 2017.

Rosenbaum, Paul R., Observational Studies, Springer, 2002.
, Design of Observational Studies, Springer Series in Statistics, 2010.

Service Statistique de l’Académie de Paris (SSA), Base Élèves Académique (BEA)
[database]: ELH 2012–2014, ELC 2013–2016, ELG 2015, Rectorat de l’Académie de Paris,
2017.

Sous-direction des Services d’Information et des Études Statistiques (MESRI-
DGESIP/DGRI-SIES), Système d’Information sur le Suivi de l’Étudiant (SISE) [database]:
SISE-UNIV 2013–2016, SISE-ENS 2013–2016, SISE-INGE 2013–2016, SISE-MANA 2013–
2016, SISE-PRIV 2013–2016, Ministère de l’Enseignement supérieur, de la Recherche et
de l’Innovation (MESRI), Direction générale de l’enseignement supérieur et de l’insertion
professionnelle (DGESIP), Direction générale de la recherche et de l’innovation (DGRI), 2017.

Vazquez-Bare, Gonzalo, “Identification and Estimation of Spillover Effects in Randomized
Experiments,” Journal of Econometrics, forthcoming.

Wager, Stefan and Susan Athey, “Estimation and Inference of Heterogeneous Treatment
Effects using Random Forests,” Journal of the American Statistical Association, 2018, 113
(523), 1228–1242.

A-67

https://data.enseignementsup-recherche.gouv.fr/explore/dataset/fr-esr-insertion_professionnelle-master_donnees_nationales/information/
https://data.enseignementsup-recherche.gouv.fr/explore/dataset/fr-esr-insertion_professionnelle-master_donnees_nationales/information/

	Title Page
	Abstract
	Introduction
	1. Institutional Background
	1.1. Structure of the French Education System
	1.2. Female Under-Representation in STEM

	2. Program and Experimental Design 
	2.1. `For Girls in Science'
	2.2. Experimental Design

	3. Data and Empirical Strategy
	3.1. Data
	3.2. Empirical Strategy

	4. Effects of Classroom Interventions
	4.1. Perceptions of STEM Careers and Gender Roles in Science
	4.2. Stated Preferences, Self-Concept and Aspirations
	4.3. Educational Choices and Academic Performance
	4.4. Robustness Checks

	5. Information, Persistence and Spillovers 
	6. What Makes the Role Model Intervention Effective?
	6.1. Heterogeneous Treatment Effects on STEM Enrolment
	6.2. Heterogeneous Effects on Student Perceptions
	6.3. A Generalisation Using Machine Learning Techniques 

	7. Conclusion
	References
	Appendices
	A. Gender Pay Gap Among College Graduates in France
	B. Program Details
	C. Student-Level Administrative Data
	D. Construction of Synthetic Indices and Multiple Hypothesis Testing 
	E. Summary Statistics and Balancing Tests
	F. Effects of Role Model Interventions: Additional Results
	G. Robustness Checks
	H. Randomisation Inference
	I. Information, Persistence, Timing: Additional Results 
	J. Spillover Effects
	K. Heterogeneous Treatment Effects: Subgroup Analysis
	L. Heterogeneous Treatment Effects: Machine Learning Methods 
	Appendix References


