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Abstract
The Forest Thrush (FT), Turdus lherminieri, is a secretive, ground-dwelling forest bird species of conservation concern, 
endemic to only four Caribbean islands. Factors influencing habitat selection and abundance by FT have been seldom docu-
mented so far. We assessed variation in the presence and abundance of FT in various forested habitats in Guadeloupe. To that 
end, we deployed 5-camera-trap arrays over 14 days on 24 different survey stations resulting in 1680 trap days. We observed 
FT more frequently at camera trap stations where rainforest dominated, with local abundance declining with increasing 
canopy openness. Furthermore, temperature was the most important factor affecting the presence of FT at our study sites. FT 
was essentially diurnal, with some activity at dawn and dusk. We document for the first-time spatial co-occurrence between 
FT and potential mammal predators. FT co-occurred positively with rats and negatively with cats. Although FT is globally 
listed as near threatened by IUCN, the species the species appeared to be relatively abundant in Guadeloupe, possibly as a 
consequence of the suspension of hunting since 2014 and/or the almost total protection of the Guadeloupe tropical rainforest. 
We recommend the use of camera traps to improve knowledge for the conservation status of the species in other part of its 
area of distribution and to provide additional information on the potential impact of exotic predatory mammals.
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Introduction

Extensive habitat destruction is a major source of biodiver-
sity loss worldwide (Pimm et al. 2006; Brook et al. 2008). 
This phenomenon mainly results from human activities such 
as logging, agricultural expansion, or human settlement 
(Wilcove et al. 2013; Dávalos et al. 2016). In this respect, 
the conservation of tropical forests is of prime importance, 
as they support more than two-thirds of the World’s biodi-
versity despite covering less than 10% of the Earth’s land 
surface. However, they are particularly exposed to unabated 
deforestation and forest fragmentation (Bradshaw et al. 
2009; Hansen et al. 2013; Giam 2017). Consequently, many 

tropical forest species are declining, particularly in restricted 
areas, such as oceanic islands (Alroy 2017). This is particu-
larly true of birds, with more than 600 globally threatened 
species (Stattersfield et al. 1998; Ricketts et al. 2005) and 
more than 90% of species extinctions having occurred on 
islands (Johnson and Stattersfield 1990; Banko et al. 2013).

The Caribbean islands constitute one of the 25 hotspots 
of biodiversity on Earth (Myers et al. 2000; Pimm et al. 
2014), with a high diversity of bird species and high levels 
of avian endemism (Vázquez-Miranda et al. 2007; Catanach 
et al. 2021). However, the small extension of this hotspot 
makes it one of the most vulnerable areas of conservation 
importance (Brooks et al. 2002). Deforestation is in par-
ticular widespread in the insular Caribbean due to human 
exploitation (Tole 2001; Dolisca et al. 2007; Hedges et al. 
2018) and natural disasters (Wiley and Wunderle 1993; 
Eppinga and Pucko 2018). This phenomenon is particularly 
affecting the avifauna, with several Caribbean endemic bird 
species being declining (Wunderle 2008; Arendt et al. 2013; 
Lloyd et al. 2016; Devenish-Nelson et al. 2019; Akresh 
et al. 2021). In addition, scientific attention given to Carib-
bean forest-dependent varies markedly among Caribbean 
islands and family groups (Devenish-Nelson et al. 2019).
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In this context, we studied the Caribbean-endemic For-
est Thrush (hereafter FT), Turdus lherminieri, typically 
found in various forest habitat types (Benito-Espinal and 
Hautcastel 2003; Arnoux 2012; Parashuram et al. 2015). 
The species' distribution area is restricted to four islands 
in the Lesser Antilles, Montserrat, Guadeloupe, Dominica, 
and St Lucia (Benito-Espinal and Hautcastel 2003; Eraud 
et al. 2012). Currently, FT is globally listed as near threat-
ened by IUCN, considering the impact of anthropogenic 
deforestation and introduced predators. The Montserrat 
population declined abruptly following the 1995–1997 
volcanic eruptions but appears to have recovered since 
then (Dalsgaard et al. 2007). A small, possibly declining, 
population exists in Dominica (Durand and Baptiste 2008), 
whereas the St Lucia population might be limited to a few 
individuals, if not extinct (Toussaint et al. 2009; Arnoux 
et al. 2014). The larger Guadeloupe FT population appears 
to be stable, according to data from audio-count surveys 
and mist netting (Eraud et al. 2013; Guillemot et al. 2020). 
The four populations have been considered as distinct 
subspecies according to plumage patterns (Clement and 
Hathway 2000; Zuccon 2011). Accordingly, Arnoux et al. 
(2013, 2014) provided some evidence for morphological 
and genetic differentiation between Montserrat, Guade-
loupe, and Dominica, as well as within Guadeloupe, pos-
sibly as a result of habitat fragmentation.

At a more local scale, Parashuram et al. (2015) studied 
the influence of local habitat structure on FT abundance in 
Montserrat, relying on visual and acoustic detection dur-
ing point count surveys. They concluded that FT prefers 
mature mesic and wet forests at mid elevations. However, 
the performance of methods relying on visual and auditory 
cues to survey tropical forest birds may vary according to 
habitat type, in direct relation to habitat characteristics and 
sound attenuation (Waide and Narins 1988; Anderson et al. 
2015), possibly affecting conclusions about habitat selec-
tion. In addition, auditory point count method has maximal 
efficiency only when conducted during the peak of calling 
activity (Levesque and Lartiges 2000; Rivera-Milán et al. 
2022) and/or when broadcasting the call of the target spe-
cies (Cambrone et al. 2021). A potential alternative survey 
method consists in relying on camera traps. In comparison 
with point count surveys, the use of camera traps allows 
the collection of various and valuable ecological informa-
tion such as the presence of other species and diel activity. 
The method is particularly suitable for studying discrete 
and recluse bird species such as FT (O’Connell et al. 2011; 
Suwanrat et al. 2015; Smith et al. 2017; Cook et al. 2020; 
Jean-Pierre et al. 2022). Finally, species distribution coupled 
with environmental variables can easily be modelled from 
camera-trap data (Maseko et al. 2017; Smith et al. 2017).

We therefore relied on camera traps to [1] estimate FT 
local abundance, detection and occupancy in Guadeloupe 

forests, [2] understand the influence of environmental vari-
ables on occupancy, detection and abundance, and [3] assess 
spatiotemporal co-occurrence between FT and potential 
mammal predators, including humans.

Material and methods

Study area

Field work took place on Basse-Terre and Grande-Terre, the 
two main islands of the Guadeloupe archipelago, French 
West Indies, which are separated by a narrow sea channel. 
The western island of Basse-Terre is mainly mountainous, 
with a maximum height of 1467 m (Gadalia et al. 1988), 
whereas the eastern island of Grande-Terre is lower and 
flatter, with a maximum height of 177 m, and is of coral-
limestone formation (Lasserre 1961). The elevation gradi-
ent translates into a high diversity of habitats, with tropical 
forest dominating over tropical dry forest and tropical wet 
coastal forest (Rousteau 1996a).

Data collection

Data on the presence of FT and that of potential mamma-
lian predators were collected during a study initially aimed 
at documenting the presence and abundance of two quail-
dove species (Jean-Pierre et al. 2022). We relied on passive 
infrared camera traps (Moultrie© M-40i, with a 125° angle 
of view) to document the presence and assess the abundance 
of FT and other species. To that end, we surveyed 24 stations 
(each station consisting of an array of 5 camera traps) over 
2 separate 7-day periods between February and May 2019, 
including 6 tropical dry forest stations, 6 tropical wet coastal 
forest stations and 12 tropical rainforest stations (Fig. 1, see 
Jean-Pierre et al. 2022 for additional information).

Although Guadeloupe has a high diversity of forest habi-
tats, steep landscape and extensive urban areas are particu-
larly present. Consequently, stations were set to be represent-
ative of the islands’ high diversity of forest habitats, along 
the altitudinal gradient (Smith 2004; Talvitie et al. 2006; 
Louppe et al. 2021; Jean-Pierre et al. 2022). Stations were 
set at elevations ranging from 0.76 m to 768.65 m.

At each station, we set up five camera traps along a 
straight line, with a 200-m distance between adjacent cam-
eras. Each camera-trap location was surveyed twice for a 
period of seven consecutive days, between February and 
March 2019 and again between April and May 2019, result-
ing in 1680 days of trapping. At each camera-trap location, 
we attached a single camera to a robust tree at a height of 
between 20 and 30 cm, according to the small body size 
of the targeted bird species (O’Connell et al. 2011). We 
selected trees at locations where the vegetation was not 
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too dense to allow an optimal range of camera sensor in 
closed habitats. Cameras were active 24 h d−1. In order to 
avoid multiple photographs of the same individual over 
short periods of time, camera-traps were set to take three 
pictures each time a movement was detected, with a 30-s 
delay between pictures (Smith et al. 2017). We assessed 
habitat type, forest structuration, canopy openness and tem-
perature at each camera-trap location. Following (Rousteau 
1996b), we considered four forest habitat types (tropical 
dry forest, tropical rainforest, tropical wet coastal forest) 
based on direct observations in the field. We visually esti-
mated the forest structuration as dense (≥ 66% tree cover) 

or sparse (≤ 66% tree cover), with a corresponding score 
of 1 or -1, respectively. At each station, we calculated an 
average value for the five camera-traps, thus resulting in a 
continuous forest structuration index ranging from -1 to 1. 
We visually estimated canopy openness at each camera-trap 
location as open (≥ 66% open), partially open (33–66 open), 
or closed (0–33% open), with a corresponding score of 1, 
0.5 or 0, respectively, (see Jean-Pierre et al. 2022). We then 
calculated an average for the five camera-traps to obtain a 
continuous canopy openness index ranging from 0 to 1, 
for each station (Cook et al. 2020). We collected elevation 
data and ambient temperature at each camera-trap location 

Fig. 1   Locations of the 24 camera trap stations investigated in Guade-
loupe between February and May 2019. This includes 6 tropical dry 
forest stations, 6 tropical wet coastal forest stations and 12 tropical 

rainforest stations. Each station had five cameras that were monitored 
for two 7-day periods. The distance between these stations ranged 
from 2.82 km to 9.81 km
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using a Garmin Dakota 20 GPS and camera-trap records, 
respectively. On each FT detection, ambient temperature 
was automatically recoded by the camera. Otherwise, we 
estimated average daily temperature using other diurnal 
species captured by the camera traps. According to the pat-
tern of diel activity of FT (see results), we only took into 
account captures at morning, noon and afternoon.

Statistical analysis

We used the total number of individuals (captures) of each 
species at each camera trap location to assess local abun-
dance (Preston 1948). Then, we calculated the total abun-
dance per station by combining the local abundances of 
the five camera traps at each location. We used a Wilcoxon 
signed-rank test for paired data (Rosner et al. 2006) to com-
pare estimates of local abundance obtained at each station 
between the two sampling periods, as the data did not follow 
a normal distribution ( Shapiro–Wilk normality test p < 0.01; 
Mohd Razali and Bee Wah 2011).

To compare the median number of more than two groups, 
we used a Kruskal–Wallis analysis of variance by ranks, fol-
lowed by Dunn's tests to perform subsequent pairwise com-
parisons between groups. We calculated naïve occupancy 
for each species by dividing the number of camera-trap loca-
tions where at least one individual was photographed, by 
the total number of camera-trap locations. For each species, 
we also calculated capture per unit effort (camera-trapping 
sampling occasion) by dividing the number of photographed 
individuals by 100 trap-days.

The influence of environmental variables on detection 
and abundance was then assessed using Royle and Nich-
ols' heterogeneity model (Royle and Nichols 2003), which 
links abundance and heterogeneous detection probabilities. 
This method is especially recommended for assessing site 
occupancy at different spatial scales in the case of almost 
undetectable populations of unmarked individuals (Royle 
and Nichols 2003; Besnard and Salles 2010). Using data 
from 7-day trapping sessions, detection was considered as 
a binary variable (1 = detection, 0 = non-detection, correct-
ing for occasional camera malfunction) at each station con-
sidering all identifiable species. Species detection (1) and 
non-detection (0) were extracted for each camera-trap day 
(i.e., 24 h period) at each station, with a 10 min buffer time 
between detections of the same species. Thus, abundance 
modelling was only concerned with species binary detection 
history under specific habitat conditions, not with species 
abundance history. According to Royle and Nichols (2003), 
the most important source of heterogeneity in site-specific 
detection probabilities is variation in animal abundance, 
Ni. The model assumes that all individuals of site i during 
sample j, have the same detection probabilities, rij, and that 

detections are independent. If at least one individual is found 
within the site, the species is recorded. Thus, the probability 
of detecting a species is linked to the probability of detecting 
an individual by:

To maximize observation independence, we analysed  
data at the station level. In addition, we relied on occupancy- 
detection models to evaluate the influence of environ-
mental variables on FT distribution. We used the R  
package « unmarked» v0.13–0 (Fiske and Chandler 2011) 
to build abundance-detection models and occupancy- 
detection models.

We modelled abundance (λ) and occupancy (ψ) based on 
temperature, elevation, canopy openness, and forest type, 
and probability of detection (p) based on forest structure and 
temperature. We first ran a model in which both detection 
probability and abundance (or occupancy) were independent 
of covariate influence, e.g. p(.),λ(.) or p(.),ψ(.). We did not 
include all environmental variables influencing abundance 
(or occupancy) and detection in a global model because 
several of them were highly correlated (Spearman rank cor-
relation test; canopy openness and temperature: rs = 0.67; 
elevation and temperature: rs = -0.82; p < 0.01 in both cases). 
However, we chose to keep all the environmental variables 
for modelling occupancy and abundance, as model selec-
tion allowed us to separately consider highly correlated 
variables. Accordingly, we modelled the influence of each 
environmental variable on p while holding λ (or ψ) constant, 
and vice versa, e.g., [p(covariate1), λ(.)] and [p(covariate1), 
ψ(.)] or [p(.), λ(covariate1)] and [p(.),ψ(covariate1)]. 
Finally, each environmental variable was tested on p, with-
out or with additive effects, e.g., [p(covariate1 + covari-
ate2), ψ(covariate1)] or [p(covariate1 + covariate2),  
λ(covariate1)] or [p(covariate1), ψ(covariate1 + covari-
ate2)] and [p(covariate1), λ(covariate1 + covariate2)]. Only 
covariates that were not correlated between themselves were 
included in additive effects.

We used Akaike's information criterion to rank models, 
and models with AICc < 2 were considered to assess the 
significance of covariates (Burnham et al. 2011). The ratio 
of AIC weights was used to calculate evidence for the best 
model in comparison to other models. Using 10,000 para-
metric bootstraps, we checked for goodness-of-fit and mean 
dispersion parameter ĉ for all valid models (Burnham and 
Anderson 1998; MacKenzie and Bailey 2004).

Following Jean-Pierre et al. (2022), we examined spa-
tial and temporal overlap between FT and potential preda-
tors, including: domestic cats (Felis catus Linnaeus, 1758), 
domestic dogs (Canis familiaris Linnaeus, 1758), rodents 
(pooling all species), northern raccoons (Procyon lotor, 
1758), small Indian mongooses (Urva auropunctata, 1836), 

Pij = 1 − (1 − rij)
N
i
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and humans. We then considered four different time peri-
ods of unequal length to assess diel activity (Lucherini et al. 
2009; Gerber et al. 2012; Monterroso et al. 2014): night 
(from 1 h after sunset to 1 h before sunrise), dawn (from 1 h 
prior to 1 h after sunrise), day (from 1 h after sunrise to 1 h 
before sunset), and dusk (from 1 h prior to 1 h after sunset). 
We considered variation in daylength between the two trap-
ping periods by defining average sunrise and sunset dates 
for each of them. We first used Fisher's exact test (Fisher 
1922, 1992; Agresti 1992) to compare the proportion of 
birds caught during different periods of the diel cycle (night, 
dawn, day and dusk) between the two trapping periods. We 
then used Jacobs Selectivity Index (JSI, Jacobs 1974) to 
assess selectivity in diel rhythm activity, as described by 
Monterroso et al. (2014). The JSI scale runs from -1 to 1, 
with -1 representing total avoidance, 0 representing no pref-
erence, and 1 representing total preference. We employed 
bootstrap resampling (500 replicates) and recalculated the 
JSI for each bootstrap sample to determine the average JSI 
index and 95 percent confidence intervals for each period 
and species. When the 95 percent CI of the JSI was positive 
(or negative) and did not overlap zero, the four periods were 
considered positively (or negatively) selected (i.e., used as 
expected by chance). A paired-sample Wilcoxon test was 
used to compare the JSI index between the two sampling 
periods for each species.

We examined spatial co-occurrence of FT with predators 
using the probabilistic model proposed by Veech (2013),  
included in the R package "cooccur" v1.0 (Griffith et al. 
2016). This model determines to what extent the frequency 
of co-occurrence of two species differs from what would 

be expected under the null hypothesis of independent 
distributions.

In addition, to explore temporal activity and overlap, 
we calculated kernel density estimates of diel activity  
(Meredith and Ridout 2016), using the R "Overlap" v1.1 
package (Niedballa et al. 2016). We favoured ∆4 over ∆1 as 
a non-parametric estimator of the coefficient of overlapping 
as our sample size was larger than 75 (Schmid and Schmidt 
2006), as recommended by Ridout and Linkie (2009). We 
calculated an average value from 10,000 bootstrap samples 
for each pair of species to estimate the precision of overlap 
coefficients.

Results

Out of a total of 9450 detection-events, 330 corresponded to FT, 
1056 to rodents, 483 to small Indian mongooses, 107 to dogs, 72 
to domestic cats, and 101 to racoons, (see Jean-Pierre et al. 2022).

Forest Thrush naïve occupancy and local abundance

As FT local abundance at each trapping station did not dif-
fer between the two sessions (Wilcoxon’s test, P = 0.26), we 
pooled the two data sets for further analysis. Overall, FT 
was detected on 16 of the 24 camera trapping stations, cor-
responding to a naïve occupancy rate of 0.67, and a camera 
trapping rate (number of individual detections/100 trap-days) 
of 18. Moreover, FT was found in all forest types, although 
more frequently in survey stations located in the tropical 
rainforest [Ntropical forest = 11/12, Ntropical wet coastal forest = 3/6, 
Ntropical dry forest = 2/6; Fisher’s exact test, p = 0.02; Fig. 2].

Fig. 2   Presence/absence of the Forest Thrush in all forest types studied, including 12 tropical rainforest stations, 6 tropical wet coastal forest sta-
tions, and 6 tropical dry forest stations
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Similarly, FT local abundance differed significantly 
between the three forest habitats, (Kruskal Wallis analysis 
of variance, X2 = 9.50, p = 0.009). However, this was mainly 
due to FT abundance being significantly higher at tropical 
rainforest stations than at tropical wet coastal or tropical dry 
forest stations (post-hoc Dunn’s test, p = 0.031 and p = 0.005, 
respectively; Fig. 3), whereas FT abundance does not differ 

between stations located in tropical dry forests and tropical 
wet coastal forests (p = 0.574).

Modelling occupancy and detection

We used a subset of our camera-trap records for modelling 
purposes (see methods). After considering a buffer time of 

Fig. 3   Local abundance at camera-trap survey locations (including 6 tropical dry forest stations: white; 6 tropical wet coastal forest stations: 
light-green; 12 tropical rainforest stations: green) where the Forest Thrush was observed in Guadeloupe

Fig. 4   Predicted detection – abundance probability (A, B) and predicted detection – occupancy probability (C, D) for the Forest Thrush (pre-
dicted covariate effects with 95% CI, when all other covariates are held constant at their mean)
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10 min between detections of the same species, we retained 
297 captures of FT, resulting in 83 detections in model 
matrices. According to the best model (M1), temperature 
was the only environmental variable affecting detection 
(β = -2.27, SE = 0.49, p < 0.01), with decreasing detection 
with increasing temperature (Fig. 4).

In addition, the best model suggested that canopy 
openness influenced FT occupancy, with decreasing FT 
occupancy with increasing canopy openness (β = -1.58, 
SE = 0.69, p < 0.03; Table 1).

Mean dispersion parameters ĉ obtained using MacKenzie  
and Bailey’s goodness-of-fit test for the four abundance-detection 
best models were: ĉM1 = 0.70, ĉM2 = 0.69, ĉM3 = 0.60, ĉM4 = 0.66 
and for the occupancy-detection best model was: ĉM1 = 0.78.

The four best models (ΔAICc < 2) retained temperature as 
the only informative environmental variable affecting detec-
tion (β = -2.17, SE = 0.59, CI: -3.33,-1, Table 1), with decreas-
ing level of detection with increasing temperature (Fig. 4). 
Indeed, although forest structure was retained in model M4, it 
did not significantly affect FT detection (ψ = 0.60, SE = 0.46, 
p > 0.05). We therefore retained canopy openness as the only 
informative environmental variable affecting abundance 
(β = -0.58, SE = 0.31; Fig. 4). Indeed, although temperature 
was retained in the M2 model, it did not significantly affect 
FT abundance (λ = -0.53, SE = 0.31, p > 0.05).

Pattern of diel activity and spatial and temporal 
co‑occurrence with potential predators

As the proportions of FT captured during night, dawn, day, 
and dusk did not differ between the two sampling periods 
analysis (Fisher exact test, p = 1), data were pooled for sub-
sequent analyses. FT was essentially diurnal, with however 
some activity at dawn and dusk (Table 2).

Domestic dogs, mongooses, humans, were essentially 
diurnal, whereas rodents, raccoons and domestic cats were 
essentially nocturnal (see Jean-Pierre et al. 2022). FT posi-
tively co-occurred spatially with rodents and negatively with 
domestic cats (Table 3).

However, rodents were essentially nocturnal (see Jean-
Pierre et al. 2022), such that FT activity (Table 2) and rodent 
activity showed little overlap (Table 4).

Discussion

Forest Thrush local abundance, detection 
and occupancy in Guadeloupe forests

From previous studies conducted in Guadeloupe (Eraud et al. 
2012; Arnoux et al. 2013; Levesque et al. 2020), FT was known 
to occur mainly in areas of continuous tropical rainforest, from 
100 to 1,400 m above sea level and tropical wet coastal for-
ests. On Monserrat, Parashuram et al. (2015) concluded from 

auditory and visual point counts that FT prefers mature mesic 
forest, with birds being more abundant at mid-elevations under 
closed canopies. We therefore expected to obtained similar 
results, since tropical rainforests and tropical wet coastal for-
ests have not been much altered by fragmentation, thanks to 
effective protection by local authorities. Our results confirm 
the global pattern. We detected FT predominantly in the tropi-
cal rainforest habitat and, to a lesser extent, in the tropical wet 
coastal forest habitat. In addition, their abundance decreased 
with canopy openness. Comparing to previous studies, how-
ever, we also detected the FT in the tropical dry forest habitat, 
albeit at lower apparent abundance. This is particularly notice-
able, as in Guadeloupe this forest ecosystem has been severely 
degraded by human pressure (Magnin 2018). For example, we 
detected the presence of FT at Deshaies, a touristic town in 
Northwestern Basse-Terre. This area, bordering the beaches 
of Guadeloupe, is particularly subject to human pressure, with 
high forest fragmentation and intense human frequentation. We 
therefore suggest monitoring this FT population over the long 
term in order to estimate demographic trends and connectivity 
with populations in other habitats, possibly through a capture-
mark-recapture study and molecular tools.

In addition, our results provide new information about 
FT ecology and conservation status in Guadeloupe. First, 
our data indicate that forest thrushes are relatively abun-
dant in Guadeloupe. Indeed, detection rates and estimates of 
naïve occupancy obtained in the present study are among the 
highest values reported so far for ground-dwelling bird spe-
cies using the same methodology (Supplementary materials 
Table S1). This might be explained by a combination of fac-
tors. First, hunting has been suspended since 2014 in Gua-
deloupe. More precisely, before the hunting ban, the Guade-
loupe FT population was estimated at 46,900—49,500 pairs 
(93,800—99,000 mature individuals; Eraud et al. 2012). 
However, the estimation has not been updated since then. 
On the other hand, from 2015 to 2017, the FT population 
trend was estimated from 10 sites in Guadeloupe (Guillemot 
et al. 2020). Although the number of recaptured birds was 
relatively stable, FT frequency of occurrence increased from 
2015 to 2017, possibly as a consequence of the hunting ban. 
Second, a large proportion of the tropical rainforest habitat 
is under protection in Guadeloupe (Magnin 2018). Unfortu-
nately, there are no studies comparing FT population trends 
before and after the protection of its main natural habitat. 
We then suggest comparing FT population trends between 
protected and unprotected tropical rainforests to better assess 
the importance of habitat protection for conservation.

However, a multiyear survey of the Guadeloupe FT  
population is necessary to ascertain population trends.  
In particular, comparison of adult survival and breeding 
success between habitat types would be quite valuable for  
future management plans. This could be achieved through 
combining the use of camera-traps with capture that of 
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Table 1   Occupancy, abundance 
and detection models for the 
Forest Thrush in Guadeloupe 
forests. Occupancy (ψ) and 
abundance (λ) were modelled 
according to the temperature 
(temp), elevation, canopy 
openness (co), or forest types 
(forest), and the probability 
of detection (p) was modelled 
according to the forest structure 
(fs) and temperature (temp). 
All environmental variables 
influencing abundance and 
detection were not included in 
a global model as they were 
highly correlated between 
themselves

Models AICc ΔAICc Weight loglLik d.f

Occupancy-detection models for the Forest Thrush
M1 p(temp),ψ(co) 116.70 0.00 0.48 -53.30 4
M2 p(fs + temp),ψ(co) 118.98 2.28 0.15 -52.82 5
M3 p(temp),ψ(temp) 120.51 3.81 0.07 -55.20 4
M4 p(temp),ψ(elevation) 120.93 4.23 0.06 -55.41 4
M5 p(temp),ψ(1) 121.08 4.38 0.05 -56.94 3
M6 p(temp),ψ(forest) 121.22 4.52 0.05 -53.94 5
M7 p(temp),ψ(forest + co) 122.54 5.84 0.03 -52.80 6
M8 p(fs + temp),ψ(temp) 122.91 6.21 0.02 -54.79 5
M9 p(fs + temp),ψ(1) 123.18 6.48 0.02 -56.54 4
M10 p(fs + temp),ψ(elevation) 123.45 6.75 0.02 -55.06 5
M11 p(fs + temp),ψ(forest) 123.92 7.22 0.01 -53.49 6
M12 p(temp),ψ(forest + elevation) 124.56 7.86 0.01 -53.81 6
M13 p(temp),ψ(forest + temp) 124.78 8.08 0.01 -53.92 6
M14 p(fs + temp),ψ(forest + co) 125.83 9.13 0.01 -52.41 7
M15 p(temp),ψ(forest + elevation + co) 126.23 9.53 0.00 -52.62 7
M16 p(fs + temp),ψ(forest + elevation) 127.73 11.03 0.00 -53.37 7
M17 p(fs + temp),ψ(forest + temp) 127.96 11.26 0.00 -53.48 7
M18 p(fs + temp),ψ(forest + elevation + co) 130.08 13.38 0.00 -52.24 8
M19 p(fs),ψ(co) 148.63 31.93 0.00 -69.26 4
M20 p(fs),ψ(temp) 152.25 35.55 0.00 -71.07 4
M21 p(fs),ψ(elevation) 153.00 36.30 0.00 -71.45 4
M22 p(fs),ψ(forest) 153.39 36.69 0.00 -70.03 5
M23 p(fs),ψ(1) 153.89 37.19 0.00 -73.34 3
M24 p(fs),ψ(forest + co) 154.35 37.65 0.00 -68.71 6
M25 p(1),ψ(co) 156.60 39.90 0.00 -74.70 3
M26 p(fs),ψ(forest + elevation) 156.79 40.09 0.00 -69.93 6
M27 p(fs),ψ(forest + temp) 156.84 40.14 0.00 -69.95 6
M28 p(fs),ψ(forest + elevation + co) 158.11 41.41 0.00 -68.56 7
M29 p(1),ψ(temp) 160.51 43.81 0.00 -76.66 3
M30 p(1),ψ(forest) 161.06 44.35 0.00 -75.48 4
M31 p(1),ψ(elevation) 161.45 44.75 0.00 -77.12 3
M32 p(1),ψ(forest + co) 161.64 44.94 0.00 -74.15 5
M33 p(.),ψ(.) 163.23 46.53 0.00 -79.33 2
M34 p(1),ψ(forest + elevation) 164.07 47.36 0.00 -75.37 5
M35 p(1),ψ(forest + temp) 164.14 47.43 0.00 -75.40 5
M36 p(1),ψ(forest + elevation + co) 164.91 48.21 0.00 -73.99 6
Abundance-detection models for the Forest Thrush
M1 p(temp),λ(co) 115.21 0.00 0.23 -52.55 4
M2 p(temp),λ(temp) 115.91 0.70 0.17 -52.90 4
M3 p(temp),λ(.) 116.08 0.87 0.15 -54.44 3
M4 p(fs + temp),λ(co) 116.80 1.59 0.11 -51.73 5
M5 p(temp),λ(forest) 117.62 2.40 0.07 -52.14 5
M6 p(temp),λ(elevation) 117.63 2.42 0.07 -53.76 4
M7 p(fs + temp),λ(temp) 118.40 3.18 0.05 -52.53 5
M8 p(fs + temp),λ(.) 118.70 3.49 0.04 -54.30 4
M9 p(fs + temp),λ(forest) 119.53 4.31 0.03 -51.29 6
M10 p(temp),λ(forest + co) 120.21 5.00 0.02 -51.63 6
M11 p(fs + temp),λ(elevation) 120.43 5.22 0.02 -53.55 5
M12 p(temp),λ(forest + elevation) 120.56 5.35 0.02 -51.81 6
M13 p(temp),λ(forest + temp) 120.91 5.69 0.01 -51.98 6
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combinations of colour rings allowing subsequent individ-
ual identification of marked individuals in the field from  
photographic records (Toy et al. 2017; Brides et al. 2018; 
Santangeli et al. 2020).

Second, an important outcome from model selection 
is that temperature, rather than elevation per se, was the 
most important factor influencing the presence of forest 
thrushes at our study sites. Obviously, the two variables 
are highly correlated between themselves as the species  
is predominantly found in the tropical rainforest, charac-
terized by its rainy and cold climate due to the higher 
elevation in the southern half of Basse-Terre (Grubb  
1971; Laere et al. 2016). Interestingly, forest type was not  
retained in the best model, indicating that difference in 
suitability between habitats might be related to a large 
extent to difference in ambient temperature. Indeed, due  
to marked difference in elevations, Basse-Terre, which is 

home to the tropical rainforest, has generally higher tem-
peratures than Grande-Terre, which is home to a large part 
of the tropical dry forest and the tropical wet coastal forest 
(Rousteau 1996a, b; MDDEE 2012; Laere et al. 2016).

The importance of temperature is particularly relevant 
in the context of current global warming (Crick 2004; 
Descamps et al. 2017). Our findings are consistent with 
other studies, showing that rising temperatures may directly 
affect bird species, positively or negatively, via their limited 
thermal niche (Şekerciog ̂lu et al. 2012), particularly in rain-
forest montane birds (de la Fuente et al. 2023). However, 
the effect of increased mean temperature and variability 

Table 1   (continued) Models AICc ΔAICc Weight loglLik d.f

M14 p(fs + temp),λ(forest + elevation) 122.47 7.26 0.01 -50.74 7
M15 p(fs + temp),λ(forest + co) 122.51 7.30 0.01 -50.76 7
M16 p(fs + temp),λ(forest + temp) 123.42 8.20 0.00 -51.21 7
M17 P(temp),λ(forest + elevation + co) 123.75 8.54 0.00 -51.37 7
M18 p(fs + temp),λ(forest + elevation + co) 126.21 10.99 0.00 -50.30 8
M19 p(fs),λ(temp) 132.89 17.68 0.00 -61.39 4
M20 p(.),λ(temp) 133.08 17.87 0.00 -62.94 3
M21 p(.),λ(forest + temp) 136.42 21.21 0.00 -61.54 5
M22 p(.),λ(forest) 137.89 22.68 0.00 -63.89 4
M23 p(fs),λ(elevation) 137.98 22.76 0.00 -63.94 4
M24 p(fs),λ(forest + temp) 138.18 22.97 0.00 -60.62 6
M25 p(fs),λ(co) 138.36 23.15 0.00 -64.13 4
M26 p(.),λ(co) 138.63 23.42 0.00 -65.72 3
M27 p(fs),λ(forest) 138.66 23.45 0.00 -62.66 5
M28 p(.),λ(forest + co) 139.25 24.03 0.00 -62.96 5
M29 p(fs),λ(.) 140.53 25.32 0.00 -66.67 3
M30 p(.),λ(elevation) 140.58 25.37 0.00 -66.69 3
M31 p(fs),λ(forest + co) 140.86 25.65 0.00 -61.96 6
M32 p(.),λ(forest + elevation) 140.95 25.74 0.00 -63.81 5
M33 p(fs),λ(forest + elevation) 142.07 26.86 0.00 -62.57 6
M34 p(.),λ(forest + elevation + co) 142.54 27.33 0.00 -62.80 6
M35 p(fs),λ(forest + elevation + co) 144.61 29.39 0.00 -61.80 7
M36 p(.),λ(.) 148.28 33.06 0.00 -71.85 2

Table 2   Jacobs Selectivity Index [JSI] for each of the defined periods 
of the Forest Thrush diel cycle: night, dawn, day, and dusk

*p < 0.05: Significant selection, whenever the 95% confidence inter-
val of the JSI does not overlap zero

Night Dawn Day Dusk

JSI -1.00
[-1.00;-1.00]*

-0.45
[-0.74;-0.15]*

0.72 
[0.56;0.88]*

-0.46
[-0.68;-0.23]*

Table 3   Co-occurrence probabilities of Forest Thrush with potential 
predators, including humans, in Guadeloupe

Co-occurrences

Co-occurring 
species

Observed Probability Expected Pless Pgreater

Domestic cats 8 0.12 13.8 0.0135 0.9960
Rodents 45 0.30 35.8 1.0000 0.0001
Domestic dogs 14 0.11 13.30 0.6887 0.4700
Mongooses 40 0.30 35.80 0.9738 0.0648
Raccoons 10 0.10 12.10 0.2480 0.8685
Humans 22 0.18 21.70 0.6226 0.5243
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may vary between species depending on their ecology, with 
forest specialists and insectivores being less able to benefit 
from increased temperature along an elevational gradient 
(Dulle et al. 2016). More precisely, comparative evidence 
suggests that ground-dwelling tropical species with limited 
dispersal ability, as is the case for FT (Arnoux et al. 2014), 
might be more affected by climatic instability than arboreal 
ones (Scheffers et al. 2017). The use of data loggers placed 
on FT and in their different forested habitats (see Jirinec  
et al. 2022) in the future may provide a better understand-
ing microhabitat selection in FT in relation to light and  
thermal niches.

Finally, temperature is likely to co-vary with other 
variables such as, for instance, soil moisture that was  
not measured in the present study. Spatiotemporal varia-
tion in moisture can have direct influence on arthropods 
diversity and abundance and, in turn, influence bird dis-
tribution in forest habitats (Petit et al. 1985; Smith et al. 
2010). Parashuram et al. (2015) suggested that variations 
of local abundance of FT in different areas may reflect 
foraging habitat quality. In addition, Stanley et al. (2021) 
provided strong evidence for an effect of moisture on food 
abundance and space-use strategies of wood thrushes, 
Hylocichla mustelina, wintering in Belize. In particular,  
individuals in drier habitats experienced lower food abun-
dance and were in lower body condition.

As other woodland-dwelling thrush species, FT is adapted 
to forage terrestrially in leaf-litter. Both moisture and a dense 
canopy could then provide optimal foraging conditions for 
FT in Guadeloupe, and, possibly, other islands. Future stud-
ies should then benefit from assessing to what extent FT 
spatial distribution and local abundance reflects spatial vari-
ation in food availability in leaf-litter, and how this could be 
affected by climate change.

The use of camera-traps allowed us to document for the 
first-time spatial co-occurrence between FT and potential 
mammal predators. FT co-occurred with rats and negatively 
with cats. Analysis of diel activity indicated that rodents 
were essentially nocturnal (see Jean-Pierre et  al. 2022) 
whereas FT were essentially diurnal. Rodents may how-
ever, prey upon FT eggs since nests are placed at relatively 
low height from the ground (Benito-Espinal and Hautcastel 

2003). The observed spatial segregation between FT and 
cats may result from active avoidance by FT of areas where 
cats are particularly abundant or may reflect the local 
impact of predation by cats on FT. Although, overall, cats 
were mostly active at night, some individuals were recorded 
during the day, and it is possible that different individuals 
have different diel patterns of activity (Hertel et al. 2017), 
particularly if they specialize on different preys (Dickman 
and Newsome 2015). Although predation by domestic and 
feral cats is a major cause of bird mortality in many areas 
(Loss et  al. 2015; Marra and Santella 2016), including 
islands (Blackburn and Duncan 2007; Medina et al. 2011; 
Nogales et al. 2013; Doherty et al. 2016), its importance in 
Caribbean islands has not been documented so far. In the 
absence of any data on the diet of domestic and feral cats 
in forested habitats in Guadeloupe, their potential impact 
on FT populations is difficult to assess. More to the point, 
the interactions between cats, rats and FT might be par-
ticularly complex, particularly through what is known as 
the "mesopredator release effect" (Courchamp et al. 1999; 
Ballari et al. 2016; Takimoto and Nishijima 2022). Indeed, 
superpredators such as feral domestic cats may contribute 
to control mesopredators such as rats, such that their overall  
impact on FT is difficult to assess.

The use of camera traps allowed us to obtain valuable 
ecological information on FT spatial occupancy, abun-
dance, diel activity, spatial co-occurrence with potential 
mammal predators, and their underlying factors. Simi-
larly, several studies successfully used camera traps to 
study elusive ground-dwelling avian species (O’Brien and  
Kinnaird 2008; Ramesh and Downs 2014; Suwanrat et al. 
2015; Smith et al. 2017). However, the use of camera-traps 
comes with some limitations (reviewed in Meek et al. 2015; 
Cordier et al. 2022). In particular, performance is likely to 
vary between camera trap models and settings (reviewed in 
Palencia et al. 2022), such that comparisons between stud-
ies should be done with caution. More importantly, camera  
traps may influence the behaviour of animals through asso-
ciated mechanical noise, odor, and emitted light, although 
evidence is mainly limited to mammals (Caravaggi et al. 
2020). We therefore used infrared-flash cameras, thus pro-
viding back and white pictures, to document the presence 

Table 4   Overlap in diel activity 
between species detected during 
the survey

Overlap Cat Dog Mongoose Rodents Raccoon Human

Cat
Dog 0.66
Mongoose 0.52 0.76
Rodents 0.60 0.30 0.12
Raccoon 0.60 0.32 0.13 0.89
Human 0.44 0.63 0.81 0.06 0.07
Forest Thrush 0.53 0.75 0.82 0.16 0.17 0.65
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of nocturnal potential predators, to avoid potential biases 
associated with the use of white flash cameras (Schipper 
2007; but see Taggart et al. 2019 for counter evidence in 
domestic cats). A wise use of camera traps should therefore 
be based on a balance between the benefit of obtaining high 
quality data (i.e., color photographs for improved species 
and/or individual identification) and the risk of interference 
with the behaviour of targeted species. Faced with all these 
pitfalls, we suggest that researchers plan a processing time 
for the captures obtained. In addition, visiting camera trap 
locations is necessary to verify that the camera traps are 
working properly.

Conclusions and recommendations

Overall, our study shows that the use of unbaited camera-
traps can be a reliable tool to assess spatial occupancy and 
local abundance of FT, as previously reported in the lit-
erature for other ground-dwelling and secretive forest bird 
species (Suwanrat et al. 2015; Smith et al. 2017; Murphy 
et al. 2018; Pérez-Irineo and Santos-Moreno 2021; Jean-
Pierre et al. 2022). Contrary to auditory point count and 
auditory distance sampling, the method can be used with 
the same efficiency independently of seasonal variation in 
FT vocal activity or meteorological conditions. However, 
future survey of FT in Montserrat, Guadeloupe, Dominica, 
and St Lucia, as well as other forest ground-dwelling birds 
in the insular Caribbean (see Jean-Pierre et al. 2022), may 
benefit from combining the use of camera-traps with that of 
acoustic recorders (Buxton et al. 2018). We also suggest to 
further investigate the potential impact of exotic mammal 
predators on FT and other ground-dwelling forest birds, pos-
sibly through collecting faeces in the wild (Carrión and Valle 
2018) or from direct analysis of stomach content (Balestrieri 
et al. 2011) following control operations.
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