N
N

N

HAL

open science

Machine learning prediction of groundwater heights
from passive seismic wavefield

Anthony Abi Nader, J. Albaric, M. Steinmann, C. Hibert, J-P Malet, C. Sue,

B. Fores, A. Marchand, M. Gros, H. Celle, et al.

» To cite this version:

Anthony Abi Nader, J. Albaric, M. Steinmann, C. Hibert, J-P Malet, et al.. Machine learning predic-
tion of groundwater heights from passive seismic wavefield. Geophysical Journal International, 2023,
234 (3), pp.1807-1818. 10.1093/gji/ggad160 .

hal-04100453

HAL Id: hal-04100453
https://u-bourgogne.hal.science /hal-04100453
Submitted on 21 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://u-bourgogne.hal.science/hal-04100453
https://hal.archives-ouvertes.fr

Geophysical Journal International

Geophys. J. Int. (2023) 234, 1807-1818
Advance Access publication 2023 April 14
GJI Seismology

https://doi.org/10.1093/gji/ggad 160

Machine learning prediction of groundwater heights from passive
seismic wavefield

A. Abi Nader ®,! J. Albaric,' M. Steinmann,' C. Hibert ©,> J.-P. Malet ©,>3 C. Sue,"*
B. Fores,! A. Marchand,! M. Gros,! H. Celle,! B. Pohl,’ V. Stefani' and A. Boetsch!

! Chrono-environnement UMR6249, CNRS / Université de Franche-Comté, Besangon, France. E-mail: anthony.abi_nader@univ-fcomte.fr

2 Institut Terre et Environnement de Strasbourg UMRT7063, CNRS / Université de Strasbourg, Strasbourg, France

3 Ecole et Observatoire des Sciences de la Terre UAR830, CNRS / Université de Strasbourg, Strasbourg, France

4 Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, Grenoble,
France

SBiogéosciences UMR6282, CNRS / Université de Bourgogne, Dijon, France

Accepted 2023 April 12. Received 2023 February 7; in original form 2022 October 3

SUMMARY

Most of water reservoirs are underground and therefore challenging to monitor. This is par-
ticularly the case of karst aquifers which knowledge is mostly based on sparse spatial and
temporal observations. In this study, we propose a new approach, based on a supervised ma-
chine learning algorithm, the Random Forests, and continuous seismic noise records, that
allows the prediction of the underground river water height. The study site is a karst aquifer in
the Jura Mountains (France). An underground river is accessible through an artificial shaft and
is instrumented by a hydrological probe. The seismic noise generated by the river is recorded
by two broadband seismometers, located underground (20 m depth) and at the surface. The
algorithm succeeds in predicting water height thanks to signal energy features. Even weak
river-induced noise such as recorded at the surface can be detected and used by the algorithm.
Its efficiency, expressed by the Nash—Sutcliffe criterion, is above 95 per cent and 53 per cent

for data from the underground and surface seismic stations, respectively.

Key words: Hydrogeophysics; Seismic noise; Machine learning; Time-series analysis.

1 INTRODUCTION

Water resource has become an essential environmental and societal
issue due to the intensification of its exploitation and its vulnera-
bility to climate change (Drew 1999; Andreo et al. 2006; Green
et al. 2011). Drinking water supply relies mainly on groundwater
aquifers, which are generally not directly discernible nor accessible
(Chen et al. 2017; McDonnell 2017). This applies in particular to
karst aquifers, which are very heterogeneous in terms of perme-
ability : they are characterized by fast groundwater flows in open
conduits (underground rivers) and slow flows in the micro-fractured
rock matrix (Ford & Williams 2013). Since most karst aquifers are
inaccessible, their monitoring often relies on punctual observations
from piezometers or on spring hydrographs. In order to better un-
derstand these systems, it is therefore essential to develop new
monitoring approaches, adapted to their heterogeneous geometry
and flow dynamics.

The seismic wavefield has proved to provide information about
hydrogeological processes (e.g., Larose et al. 2015). Actually, the
hydrodynamics of surface rivers have been the subject of several
passive seismic studies. For example, the spectral analysis of the
ambient seismic noise induced by river flow has allowed to identify

© The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society.

sediment transport and deposition within stream segments (Burtin
et al. 2008; Schmandt ez al. 2013). It has been shown that seismic
recordings from geophones installed on the river bank could be used
to estimate river discharge (Anthony et al. 2018), water height and
bedload transport (Dietze e al. 2019). Regarding groundwater, seis-
mic interferometry methods are effective in detecting water level
within the rock matrix, through the measurement of seismic veloc-
ity changes in the subsurface (Voisin et al. 2017; Fores et al. 2018;
Vidal et al. 2021). Measuring hydrogeological parameters of un-
derground river, which are generally inaccessible, remains however
challenging.

Recent advances in research combining machine learning and
seismic monitoring have shown that it is possible to identify auto-
matically the sources of seismological events triggered by various
geological processes. Actually, the Random Forest algorithm and
curated features have been successful in describing landslide micro-
seismicity (Provost ef al. 2017; Wenner et al. 2021), differentiating
between rockfalls and volcano-tectonic earthquakes (Hibert et al.
2017), detecting debris flow events (Chmiel et al. 2021) and es-
tablishing seismic lithofacies classification (Kim ez al. 2018). The
Random Forest algorithm can also be used to predict, in the ma-
chine learning term, continuous values. For example the method was
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Figure 1. Location map of the site and instrumentation. The underground
river and the dry fossil galleries are drawn in blue and white, respectively
(topographical data are from D. Motte, ASDC). The red and pink dots show
the positions of the seismic stations and the triangle the position of the
hydrogeological probe (CTD).

applied on laboratory observations to identify hidden signals that
precede earthquakes and predict the time remaining before failure
(Rouet-Leduc et al. 2017). It was also applied to predict subsur-
face porosity and capture its spatial variation in reservoirs based on
seismic attributes (Zou et al. 2021).

The objective of this study is to propose an innovative approach
based on a continuous application of the Random Forest machine
learning algorithm on passive seismic wavefield to provide a remote
inference of the water height of the underground river. In other
terms, we propose to establish a projection of seismic data in a multi-
dimensional feature space extracted using a 15-min-long sliding
window to the output of 1-D water height values using the mentioned
algorithm. This unprecedented application could be the head start
in the investigation of other inaccessible water conduits towards a
better groundwater estimation and flood forecasting.

2 STUDY SITE AND DATA

The study site is the Fourbanne karst aquifer in the Jura mountains,
eastern France (Fig. 1). It is part of the JURASSIC KARST hy-
drogeological observatory settled in 2014 (Cholet ez al. 2017) and
of the french SNO KARST network (Jourde ef al. 2018). The local
lithology is characterized by Middle Jurassic tabular limestones and
shales cross-cut by a series of N-S and NE-SW normal faults, which
control the orientation of the underground conduits. The aquifer is
primarily fed by allogenic recharge through sinkholes (Cholet et al.
2015). The underground conduit has been explored and mapped
over a length of 9 km by speleologists in the unsaturated zone and
by cave divers in the saturated zone. The location of the instru-
ments as well as a part of the karst conduit are detailed in Fig. 1.
The seismological data are recorded by two stations of the long-
term regional seismic network JURAQUAKE deployed in eastern
France since late 2018 and 2019. The station AVEN is located in

a fossil gallery at 20 m depth (423 m asl), at the base of a vertical
shaft drilled by speleologists (Guralp CMG40T 60s-100Hz sensor,
connected to a Staneo D3BB-MOB digitizer). The second station
FONT is located at the surface (443 m asl), at 3 m from the well-
head (Guralp 6TD, 30s-100Hz sensor). For coupling purposes both
seismometers are dug 50 cm into the cave sediment or surface soil.
AVEN and FONT are at a slope distance of about 50 m and 60 m
from the underground river’s channel. The sampling frequency of
these three component seismic stations is 200 Hz for AVEN and
100 Hz for FONT. A hydrological probe (CTD) is installed in the
river and records water electrical conductivity, water temperature
and water height every 5 minutes.

In this study, we focus on hydrogeological data recorded for 2
years between 2009 September 15 and 2021 September 15 (Fig. 2).
This period covers two entire hydrogeological cycles, with main
rainy seasons in winter and spring. During this period, the CTD
recorded a minimal water height of 0.4 m during low water periods,
which is measured from the streambed to the water—air interface,
and a maximum height of 1.7 m during floods. Seismological data
are complete during this period of time at AVEN only. Due to
technical problems, there are gaps in the data recorded at FONT
and the analysis covers a shorter period of time: between 2019
October 27 and December 31 and between 2020 September 15 and
2021 September 15. Fig. 2(a) is a plot of the underground river
water height during all of the studied period. Fig. 2(b) is a zoom
on a flood occurring between 2019 November 16 and November
20. Spectrograms computed from seismological data recorded at
FONT and AVEN, during this same flood, are presented in Figs 2(c)
and (d), respectively. Energy lines between 10 and 20 Hz appearing
on both AVEN’s and FONT’s spectrograms can be related to the
anthropogenic activity. Indeed, these energy lines are more marked
for FONT than for AVEN due to its location underground, insulated
from the surface, thus the river induced noise will appear on its
signals’ spectrogram with a higher amplitude. Actually, we can
notice at this frequency range a day-night variation with more energy
during daytime, and less energy during days-off (November 17 is
a Sunday). In addition, for the latter frequency range, more energy
is manifested on the horizontal components than on the vertical
component (Fig. Al).

The seismic noise induced by the river becomes relatively visible
on the spectrograms once the water rises. Due to the position of the
seismometer, at the surface, in a field enclosing two horses, and the
prominence of noise generated by anthropogenic sources (vehicles
on the nearby road, dwellings, agricultural activities, mining) as
well as the horses’ gaits, the effect of water height variation is
hardly detectable on the FONT spectrogram (Fig. 2¢). The noise
amplitude increase due to water height increase is clearer on the
AVEN spectrogram, which is more isolated from the surface noise
(Fig. 2d). Actually, three main frequency ranges can be associated
with water height change (Fig. 2d): 1-3 Hz, 5-8 Hz and 25-50 Hz.
While the low frequency bands (1-8 Hz) are visible before the flood,
energy at high frequency seems to occur after the flood has started.
The seismic noise related to water flow in rivers can be associated to
different phenomena (Burtin e al. 2008; Tsai et al. 2012; Schmandt
etal. 2013; Diaz et al. 2014; Gimbert et al. 2014). A major source of
noise results from the frictional forces produced by the interaction
between the turbulent flow and the riverbed. Another one is the bed
load particles transport, generally observed at higher frequency.

In order to look more in detail at the noise induced by the flood,
we have plotted the noise amplitude against water height with a
5 min time step for FONT (Figs 3a—c) and AVEN (Figs 3d—f). Data
were filtered at 1-3 Hz, 5-8 Hz and 25-50 Hz, corresponding to the
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Figure 2. (a) Hydrograph spanning the entire study period in terms of water height. The shaded part is the flood selected for the spectrograms computation.
The two arrows indicate the two hydrogeological cycles used for the training and application of the RF algorithm. (b) Hydrograph of the selected flood event
in (a), between 2019 November 16 and 20. (c) Spectrogram of the vertical components during the selected flood for signals recorded at FONT and filtered

between 1 and 50 Hz. (d) Same as (c) for AVEN.

three frequency ranges evoked earlier. Similar trends are obtained
for the two stations. While the water height rises from 0.50 m to
0.80 m and decreases below 0.80 m, the variation of the noise ver-
sus the variation of water height follow the same path. In addition,
at all frequency ranges, between 0.90 m and the flood peak, the
noise amplitude as function of water height draws a hysteresis. The
latter is generally attributed to bedload transport during increasing
flooding (high noise amplitude), and gravel deposit during reces-
sion (lower noise amplitude), with lower frequencies corresponding
to larger particle movement (Burtin ef al. 2008; Schmandt et al.
2013; Diaz et al. 2014). Gimbert et al. (2014) have also shown that
turbulence processes in the river could also significantly contribute
to the hysteresis curve.

3 FEATURE EXTRACTION FROM
SEISMIC DATA

In this section the objective is to extract characteristic features from
the raw seismic data. Firstly, a pre-processing of the seismic data
has been performed. The data are decimated to 100 Hz (for AVEN
only), and then detrended and filtered between 1 and 50 Hz. The
seismic signals are then partitioned using a 15 minutes moving win-
dow with an overlap of 50 per cent, corresponding to a windowing
step of 7.5 min. Several window lengths were tested. A 15-min-
long window was chosen because it requires reasonable CPU time
computation and provides sufficient resolution for capturing the be-
ginning of the rise of water during a flood event. Finally, features
of the seismic recordings are computed for each window (Table 1,
see Hibert et al. 2017, for a detailed description of each feature).

A total of 72 features are calculated related to the signals’ wave-
form, frequency content, spectral energy, and pseudo-spectrogram.
Similar features as Hibert ef al. (2017) are used in our study, except
for the polarity attributes, with additional frequency bands for the
computation of the signal’s Kurtosis and energy (1-3, 3-5, 5-8, 8—
10, 10-15, 15-20, 2025, 25-30, 30-35, 35-40, 40-45, 45-50 Hz).
These frequency bands are chosen to cover all of the studied fre-
quency range (1-50 Hz) and target the bands affected by the water
height variation obtained during the spectral analysis. These fea-
tures, as presented in Hibert et al. (2017), are commonly used to
identify events or seismic sources within the seismic signals since
they are able to cover several aspects of the signals. In the case of
the chosen configuration, the computation of features for a station
and a year of data takes about 2 weeks of CPU time. The extracted
features are used in the algorithm that is explained in the following
section.

4 METHOD

The Random Forest (RF) algorithm (Breiman 2001) is a bagging
ensemble learning method based on the computation of a large
number of decision trees. Each tree in the forest is generated from a
random subset of events from the training set and a random subset
of features describing the events. The RF algorithm has two modes
of application: (1) the classification in which the final result will be
a class obtained from the majority of voting, and (2) the regression
in which the final result will be a value obtained by averaging
the predicted values given by each tree. Increasing the number of
trees in the forest helps in the convergence without causing over-
fitting but reducing the generalization error (Breiman 2001), which
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Figure 3. Noise amplitude as function of the water height for signals recorded at the surface station FONT and filtered between (a) 1-3 Hz, (b) 5-8 HZ and
(c) 25-50 Hz. Same for underground station AVEN in (d—f). The color bar represents the time scale between 2019 November 17 and November 20. The white
and black arrows correspond respectively to the increase and decrease sections of the water height during the flood.

measures the prediction error of the model over the data set. Because
of the random selection of both the training events and features,
each decision tree in the Random Forest is unique and the trees
are not correlated with each other that helps in reducing the over-
fitting, which is one of the advantages of this algorithm. Another
advantage is the ability of the algorithm to use a large number of
features and assess their importance depending on the attributed
case (water height in this study) in the prediction, while going from
a multidimensional dataset to a 1D output. The importance of the
features helps to better understand the results and provide insights
on the link between the seismic signals features and the physics of
the phenomena.

Each decision tree of the RF consists of internal nodes (splits)
and terminal nodes (leaves) (Criminisi et al. 2011). The depth of a
tree is the number of splits from its root (node 0) to its leaves. It is a
measure of the number of splits made by the tree to get a prediction.
No limitation was set on the maximum depth in our model: the

nodes are expanded until all leaves contain less than two samples
in the population during the splitting. The deeper the tree, the more
splits it has, hence more information will be caught from the data
and configured into the model. At each node, the selected feature is
used to split the selected subset of data into two separate populations.
The best splitting value at each node is found by variance reduction,
meaning the value of the feature at the split is the value giving the
lowest variance between the predicted (which is the mean value of
each obtained population) and the real values, and thus yielding the
highest precision. Feature importance is the assignment of a score
to features based on their impact on the targeted prediction. The
feature giving the lowest variance in the splitting is the feature with
the highest importance and is chosen as a root node for the tree.
The objective of the feature importance is to assess the influence of
each feature on the model decision making in order to interpret the
resulted predictions. Another objective can be to select important
features for similar applications and gain in processing time.
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Table 1. Description of the features used in the algorithm (modified from Hibert ef al. 2017). DFT and FFT stand for Discrete

Fourier Transform and Fast Fourier Transform respectively.

Feature Description
Duration Duration of the signal
RappMaxMean Ratio of the Max to the mean of the normalized envelope

RappMaxMedian
AsDec

Ratio of the Max to the median of the normalized envelope
Ratio of the ascending to decreasing time of the envelope

KurtoSig Kurtosis of the signal

KurtoEnv Kurtosis of the envelope

SkewnessSig Skewness of the signal

SkewnessEnv Skewness of the envelope

CorPeakNumber Number of peaks in the autocorrelation function

INT1 Energy in the first 1/3 of the autocorrelation function

INT2 Energy in the last 2/3 of the autocorrelation function
INT_RATIO Ratio of INT1 to INT2

ESi-j Energy of the seismic signal in the i-j Hz frequency band
Kurtoi-j Kurtosis of the signal in the i-j Hz frequency band
DistDecAmpEnv Difference between decreasing coda amplitude and straight line
RatioEnvDur Ratio between maximum envelope and duration

MeanFFT Mean FFT

MaxFFT Max FFT

FmaxFFT Frequency at Max (FFT)

FCentroid Frequency of spectrum centroid

Fquartl Frequency of 1st quartile

Fquart3 Frequency of 3rd quartile

MedianFFT Median of the normalized FFT spectrum

VarFFT Variance of the normalized FFT spectrum

NpeakFFT Number of peaks in the normalized FFT spectrum
MeanPeaksFFT Mean peaks value for peaks >0.7

EIFFT Energy in the 1 — NyF/4 Hz (NyF = Nyqusit Frequency) band
E2FFT Energy in the NyF/4 — NyF/2 Hz band

E3FFT Energy in the NyF/2-3«NyF/4 Hz band

E4FFT Energy in the 3«NyF/4 — NyF/2 Hz band

gammal Spectrum centroid

gamma2 Spectrum gyration radio

gammas Spectrum centroid width

SpecKurtoMaxEnv Kurtosis of the envelope of the maximum energy of spectrograms
SpecKurtoMedianEnv Kurtosis of the envelope of the median energy of spectrograms
Ratioenvspecmaxmean Ratio of the Max DFT(¢) to the mean DFT(¢)
Ratioenvspecmaxmedian Ratio of the Max DFT(¢) to the median DFT(#)

Distmaxmean Mean distance bewteen Max DFT(7) mean DFT(r)
Distmaxmedian Mean distance bewteen Max DFT median DFT

Nbrpeakmax Number of peaks in Max (DFTs(%))

Nbrpeakmean Number of peaks in mean (DFTs(t))

Nbrpeakmedian Number of peaks in median (DFTs(7))

Rationbrpeakmaxmean Ratio between the number of peaks in Max (DFTs(#)) and mean (DFTs(?))
Rationbrpeakmaxmed Ratio between the number of peaks in Max (DFTs(#)) and Median (DFTs(7))
Nbrpeakfreqcenter Number of peaks in centroid frequency DFTs()

Nbrpeakfreqmax Number of peaks in Max frequency DFTs(7)

Rationbrfreqpeaks Ratio between the number of peaks in centroid frequency DFTs(#) and Max frequency DFTs(¢)
DISTQ2Q1 Distance Q2 curve to Q1 curve (QX curve = envelope of X quartile of DTFs)

DISTQ3Q2 Distance Q3 curve to Q2 curve

DISTQ3Q1 Distance Q3 curve to Q1 curve

An example of a tree of the forest resulting from the training
of a model with AVEN’s data with the maximum depth set at 3 is
presented in Fig. 4. This maximum depth is only used to generate
this figure and to be able to visualize the functioning of a tree. A
subset of features and data are selected for this tree. The features
are sorted according to their importance. At the level of each node,
water height is plotted as a function of the feature corresponding
to the node. The feature corresponding to the energy of the seismic
signal between 40 and 45 Hz (ES40-45), which represents the base
10 logarithm of the integral of the raw seismic signal’s envelope
filtered between 40 and 45 Hz, is the root of the tree since it is the

most important feature. A splitting point for this feature is obtained
and the population is divided into two sets accordingly, each set
having its own mean water height that gives the lowest variance.
Samples having this feature above the resulted threshold will be
selected at the right part of the tree, and below the threshold at
the left part. The next feature splitting the population will be less
important than the preceding feature. This is done at every node until
the maximum depth condition is fulfilled. The samples obtained at
each node will be satisfying all the above conditions from all the
previous nodes of the tree.The final plots represent the water height
distribution at different time windows of the remaining samples after
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Figure 4. A tree diagram generated from a model using AVEN’s data with a maximum depth parameter set at 3.

the splitting. At the level of each final node is the number of samples
obtained for the final split and the prediction of the water height,
which is the average value of the water heights of the remaining
samples. Given features corresponding to a certain signal, a water
height will be obtained at each tree, and having 1000 trees the final
prediction will be the mean of all obtained water heights.

Unlike usual applications, the training and testing are here done
on continuous signals (water height and seismic) and not on selected
events. The process involves independent algorithms for each sta-
tion (AVEN and FONT). The following steps include training on a
certain period of time and testing on another period of time. The
choice of these periods of time was controlled by data availabil-
ity. The training period is the same for AVEN and FONT: from
202 September 15 to 2021 September 15 (training dataset). The
testing period (testing dataset) is from 2019 September 15 to 2020
September 15 AVEN and only two months for FONT (from 2019
October 27 to December 31). Hence the training dataset counts 70
000 windows (of 15 min) for AVEN and FONT, and the testing
dataset counts 70 000 windows for AVEN and 13 000 windows for
FONT. The choice of training the algorithm on 2020-2021 data and
testing it on 2019-2020 instead of the other way round is the lack of
data for FONT; this choice allows to have firstly the data of a com-
plete hydrological cycle for the training to cover all potential water
heights and secondly a same training period for both stations for re-
sults comparison issues. A RF with 1000 trees is then created based
on the training dataset by assigning to each window of features the
corresponding measured water height. A similar configuration was
used as in Provost et al. (2017) and Hibert et al. (2017). The RF
model was then applied on the testing dataset which generates an
array of water heights. The predicted water heights are then com-
pared with the real values in order to assess the algorithm precision.
Finally, to evaluate which features are the most relevant, 10 forests
were created and trained, each giving values for the features impor-
tance. These values are then averaged over the 10 instances. This
number of instances was chosen since it is a reasonable choice in
terms of CPU time, knowing that one instance of the algorithm can
take several hours since we are using a year of data for the training
of a 1000 trees forest.

5 RESULTS OF THE REGRESSION

The results of the regression analysis performed on data from sta-
tions FONT and AVEN are presented in Fig. 5. The predicted
water height was smoothed for both stations using a 10-day moving
window to avoid short transitory signals coming from local noise
sources. A good fit between observed and predicted values was ob-
tained, as illustrated in Fig. 5. In order to better assess the quality of
the fit we calculated the overall Root Mean Square Error (RMSE)
and the Nash—Sutcliffe efficiency coefficient (NSE) which is com-
monly used in hydrological models (McCuen et al. 2006) and is
given by:

T

> (Hy — H,)?
NSE=1-"— 1)

Xg(Hé — Hy)?

t=
where H, is the mean of observed water heights, and ,, is modeled
water height. Hj is observed water height at time 7. For FONT, the
obtained RMSE is about 0.1 m and the NSE is about 53 per cent.
The prediction shows many outliers or misfits compared to the true
water height variation. The misfits are mainly observed during the
recession period (e.g. beginning of December 2019; Figs 5a and c).
It is most likely due to the position of the station at the surface, at the
vicinity of many major noise sources which tends to hide the noise
generated by the river. However, the overall shape of the hydrograph
is correctly reproduced. For AVEN the quality of the fit is very high,
with an RMSE of only 0.03 m and the NSE reaching 95 per cent. A
few outsider peaks can be observed systematically during periods
of flood recession : mostly from mid to end of 209 January, from
2019 mid-March to end of April and from beginning of 2019 July
to end of September. For these periods the predicted water heights
fall mainly below and only punctually above the observed heights
(Figs 5b and d). In these cases, the seismic noise generated by the
river most likely interferes with other noise sources. Figs 5(c) and
(d) show the predicted values of the water height versus the real
measured values on a normalized scale for simulations done with
FONT and AVEN, respectively. If the fit between predicted and
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Figure 5. (a) Simulated water height at surface station FONT; the blue line is the water height measured at the CTD; the red line is the predicted water height
obtained from the application of the algorithm on the seismological data. (b) Same as (a) for underground station AVEN. The dashed rectangle indicates the
period of application in (a). (¢) Predicted versus measured water height for simulations carried out at FONT; the blue line represents the 1:1 line. (d) Same as

(c) f