
HAL Id: hal-04088313
https://u-bourgogne.hal.science/hal-04088313v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Smoothness Discriminates Physical from Motor Imagery
Practice of Arm Reaching Movements

Célia Ruffino, Dylan Rannaud Monany, Charalambos Papaxanthis, Pauline
Hilt, Jérémie Gaveau, Florent Lebon

To cite this version:
Célia Ruffino, Dylan Rannaud Monany, Charalambos Papaxanthis, Pauline Hilt, Jérémie Gaveau, et
al.. Smoothness Discriminates Physical from Motor Imagery Practice of Arm Reaching Movements.
Neuroscience, 2022, 483, pp.24-31. �10.1016/j.neuroscience.2021.12.022�. �hal-04088313�

https://u-bourgogne.hal.science/hal-04088313v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 

 

Smoothness discriminates physical from motor imagery practice of arm 1 

reaching movements 2 

 3 

Célia RUFFINO*, Dylan RANNAUD MONANY*, Charalambos PAPAXANTHIS, Pauline 4 

M. HILT, Jérémie GAVEAU, Florent LEBON.  5 

 6 

INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du 7 

Sport, F-21000, Dijon. 8 

Corresponding Author:  9 

Célia RUFFINO 10 

Cognition, Action et Plasticité Sensorimotrice (CAPS), INSERM UMR1093, UFR STAPS, 11 

Université de Bourgogne Franche-Comté, F-21000 Dijon, France. 12 

celia.ruffino@u-bourgogne.fr 13 

 14 

 15 

 16 

*These authors have contributed equally to this work.  17 

  18 

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0306452221006461
Manuscript_dfa5db4b582a48b96c74cbe58108042e

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0306452221006461
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0306452221006461


2 

 

Abstract  1 

Physical practice (PP) and motor imagery practice (MP) lead to the execution of fast 2 

and accurate arm movements. However, there is currently no information about the influence 3 

of MP on movement smoothness, nor about which performance parameters best discriminate 4 

these practices. In the current study, we assessed motor performances with an arm pointing 5 

task with constrained precision before and after PP (n= 15), MP (n= 15), or no practice (n= 6 

15). We analyzed gains between Pre- and Post-Test for five performance parameters: 7 

movement duration, mean and maximal velocities, total displacements, and the number of 8 

velocity peaks characterizing movement smoothness. The results showed an improvement of 9 

performance after PP and MP for all parameters, except for total displacements. The gains for 10 

movement duration, and mean and maximal velocities were statistically higher after PP and 11 

MP than after no practice, and comparable between practices. However, motor gains for the 12 

number of velocity peaks were higher after PP than MP, suggesting that movements were 13 

smoother after PP than after MP. A discriminant analysis also identified the number of 14 

velocity peaks as the most relevant parameter that differentiated PP from MP. The current 15 

results provide evidence that PP and MP specifically modulate movement smoothness during 16 

arm reaching tasks. This difference may rely on online corrections through sensory feedback 17 

integration, available during PP but not during MP.   18 

 19 

 20 

Keywords: motor imagery, movement smoothness, feedbacks, internal models, motor 21 

learning.  22 

  23 
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Introduction  1 

Motor skill learning is a central process in everyday life, sustaining adaptation and 2 

efficiency of motor behaviors in constantly changing environments. Through physical practice 3 

(PP), movements are performed faster, more accurately, and require less energy consumption 4 

(Willingham, 1998). Even if continuous and extended practice is known to greatly and 5 

durably improve motor performance (Robertson et al., 2004; Kitago and Krakauer, 2013), 6 

positive effects of practice can also be observed within a single training session. A growing 7 

number of studies indeed observed that a few minutes of practice is sufficient to induce gains 8 

in motor performance (e.g., speed and accuracy) on a wide variety of motor tasks, such as 9 

sequential finger-tapping or arm-reaching tasks (Karni et al., 1998; Walker et al., 2003; 10 

Gentili et al., 2006, 2010; Spampinato and Celnik, 2017; Ruffino et al., 2021). This fast 11 

learning process, known as motor acquisition, is considered as the first step towards the 12 

formation of new and robust motor memories. 13 

Although skill learning usually requires PP, alternative forms of practice also exist. 14 

Among these, motor imagery, that is the mental simulation of an action without associated 15 

motor output, has been largely documented. In fact, mental practice (MP) improves several 16 

aspects of motor performance, such as movement accuracy, speed, and force (Yue and Cole, 17 

1992; Yágüez et al., 1998; Ranganathan et al., 2004; Gentili et al., 2006, 2010; Allami et al., 18 

2008; Lebon et al., 2010; Grosprêtre et al., 2018; Ruffino et al., 2021). Performance increases 19 

following MP is associated with specific neural mechanisms at both cortical and spinal levels 20 

(Avanzino et al., 2015; Grosprêtre et al., 2019; Ruffino et al., 2019). Specifically, an acute 21 

session of MP induces use-dependent plasticity into the primary motor cortex (Bonassi et al. 22 

2017; Ruffino et al. 2019) and spinal circuitry (Grosprêtre et al. 2019). At the functional level, 23 

it is proposed that motor performance improvement following MP may reflect an update of 24 

internal forward models (Kilteni et al., 2018; Dahm and Rieger, 2019; Ruffino et al., 2021). 25 
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Basically, internal forward models are neural network that predict the future sensorimotor 1 

state (e.g., velocity, movement duration, position) given the current state, the efferent copy of 2 

the motor command, and the goal of the movement (Kawato et al., 2003; Wolpert & 3 

Flanagan, 2001). Kilteni et al. (2018) strongly supported this assumption by showing that the 4 

sensory consequences of imagined movements are predicted during motor imagery.  5 

Although PP and MP share common mechanisms, a number of dissimilarities also 6 

exist. Perhaps the main difference, at least the most visible, is that during MP there is no 7 

sensory feedback about movement (position velocity and acceleration), since the imagined 8 

segment is inert. In error-based motor learning process, external sensory feedback is 9 

necessary to update the prediction of the internal forward model, via the discrepancy between 10 

the predicted state and the actual state (Kawato et al., 2003; Shadmehr et al., 2010; Shadmehr 11 

& Krakauer, 2008; Wolpert et al., 2011). Better state prediction will, in turn, improves the 12 

controller and thus the motor output. In the case of a model-free motor learning process, 13 

external feedback directly improves the controller through reward predictions error 14 

(Criscimagna-Hemminger et al., 2010; Izawa and Shadmehr, 2011). The absence of external 15 

feedback during MP could explain why after PP the performance improvement is better than 16 

after MP (Ingram et al., 2019). This assumption is supported by the study of Bonnassi et al. 17 

(2017), which associated MP with peripheral nerve stimulation. The authors observed a better 18 

motor learning than after MP alone, and a similar motor learning than after PP. Thus, these 19 

results highlight the crucial role of peripheral feedback in the update of internal models and in 20 

the motor learning process. Theoretically, it is proposed that the difference between the 21 

prediction and the desired outcome based on stored movement representations would be 22 

returned as an input to improve the subsequent motor command via a “self-supervised 23 

process”, explaining motor performance improvement despite the external feedback during 24 

MP (Gentili et al., 2010, Ruffino et al. 2021). 25 
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Up to now, performance improvement after MP has been measured, and compared to 1 

PP, mainly on three parameters: force, accuracy, and speed. Nonetheless, other parameters are 2 

of importance for motor performance, such as movement smoothness that is enhanced after 3 

PP (Balasubramanian et al., 2015). Smoothness is related to the form of the velocity profile, 4 

which is singled-peaked with one acceleration and one deceleration phase. When the motor 5 

command is inaccurate a number of sub-movements are necessary to correct it, creating thus a 6 

non-optimal and clumsy movement (Kelso et al., 1979; Ketcham et al., 2002; Ketcham & 7 

Stelmach, 2004). Intriguingly, the effects of MP on this parameter are yet unknown.  8 

In the current study, we sought to compare PP and MP, considering spatial, temporal, 9 

and smoothness parameters. We recorded movement-related trajectories on a graphic tablet 10 

from two training groups (PP and MP) and one control group (Ctrl, absence of practice). In 11 

line with the literature, we first hypothesized that PP and MP would similarly enhance arm 12 

reaching movements, with improvements for all parameters but with greater gains for PP. 13 

Alternatively, temporal parameters would similarly improve following PP and MP, as sensory 14 

feedback is not a prerequisite in that case, whereas spatial and smoothness parameters would 15 

be less improved after MP.  16 

 17 

Method  18 

Participants 19 

Forty-five right-handed adults participated in this study after giving their informed 20 

consent. All were healthy and self-reported being free from neurological or physical 21 

disorders. The participants were randomly assigned into three groups: the Physical Practice 22 

group (PP, n = 15, 6 females, mean age: 25± 2 years old), the Mental Practice group (MP, n = 23 
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15, 9 females, mean age: 25 ± 6 years old), and the Control group (Ctrl, n = 15, 7 females, 1 

mean age: 28 ± 4 years old). 2 

Motor imagery vividness of the MP group was assessed by the French version of the 3 

revised Movement Imagery Questionnaire ‘MIQr’ (Lorant and Nicolas, 2004). The MIQr is 4 

an 8-item self-report questionnaire, in which the participants rate the vividness of their mental 5 

images using 7-point scales ranging from 1 (really difficult to feel/visualize) to 7 (really easy 6 

to feel/visualize), on two modalities (visual imagery and kinesthetic imagery). The average 7 

score obtained in the current study was 42.1 ±9.5 (maximum score: 56; minimum score: 8), 8 

revealing good imagery capabilities.  9 

 10 

Experimental Device  11 

The participants were comfortably seated on a chair in front of a graphic tablet 12 

(Intuos4, XL, Wacom, Krefeld, Germany), on which four square-targets (1x1 cm) were 13 

presented (see Fig.1A). The distance between the participants’ sternum and the first target 14 

(T1) was 10 cm. One trial included 10 successive target-to-target movements in the following 15 

order: 1 – 2 – 3 – 4 – 1 – 2 – 3 – 4 – 1 – 2 – 3. The participants were instructed to reach each 16 

target with a pencil as accurately and as fast as possible (Fig.1B). Accuracy was imposed 17 

during the experiment: participants were instructed to reach each target in the specified order 18 

to complete a trial. If the participant missed a target, the trial was aborted and performed 19 

again. 20 

 21 

Experimental procedure  22 

    The experimental protocol included two test sessions (PreTest and PostTest) and one 23 

training session (Fig. 1C). During the test sessions, all the participants performed 3 actual 24 

trials as fast and accurately as possible. During the training session, the participants of the PP 25 
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were trained as fast and accurately as possible to the task, while those of the MP group were 1 

instructed to imagine themselves performing the task as fast and accurately as possible, 2 

combining kinesthetic and visual (first-person perspective) imagery modalities. Both training 3 

groups performed 60 trials, divided into 6 blocks with 1-min rest between blocks to avoid 4 

mental fatigue (Rozand et al., 2016). The Ctrl group watched a non-emotional documentary 5 

(“Home”, directed by Y. Arthus-Bertrand, 2009) for 30 min (the approximate time of both 6 

training sessions).  7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

Fig. 1. A. Participants’ position and targets location on the graphic tablet. B. One trial included 10 successive 18 

track movements between the targets, as fast as possible without missing any target (1 – 2 – 3 – 4 – 1 – 2 – 3 – 4 19 

– 1 – 2 – 3). C. Experimental procedure. The protocol included 2 test sessions of 3 actual trials (data recording 20 

for each trial) and one training session. During the training session, the Physical Practice (PP) group physically 21 

executed 60 repetitions of the 10 movements, and the Mental Practice (MP) group mentally simulated 60 22 

repetitions of the 10 movements. The Control (Ctrl) group watched a non-emotional documentary. 23 
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 1 

Kinematics recording and analysis  2 

We recorded movement kinematics at 100Hz using a graphic tablet (Intuos4 XL, 3 

Wacom, Krefeld, Germany). The spatial resolution in the present experiment was less than 1 4 

mm. Data processing was performed using custom programs written in Matlab (Mathworks, 5 

Natick, MA). Position signals in the horizontal plane (X, Y) were low-pass filtered using a 6 

digital fifth-order Butterworth filter (zero phase distortion, Matlab ‘butter’ and ‘filtfilt’ 7 

functions) at a cut-off frequency of 10 Hz.  8 

We computed five parameters for each trial: i) movement duration (MD), i.e., the total 9 

time elapsed between the moment when the pencil exited the first target and entered the final 10 

target; ii) distance, i.e., the total two-dimensional displacement; iii) mean velocity (Vmean), 11 

i.e., the average inter-target movement speed;  iv) maximal velocity (Vmax), i.e., the average 12 

of maximal inter-target movement speed; and v) number of velocity peaks (NbPeaks), i.e., the 13 

number of local maxima detected on velocity profiles. We used this parameter to quantify 14 

movement smoothness (Brooks et al., 1973; Fetters and Todd, 1987; Balasubramanian et al., 15 

2015); the smaller the number of peaks, the smoother the movement. 16 

For each parameter, we calculated the gain between PreTest and PostTest. To 17 

systematically represent gains with positive values, we calculated gains for MD, NbPeaks, 18 

and distance as follows: 19 

�����%� = � 	
����	����� − 1�  × 100 20 

 21 

and for Vmax and Vmean as follows: 22 
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�����%� = �1 −  	
����	������  × 100 1 

 2 

Electromyographic recording and analysis  3 

To verify that muscles were not activated during mental training (MP group), 4 

electromyographic (EMG) activity of the biceps brachii (BB) and the triceps brachii (TB) 5 

muscles of the right arm were recorded during each imagined trial and compared to EMG 6 

activity at rest (10-second recording before training). We used pairs of bipolar silver chloride 7 

circular (10-mm diameter) surface electrodes. We positioned the electrodes parallel to muscle 8 

fibers, over the middle of the muscles belly with an inter-electrode (center-to-center) distance 9 

of 20 mm. The reference electrode was positioned on the medial elbow epicondyle. After 10 

shaving and dry-cleaning the skin with alcohol, the impedance was below 5 kΩ. EMG signals 11 

were amplified (gain 1000), filtered (with a bandwidth frequency ranging from 10 Hz to 1 12 

kHz), and converted for digital recording and storage with PowerLab 26T and LabChart 7 13 

(AD Instruments). We analyzed the EMG patterns of the muscles by computing their 14 

activation level (RMS, root mean square) using the following formula: 15 

��� =  � 1�� � �����²����
  16 

 17 

Statistical analysis  18 

We performed the analyses on motor gains to reduce variability between participants, 19 

especially at PreTest. We primarily checked the normality of the data (Shapiro-Wilk test), the 20 

equality of variance (Levene’s test), and the sphericity (Mauchly’s test).  21 
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First, we used unilateral one-sample t-tests compared to the reference value 100 to 1 

check whether motor performances improved between Pre and PostTest, for each parameter 2 

and each group. Cohen’s d was reported for each test and the statistical significance threshold 3 

was set at 0.05. To control for multiple comparisons, we applied the Bonferroni correction 4 

method to adjust the P values computed for each parameter (three one-sample t-tests per 5 

parameter). 6 

To compare gains between groups, we then performed one-factor ANOVAs with 7 

Group as a between-subject factor and planned comparisons using orthogonal contrasts 8 

analysis for each parameter (Howell, 2012). We constructed a contrast matrix to test the 9 

following a priori assumptions: i) MP and PP led to better gain when compared to an absence 10 

of practice, i.e., Ctrl group (contrast C1), and ii) PP led to better gain when compared to MP 11 

(contrast C2). 12 

To identify the parameters that best discriminated the groups, we finally realized a 13 

stepwise generalized linear discriminant analysis. This exploratory data analysis first 14 

consisted in the identification of discriminant parameters, and then in the creation of functions 15 

that combined these discriminant parameters. The resulting functions were used as a linear 16 

classifier to investigate the data organization according to the categorical predictors (i.e., 17 

groups) and the independent variables (i.e., parameters). To test if the discriminant functions 18 

classified the experimental observations in their respective groups better than chance (i.e., if 19 

the combinations of identified factors were indeed relevant to group discrimination), we used 20 

the Press Q statistic (Hair et al., 1998).  21 

Also, to ensure that participants of the MP group did not activate their muscles during 22 

MP, we used Friedman’s ANOVAs, comparing the EMG activity of each imagined block 23 

with the rest condition, for each muscle (BB and TB).  24 

 25 
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Results 1 

Summary data 2 

Table 1 reports the mean values and the mean gains for the five kinematic parameters. 3 

 4 

Table 1. Average values and standard deviation (SD) for the PreTest, PostTest, and gains of 5 

the five parameters and the three experimental groups. MD: Movement duration; Vmean: 6 

Mean velocity; Vmax: Maximal velocity; NbPeaks: Number of peaks, s: second, cm: 7 

centimeter. 8 

 9 

One sample t-tests 10 
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Firstly, to check whether motor performances improved between PreTest and PostTest 1 

after practices, we used unilateral one-sample t-tests compared to the reference value 100. 2 

Table 2 reports the results and effect sizes for one-sample t-tests analysis. 3 

 4 

Table 2. Summarized results and effect sizes for one-sample t-tests analysis. PP: Physical 5 

practice group; MP: Mental practice group; Ctrl; Control group. MD: Movement duration; 6 

Vmean: Mean velocity; Vmax: Maximal velocity; NbPeaks: Number of peaks. 7 

 8 

PP and MP groups significantly improved their performances between PreTest and 9 

PostTest sessions. Precisely, MD and NbPeaks decreased, while Vmax and Vmean increased 10 
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after practice. The Ctrl group improved movement duration. No significant effect of Distance 1 

was observed (all p’s > 0.05). 2 

 3 

 4 

One factor ANOVA and contrast analysis 5 

Secondly, we compared gains between groups by means of one-factor ANOVAs and planned 6 

comparisons. The results are depicted in Figure 2. 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

Fig. 2. Gains for MD (A. movement duration), Vmean (B. mean velocity), Vmax (C. maximal 16 

velocity), NbPeaks (D. number of peaks) and Distance (E.) for each group. Cross and 17 

horizontal bars within the boxplots represent mean and median, respectively. Boxplots 18 

borders delimitate the first and third quartiles. Errors bars represents the 5th and the 95th 19 

percentiles. Stars indicate significant effects of the contrasts (C1: Ctrl vs PP + MP and C2: PP 20 

vs MP). 21 

 22 



14 

 

The ANOVA revealed a main effect of Group for MD (F2, 42 = 3.85, p= 0.03, ηp
2= 1 

0.15), Vmean (F2, 42 = 3.32, p= 0.045, ηp
2= 0.14), Vmax (F2, 42 = 6.64, p< 0.01, ηp

2= 0.24) and 2 

NbPeaks (F2, 42 = 5.37, p< 0.01, ηp
2= 0.2), but nor for Distance (F2, 42 = 0.29, p= 0.75). The 3 

contrast analysis revealed significant effect of the contrast C1 (Ctrl vs MP + PP) for MD (t= 4 

2.11, p= 0.04, Cohen’s d= 0.69), Vmean (t= 2.02, p= 0.049, Cohen’s d= 0.66), Vmax (t= 3.63, 5 

p< 0.01, Cohen’s d= 1.18) and NbPeaks (t= 2.36, p= 0.02, Cohen’s d= 0.78), without effect 6 

for Distance (t= -0.3, p= 0.76). This confirms that, except for Distance, practice (MP & PP) 7 

improved motor performance when compared to the absence of practice (Ctrl). The contrast 8 

C2 (MP vs PP) revealed no statistically significant difference for MD, Vmean, Vmax or 9 

Distance (all p’s > 0.12). However, there was a significant effect for the contrast C2 regarding 10 

NbPeaks (t= 2.27, p= 0.03, Cohen’s d= 0.82), suggesting better performance after PP than 11 

MP. 12 

 13 

Stepwise generalized linear discriminant analysis 14 

Finally, we performed a stepwise generalized linear discriminant analysis to identify 15 

the parameters that best discriminated the groups. The three groups (PP, MP, and Ctrl) were 16 

considered as the dependent variable and the gains for each parameter as the independent 17 

variable. The discriminant power of each variable was tested using a forward stepwise 18 

approach, revealing that Vmax and NbPeaks significantly contributed to group discrimination 19 

(F2 = 5.19, p< 0.01 and F2 = 3.99, p= 0.025, respectively), whereas MD (F2 = 1.41, p= 0.25), 20 

distance (F2 = 0.04, p= 0.96), and Vmean (F2 = 1.38, p= 0.26) did not.  21 

 22 

The discriminant analysis gave two canonical functions (Wilks' λ= 0.64; χ² (4) = 18.62, 23 

p< .01 for the first function; Wilks' λ = 0.84; χ² (1) = 7.43, p< .01 for the second one). The first 24 
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discriminant function accounted for 30.94% of total variance, while the second one for 1 

19.61%, for a total of 50.55%. The classification accuracy of the discriminant functions was 2 

62.2% with a significant Press Q score (χ² (1) = 16.9, p< .01). This result ensures that the 3 

discriminant functions classified experimental observations in their respective groups better 4 

than chance (i.e., 50%). To conclude, the results of discriminant analysis and contrasts 5 

analysis suggest that Vmax discriminates practice from the absence of practice, whereas 6 

Nbpeaks also discriminates the performance improvement between PP and MP.  7 

 8 

Electromyographic analysis   9 

Participants did not activate their muscles during mental training in comparison to rest. 10 

Statistical comparison (Friedman’s Anova) of EMG activity between each block of MP and 11 

rest revealed no significant difference neither for the BB muscle (X² =5.47; p= 0.48) nor for 12 

the TB muscle (X² = 10.39; p= 0.11). 13 

 14 

Discussion  15 

In the current study, we identified the number of velocity peaks, an indicator of 16 

movement smoothness, as the most relevant parameter that differentiated PP from MP for an 17 

arm pointing task. While classical parameters as movement duration or maximal and mean 18 

velocity improved in a comparable extent following both practices, movement smoothness 19 

improved following MP but to a lower extent than that after PP. These findings provide 20 

relevant information about the specific influence of practice types on motor performance 21 

parameters.  22 

 23 

General motor performance improvement  24 
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Motor performance improvement of arm reaching movement have been widely 1 

investigated, considering both PP and MP (Gentili et al. 2006; Gentili et al. 2010; Yàgüez et 2 

al. 1998; Ingram et al. 2019). Our findings corroborate previous results, showing an 3 

improvement of temporal parameters, such as movement duration, mean and maximal 4 

velocity after both practices, compared to the Control group.  5 

The improvement of motor performance following MP could be explained by the 6 

concept of forward internal model (Gentili et al. 2006; Gentili et al. 2010; Dahm et Rieger 7 

2019; Kilteni et al. 2018). The internal model theory postulates the existence of predictive 8 

processes that simulate sensory prediction and the dynamic consequences of action (Wolpert 9 

and Flanagan, 2001; Friston, 2011; Kilteni et al., 2018). During the mental simulation of a 10 

movement, a motor command is generated by the controller based on the desired outcome. In 11 

parallel, an efferent copy is also generated and transmitted to the forward models, which 12 

produce a sensorimotor prediction about the future states of the arm (Wolpert and 13 

Ghahramani, 2000). If the motor command is inaccurate, then the forward models would 14 

predict an undesired final state for the arm (e.g., pointing next to the target instead of reaching 15 

it). It is hypothesized that, during mental practice, a comparator integrates the discrepancy 16 

(i.e., the error) between the desired outcome and this sensorimotor prediction. This 17 

information would be sent back from the comparator to the controller as a teaching signal, 18 

permitting an internal adjustment of the future motor command despite the absence of sensory 19 

feedbacks. However, due to the absence of such feedbacks, the training of the internal models 20 

would be more variable, that could be one explanation for the well-known difference between 21 

mental and physical practice when considering performance-related motor gains (Gentili et al. 22 

2006, 2010). Interestingly, PP and MP increased mean and maximal velocity to the same 23 

extent, but PP greater decreased the number of velocity peaks. These findings provide 24 



17 

 

evidence that PP and MP may improve specifically the parameters of performance for arm 1 

reaching tasks.  2 

 3 

Movement smoothness discriminates physical and mental practices  4 

The arm reaching movements can be decomposed in two distinct phases: i) an initial 5 

impulse phase, involving predictive loops and ii) a final phase, known as the corrective phase, 6 

implying online movement corrections (Elliott et al., 2001; Thompson et al., 2007). Kinematic 7 

analyses revealed that the first phase can be characterized by one or two high velocity peaks, 8 

permitting to quickly get closer to the target, while the second contains low secondary 9 

velocity peaks, which are likely to represent corrective sub-movements when approaching the 10 

target (Novak et al., 2002). The authors also suggested that PP leads to faster and precise 11 

initial movements in order to quickly approach the target and to reduce the number of 12 

corrective sub-movements, respectively.  Here, we discuss the difference in number of 13 

velocity peaks between PP and MP groups, considering the insights of studies that 14 

investigated the absence of feedbacks during actual reaching movements (Khan et al., 2003; 15 

Franklin et al., 2017). These studies showed that the actual execution of fast and smooth 16 

movements during the initial phase is possible with or without feedbacks, whereas the 17 

reduction of the endpoint variability during the final phase is feedback-dependent. Because of 18 

the similar increase of Vmax for both groups and the decrease of NbPeaks, even for MP, we 19 

suggest that both PP and MP may lead to the execution of faster and precise initial 20 

movements that minimize the corrective phase and thus reduce the number of sub-21 

movements. The distinction between PP and MP could thus stand in the corrective phase, 22 

where sensory feedbacks are necessary. Indeed, the feedbacks of actual movements during PP 23 

may help to optimize the corrective phase when approaching the target, and therefore to 24 

greater reduce NbPeaks in comparison to MP. The absence of sensory feedbacks during 25 
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imagined movements would be an obstacle to reduce the number of sub-movements when 1 

actually approaching the target. 2 

 3 

Limitations 4 

The chosen experimental paradigm limits some additional analyses. Indeed, the 5 

instruction given to the participants was to pass through a target to validate it, without 6 

necessarily stopping the movement in each target. Thus, it is difficult to decompose the 7 

movement into acceleration and deceleration phases to interpret how arm motor control 8 

acquired the various targets. Further investigations could allow confirming our hypothesis 9 

concerning the distinction between the initial and the corrective phase about the decrease of 10 

the number of peaks. For instance, an experimental paradigm using isolated pointing 11 

movements, would allow decomposing each movement in clear acceleration and deceleration 12 

phases, and therefore to quantify the evolution of the number of peaks in each phase, before 13 

and after physical or mental practices.  14 

Likewise, further studies could analyze a broader range of movements, tasks (e.g., to 15 

perform and/or imagine the movement at different velocities) and smoothness metrics (e.g. 16 

dimensionless jerk or Spectral Arc Length; Balasubramanian et al., 2015; Gulde and 17 

Hermsdorfer 2018) to better characterize and understand the influence of MP on varied 18 

movements parameters.  19 

 20 

Conclusion  21 

In conclusion, the present study provided the first evidence that MP increased 22 

smoothness of arm-reaching movement, and that this performance parameter discriminated 23 

between PP from MP. Although, no sensory feedbacks are present during imagined 24 

movements, the increase of movement velocity would lead to greater smoothness after MP. 25 
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Further studies could analyse a broader range of movements and tasks (e.g., to perform and/or 1 

imagine the movement at different velocities) to better understand the influence of MP on 2 

movements parameters. 3 

  4 
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  PreTest PostTest Gain (%) 

  Mean (SD) Mean (SD) Mean (SD) 

 
MD (s) 4.87 (0.97) 4.17 (0.78) 17.31 (15.26) 

 
Distance (cm) 162.01 (5.35) 163.19 (6.61) -0.61 (4.23) 

PP Vmean (cm/s) 32.61 (8.07) 37.79 (8.42) 13.31 (11.81) 

 
Vmax (cm/s) 71.98 (22.12) 81.37 (26.18) 10.39 (10.34) 

 
NbPeaks 5.63 (2.14) 4.18 (1.47) 37.07 (29.37) 

 
    

 
MD (s) 4.80 (0.92) 4.43 (0.82) 9.11 (13.16) 

 
Distance (cm) 164.42 (5.24) 164.23 (3.72) 0.1 (1.94) 

MP Vmean (cm/s) 32.43 (5.38) 35.25 (5.91) 7.38 (11.34) 

 
Vmax (cm/s) 73.44 (13.25) 81.25 (12.35) 9.39 (11.43) 

 
NbPeaks 4.60 (1.13) 3.87 (0.77) 18.62 (15.25) 

     

 
MD (s) 4.87 (0.84) 4.67 (0.87) 4.85 (7.89) 

 
Distance (cm) 163.55 (4.34) 163.54 (4.44) 0.02 (1.49) 

Ctrl 
Vmean (cm/s) 32.31 (5.94) 33.76 (6.74) 3.82 (6.53) 

 
Vmax (cm/s) 71.59 (14.27) 71.18 (15.56) -1.03 (6.30) 

 
NbPeaks 6.22 (2.27) 5.75 (2.45) 11.48 (19.15) 



 

  

t (14) p (adjusted) Cohen’s d 
     

 MD 4.39 0.0009 1.13 
 Distance -0.55 1 -0.14 

PP Vmean 4.36 0.001 1.12 
 Vmax 3.9 0.002 1 
 NbPeaks 4.89 0.0003 1.26 
     

 MD 2.68 0.027 0.69 
 Distance 0.21 1 0.05 

MP Vmean 2.52 0.037 0.65 
 Vmax 3.26 0.008 0.84 
 NbPeaks 4.84 0.0004 1.25 
     

 MD 2.38 0.048 0.61 
 Distance 0.05 1 0.01 

Ctrl Vmean 2.26 0.06 0.58 

 Vmax -0.63 0.8 -0.16 
 NbPeaks 2.32 0.053 0.6 

 




