Climatology of low-level clouds over western equatorial Africa based on ground observations and satellites.

Olivier Champagne, R. Aellig, A.H. Fink, Nathalie Philippon, Pierre Camberlin, V. Moron, P. Knippertz, G. Seze, R. van der Linden

To cite this version:
Olivier Champagne, R. Aellig, A.H. Fink, Nathalie Philippon, Pierre Camberlin, et al.. Climatology of low-level clouds over western equatorial Africa based on ground observations and satellites.. Journal of Climate, 2023, 36 (13), pp.4289-4306. 10.1175/JCLI-D-22-0364.1. hal-04168481

HAL Id: hal-04168481
https://u-bourgogne.hal.science/hal-04168481
Submitted on 9 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Climatology of low-level clouds over Western equatorial Africa based on ground observations and satellites

Abstract:

The tropical cloud forest ecosystem in Western Equatorial Africa (WEA) is known to be sensitive to the presence of an extensive and persistent low-level stratiform cloud deck during the long dry season from June to September (JJAS). Here we present a new climatology of the diurnal cycle of the low-level cloud cover from surface synoptic stations over WEA during JJAS 1971–2019. For the period JJAS 2008–2019, we also utilized estimates of cloudiness from three satellite products, namely the Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting (SAFNWC) cloud classification, the Day and Night Microphysical Schemes (DMS/NMS) and cross-sections from CALIPSO and CloudSat (2B-GEOPROF-LIDAR). A comparison with surface stations reveals that the NMS at night together with SAFNWC at daytime yield the smallest biases and highest Heidke skill scores. The climatological analysis reveals that low-level clouds persist during the day over the coastal plains and windward side of the low mountain ranges. Conversely, on their leeward sides, i.e. over the plateaus, a decrease of the low-level cloud frequency is observed in the afternoon, together with a change from stratocumulus to cumulus. At night, the low-level cloud deck reforms quickly over this region with the largest cloud occurrence frequencies in the morning. Vertical profiles from 2B-GEOPROF-LIDAR reveal cloud tops below 3000 m even at daytime. The station data and the suitable satellite products form the basis to better understand the physical processes controlling the clouds and to evaluate cloudiness from reanalyses and models.
Climatology of low-level clouds over Western equatorial Africa based on ground observations and satellites

O. Champagnea, R. Aelligb, A. H. Finkb, N. Philippona, P. Camberlinc, V. Morond, P. Knippertzb, G. Sezee, and R. van der Lindenb

a Institut des Géosciences de l’Environnement, Université Grenoble Alpes, CNRS, Grenoble, France
b Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
c Centre de Recherches de Climatologie, UMR 6282 Biogéosciences, CNRS/Université de Bourgogne Franche-Comté, Dijon, France
d Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, F-13000 Aix-en-Provence, France
e LMD, IPSL, UPMC, CNRS, EP, ENS, 4 place Jussieu, F-75000 Paris, France

Corresponding author: Olivier Champagne, olivier.champagne@univ-grenoble-alpes.fr
The tropical cloud forest ecosystem in Western Equatorial Africa (WEA) is known to be sensitive to the presence of an extensive and persistent low-level stratiform cloud deck during the long dry season from June to September (JJAS). Here we present a new climatology of the diurnal cycle of the low-level cloud cover from surface synoptic stations over WEA during JJAS 1971–2019. For the period JJAS 2008–2019, we also utilized estimates of cloudiness from three satellite products, namely the Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting (SAFNWC) cloud classification, the Day and Night Microphysical Schemes (DMS/NMS) and cross-sections from CALIPSO and CloudSat (2B-GEOPROF-LIDAR). A comparison with surface stations reveals that the NMS at night together with SAFNWC at daytime yield the smallest biases and highest Heidke skill scores. The climatological analysis reveals that low-level clouds persist during the day over the coastal plains and windward side of the low mountain ranges. Conversely, on their leeward sides, i.e. over the plateaus, a decrease of the low-level cloud frequency is observed in the afternoon, together with a change from stratocumulus to cumulus. At night, the low-level cloud deck reforms quickly over this region with the largest cloud occurrence frequencies in the morning. Vertical profiles from 2B-GEOPROF-LIDAR reveal cloud tops below 3000 m even at daytime. The station data and the suitable satellite products form the basis to better understand the physical processes controlling the clouds and to evaluated cloudiness from reanalyses and models.

1. Introduction

Many tropical wet forest ecosystems are tightly linked to the presence of low-level clouds. These clouds reduce water demand and favor photosynthesis by enhancing diffuse radiation (Karger et al. 2021), and in montane cloud forests they result in ‘hidden’ precipitation through leaf wetting (Berry and Goldsmith 2020; Goldsmith et al. 2013). Western Equatorial Africa (WEA), encompasses southern Cameroon, Gabon and the Republic of Congo and comprises the Ogooué and Kioulou-Niari basins as well as the Cristal and Chaillu Mountains and Batéké plateau (Figure 1). It harbors large expanses of dense, evergreen to semi-evergreen rain forests, whose presence is associated with a very high intra-annual and inter-annual stability of the cloud cover (Wilson and Jetz 2016). Philippon et al., (2019 and 2022) have provided evidence of low solar irradiance and low sunshine duration levels during the main dry season (June–September, JJAS) due to persistent low-level clouds.
Recent studies suggest a potential climate change threat on this forested region (Oliveira et al. 2014), and mainly a drying trend in Gabon (Bush et al. 2020) and an increase in shortwave radiation further east in the Congo Basin (Burnett et al. 2020). Moreover, the years with very warm sea surface temperatures in the eastern Atlantic favored less stratiform clouds in Gabon (Maley and Hilaire 1993). Further back, a strengthening of the El Niño-Southern Oscillation (ENSO) variability, likely forced the WEA rain forest to retreat 2000 years ago (Bayon et al., 2019). This past retreat suggests a general vulnerability of this forest to climatic variations. A potential threat through the ongoing climate change motivates the research on low-level clouds in this region.

Despite these recent climatic trends and the potential high vulnerability of WEA forests under climate change, very few studies have focused on the low-level clouds in WEA in contrast to some neighboring regions such as the southeastern tropical and subtropical Atlantic Ocean (Wood et al., 2012; Painemal et al., 2015), southern West Africa (SWA; Kalthoff et al. 2018; Knippertz et al. 2011; Lohou et al. 2020; Schrage and Fink 2012; Schuster et al. 2013; van der Linden et al. 2015) or the Namib desert in southwestern Africa (Andersen and Cermak 2018; Andersen et al. 2019, 2020). The southeastern tropical and subtropical Atlantic Ocean is covered by an extensive layer of marine stratus at the low-level inversion (Wood 2012; Painemal et al. 2015). This is particularly so in boreal summer, when the coastal upwelling extends northward to Cape Lopez (0°37’S) and the equatorial upwelling cools the eastern equatorial Atlantic Ocean (Adebiyi and Zuidema 2018; Fuchs et al. 2018; Hu et al. 2008). In SWA, low-level clouds are mainly present during the JJAS monsoon season. At night the low-level clouds rapidly expand from the coast inland and peak in the morning hours covering an area of nearly 800,000 km² (van der Linden et al. 2015). The processes involved in the nighttime genesis and daytime lysis of the low-level clouds involves a complicated multi-phase balance between cold air advection from the Atlantic Ocean and divergence of net radiation and turbulent fluxes, partly in association with a developing nighttime low-level jet (Knippertz et al. 2015; Lohou et al. 2020). On the contrary, in the Namib region, low-level clouds form over the ocean during the night, are advected to the land, and dissipate quickly in the morning (Andersen et al. 2020).

While the relative roles of cloud advection from the nearby Atlantic Ocean, orographic cloud genesis, and boundary layer processes have not been assessed thoroughly for WEA yet, a first important spatiotemporal climatology of low-level clouds was presented in Dommo et al. (2018). They used station observations, satellite data, and the European Centre for
Medium-Range Weather Forecasts Interim reanalysis (Dee et al. 2011) over WEA to show that dry season low-level cloud cover is developing in May, peaks in July-August and then decreases again in October. These clouds tend to be more present in the morning, similarly to what has been described for SWA (van der Linden et al. 2015). The low-level clouds are more prevalent in the coastal plains and decrease inland, likely associated with a Foehn effect leeward of the Chaillu, Cristal Mountains and Batéké Plateau (Fig. 1) leading to dissipation of the cloud deck associated with the southwesterly to westerly low-level winds. The formation of low-level clouds could also be favored by biomass burning aerosols that increase air-mass stability (Solmon et al. 2021; Mallet et al. 2021).

Dommo et al. (2018) use the cloud classification from the Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting (SAFNWC; (Derrien and Le Gléau 2005), which has the advantage of a high spatial and temporal resolution and was previously used to describe daytime low-level clouds in SWA (van der Linden et al., 2015). However, SAFNWC has difficulties detecting very low-level clouds at night (van der Linden et al., 2015) and a validation against in-situ synoptic observations was not performed extensively in Dommo et al. (2018). Thus, the goal of the present study is to complement and expand on the study by Dommo et al. (2018) In particular, our study relies on an improved database for in-situ observations of clouds which contains more stations (62) over a longer period (1971–2019). The spatial sampling is therefore increased, giving a better view of the low-level clouds cover spatial pattern and conferring robustness to our results. The longer overlap period between in-situ observations and satellite estimates (2008-2019 against 2008-2009 in Dommo et al, 2018) enables computing scores of performances, thus quantitatively evaluating the satellites datasets. In addition, we consider 8 genus of low clouds and not only the total low clouds cover as in Dommo et al (2018). This allows us to precisely document (i) the evolution from one genus to another along the diurnal cycle and (ii) how well these different genera are detected by satellites. Lastly, we worked with (i) day and night microphysical schemes (NMS/DMS, Lensky and Rosenfeld 2008) giving a more accurate representation of the diurnal cycle of the low level cloud cover, and (ii) CALIPSO/CALIOP data (namely the 2B-GEOPROF-LIDAR product, Mace and Zhang, 2014) to infer the cloud cover vertical profile and cases when low clouds are under a multi-layered cover.

These points serve the overall goal of our study to present a description of the diurnal cycle of the long dry season low-level cloud cover over Gabon and neighboring countries. It
should also provide a baseline to further investigate low-level clouds variability in the region as well as their realism in global and regional climate models simulations.

Section 2 will introduce the new set of in-situ observations and the satellite datasets, section 3 will present an extensive comparison between low-level clouds from SYNOP observations and from satellite data, and section 4 will discuss and summarize the main findings.

Figure 1. Study region, names of main mountain ranges (terrain elevation from Danielson and Gesch, 2011) and location of stations used. The station marker size is proportional to the total number of available observations in the period 1971–2019. The altitudes are given in meters.
2. Data and Methods

a. A comprehensive new dataset of cloud observations from stations

The primary source of observed low-level cloud cover, including the low-level cloud fraction (LCF) and the low-level cloud genus (LCG), is the “Extended Edited synoptic Cloud Reports Archive” (EECRA, Hahn et al., 1999; Eastman and Warren, 2014) covering the period until 2009. LCF is expressed in oktas and is of particular interest for a regional climate perspective as it governs radiation reaching the surface. LCG uses the World Meteorological Organization (WMO) coding into nine types (WMO 2019) plus two EECRA-specific types (11 = obscure sky with fog; 10 = thunderstorm with showers). These two latter types were omitted in this study (LCF coded to 0) because they result from ancillary information specific to EECRA and not available in other datasets described below. The WMO low-level cloud coding comprises cumulus (01 and 02), stratocumulus (04 and 05), stratus (06 and 07), cumulus and stratocumulus (08), and cumulonimbus (03 and 09). In total, 62 stations were extracted from EECRA for the period 1971–2009 and the region 5°N–6.5°S/6.5°–16.5°E (Fig. 1). To fill in gaps and to update the EECRA database to 2019, three other databases were used; these are in order of priority: The Met Office Integrated Data Archive System (MIDAS, Met Office 2012), the Integrated surface database (ISD, Smith et al. 2011), and the African Monsoon Multidisciplinary Analyses information system (AMMA, Fleury et al. 2011). MIDAS is less extensively used than EECRA but a data quality check (not shown) has revealed better consistency than ISD and AMMA. ISD had some decoding problems from 2013, while our quality control lead us to conclude that AMMA should be given the lowest priority. EECRA and the three additional sources are based on the same in-situ stations and are therefore consistent in their common periods of records, as shown with the example of Libreville (Fig. S1). From the latter three additional sources, three stations not in EECRA were added: Franceville-Mvengue, Oyem (both in Gabon) and Mbanza Kongo (in Angola). Inconsistent reports, where either LCG or LCF was zero and the respective other variable was non-zero, were omitted. We also checked if the cloud observations could be enhanced by hourly METAR (Meteorological aerodrome Reports) airport reports, but unfortunately the cloud type coding is different and cloud fraction is not provided in oktas (Fig. S1). Nevertheless, our merged in-situ cloud observations at synoptic stations (SYNOP observations) are longer, more complete and more homogeneous than the in-situ observations used in Dommo et al. (2018). The SYNOP observations have been published alongside this article (Aellig et al. 2022).
SYNOP observations are carried out by trained observers eight times a day at main (00, 06, 12, and 18 UTC) and intermediate (03, 09, 15, 21 UTC) synoptic hours. Note that the local time is UTC+1h. The location of stations, the total number of observations available, and their temporal evolution for each source and observation time can be inferred from Fig. 2. Overall, the number of available observations decreased over time but increased again in the late 2000s. Stations in Gabon and Republic of Congo (RC) are the best documented, matching with the cloudiest region of WEA (Dommo et al. 2018; Philippon et al. 2019). Generally, more daytime (Fig. 2c,d,i,j) than nighttime (Fig. 2a,b,k,l) recordings were available (compare 00 UTC to 12 UTC) due to daytime-only operation at several stations.

Figure 2. a-d and i-l: Number of JJAS observations available per stations at 3-hourly time steps (maps). The average number of observations for all stations is depicted in the bottom-left corner. e-h and m-p: Total number of JJAS observations (all stations) per year and data source at 3-hourly time steps (line graphs). Letters in the first panel indicate country names (CA=Cameroon, GB=Gabon, RC=Republic of the Congo, RDC= Democratic Republic of the Congo).

b. Satellite products

1) CLOUD TYPE FROM SAFNWC

The cloud type (CT) product from SAFNWC consists of a classification into 14 types available at 3 km spatial and 15-minute temporal resolutions over Europe and Africa from
This product is based on the Spinning Enhanced Visible and Infrared Imager (SEVIRI), a passive sensor with 12 different spectral channels on-board the Meteosat Second Generation geostationary satellite (Schmetz et al., 2002). To construct the SAFNWC CT product, cloud detection and cloud type classification are performed using series of threshold tests applied sequentially: tests on reflectance and window channel brightness temperature at 10.8 μm and differences in brightness temperature between two wavelengths (chosen among 10.8, 12, 3.9, 8.7 μm). The used thresholds depend on illumination, viewing geometry and geographical location, and are computed from a radiative transfer model using ancillary data. Additional tests on spatial and temporal variability of the brightness temperature at 10.8 μm and spatial variability of the reflectance are also used. A detailed description of the SAFNWC CT algorithm can be found in Derrien et al. (2013).

In our study, SAFNWC CTs are extracted for the WEA domain 5°N–6.5°S/6.5°–16.5°E and the 2008–2019 period. For simplification and following Dommo et al. (2018), the 14 CTs were recombined into seven CTs: cloud free, very low clouds (up to 2000 meters above sea level (a.s.l.)), low clouds (2000–3500 meters a.s.l.), mid-level clouds (3500–6500 meters a.s.l.), high opaque clouds, high semi-transparent clouds (the latter two higher than 6500 meters a.s.l.), and finally fractional clouds (i.e. small cumulus, thin low or mid-level cloud edges, very thin high cloud edges, broken and thin mid-level and low-level clouds). Cloud type maps with the seven types are shown as examples in Figure 3b and 3e for 21 August 2015 12 UTC and 11 July 2010 00 UTC.

2) NIGHT- AND DAY-MICROPHYSICAL-SCHEMES

The Night-Microphysical-Scheme (NMS) and the Day-Microphysical-Scheme (DMS) are based on radiances and reflectances in the visible and infrared (IR) channels of SEVIRI (Lensky and Rosenfeld, 2008; Schmetz et al., 2002). The schemes are based on three different channel combinations, which are combined to RGB composites. The DMS is a combination of the solar reflectance in the visible channel at 0.8 μm (red) and at 3.9 μm (green), and of the brightness temperature of the IR channel at 10.8 μm (blue). The 0.8 μm channel is a measure of the cloud optical depth and amount of cloud water and ice. The 3.9 μm visible channel is a qualitative measure for cloud particle size and phase (Lensky and Rosenfeld, 2008). The NMS uses the difference of the brightness temperatures of the IR channels between 10.8 and 12.0 μm (red), and between 3.9 and 10.8 μm (green), and the brightness temperature of the IR channel at 10.8 μm represented in blue (Lensky and
Rosenfeld, 2008). The channels represented with green are sensitive to particle size of hydrometeors and the channels represented in red are a measure of the opaqueness of clouds. Figures 3a and 3d show examples of DMS and NMS for 21 August 2015 12 UTC and 11 July 2010 00 UTC with the RGB NMS and DMS cloud classification by EUMeTrain (2017).

From these schemes, we distinguish for every grid point (3km x 3km) three categories: low clouds, higher clouds and clear skies. The low-level cloud cover in DMS is determined by a reflectance of more than 25% in the 0.8 μm visible channel and a brightness temperature (10.8 μm) greater than 283 K, while during the night the low-level cloud cover in the NMS is determined by a difference between the brightness temperature of the channels 12.0 and 10.8 μm greater than 2 K and a brightness temperature of channel 10.8 μm greater than 283 K. The thresholds for NMS to detect low-level cloud cover have been used already in former studies (van der Linden et al., 2015). 283 K represents the temperature at about 3000 m a.s.l. in the study region, likely the upper limit of low-level clouds. In both DMS and NMS, brightness temperatures lower than 283 K are considered as higher clouds.

3) CLOUDSAT/CALIPSO CPR/CALIOP (2B-GEOPROF-LIDAR)

The 2B-GEOPROF-LIDAR product is a merged product of data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar aboard CALIPSO (Winker et al., 2003) and the Cloud Profiling Radar (CPR) aboard CloudSat (Stephens et al., 2002). Mace and Zhang (2014), developed the 2B-GEOPROF-LIDAR product combining both profiles, getting the most out of the information from both satellites. These two satellites are in the A-train constellation circling around the earth in about 90 minutes and having a repeat period of 16 days until they sample the same swath again. They scan WEA on an ascending path from the southeast to the northwest between 12:20 and 13:15 UTC, and on a descending path from the northeast to the southwest between 23:20 UTC and 00:15 UTC. The time periods available were JJAS 2006-2017 for daytime and JJAS 2006-2010 for nighttime. The CPR can penetrate more optically thick clouds, while CALIOP can detect thin clouds and clouds close to the surface (Mace et al., 2009; Marchand et al., 2008). An illustrative example for West Africa is given in Knippertz et al. (2011). 2B-GEOPROF-LIDAR has a spatial resolution of around 1.4 km along track, about 1.8 km cross track, and about 250 m vertically (Mace et al., 2009). In WEA, the swaths have a zonal distance of around 170 km between each other.
4) SPATIAL REPRESENTATION OF THE THREE SATELLITE PRODUCTS

To qualitatively illustrate the performance of the different satellite products at day and night, Fig. 3 provides examples for 1200 UTC 21 August 2015 and 0000 UTC 11 July 2010. At daytime (top panels), both the SAFNWC and DMS represent the low-level clouds over Gabon and the adjacent ocean similarly. In the 2B-GEOPROF-LIDAR product, the high clouds over Cameroon and northern Gabon, likely stemming from deep convection, are represented by high opaque and semi-transparent clouds in SAFNWC. At night (bottom panels), the difficulty in the detection of low-level clouds by SAFNWC as opposed to NMS is clearly visible over central and northern Gabon. 2B-GEOPROF-LIDAR shows the thickened high-level clouds over the northern part of the region, which potentially prevents detection of low-level clouds underneath. A close inspection of Fig. 3f reveals that 2B-GEOPROF-LIDAR can detect low-level clouds underneath higher clouds, if the latter are thin.

5) CLIMATOLOGY OF LOW-LEVEL CLOUD COVER FROM SATELLITES

The climatology of low-level cloud cover was calculated for SAFNWC, DMS, NMS, and 2B-GEOPROF-LIDAR. These products do not provide LCF data, since only the presence or absence of clouds in each pixel is detected. Hence, the climatology was primarily based on the low-level cloud occurrence frequency (LCOF).

For SAFNWC, we calculated the average JJAS 3-hourly low-level cloud occurrence frequency (LCOF) for the types of very low and low-level clouds at each grid point. Very low clouds (top of the cloud under 2000 meters a.s.l) and low clouds (2000 — 3500 meters a.s.l.) types are considered together for the calculation of LCOF because the top of the low-level clouds detected in SYNOP (i.e. stratocumulus) can be situated above 2000 meters a.s.l. This choice highlights the difficulty of comparing low level clouds from ground observations and from satellites. At stations, clouds are seen from the ground and therefore determined according to their base height (low, middle or high level) and type (9 possible categories). Cumulonimbus clouds are for instance reported by WMO as low clouds (i.e. with a base height below 2000m a.s.l) despite their vertical extension. With satellites, clouds are determined according to their top height, so cumuliform clouds are often classified as higher clouds and low clouds are masked in case of a multilayered cloud cover. Therefore, the mismatch between ground observations and satellite estimates of low level clouds can be quite large in the presence of cumulus, cumulonimbus, or a multilayered cloud cover. The grid points characterized by
fractional clouds were also reassigned to another cloud type when at least half of the eight
surrounding points belonged to that type, following the method in Dommo et al. (2018). This
reassignment was made because the number of fractional clouds is not negligible and this type
appears spatially as a transition between two types (cf. Fig. 3). LCOF at each grid point and
observation time was obtained by calculating the ratio of the number of occurrence of very
low-level, low-level or reassigned fractional days to the total number of days, excluding higher
clouds (mid, high opaque and high semi-transparent). This method counts the problem of
low-level clouds not detected due to clouds situated above. The higher-level cloud occurrence
frequency was also calculated from the ratio of occurrence number of mid, high opaque, and
high semi-transparent cloud types to the total number of days.

For the climatology of low-level cloud cover based on NMS and DMS, we calculated for
each grid point the average JJAS 3-hourly LCOF with the thresholds defined in section 2.b.2.,
but only using the data with a threshold of the brightness temperature (10.8 μm) greater than
283 K. With this approach we alleviated the problem of clouds situated above the low-level
clouds, similarly to the approach used to calculate LCOF from SAFNWC.

For the climatology of low-level cloud cover based on 2B-GEOPROF-LIDAR, we
calculated first the cloud fraction and the cloud occurrence frequency at each vertical level
(250m resolution) and for each 0.5° parts (roughly 56 km) along track of the swaths (see
section 2.b.3.) using the random-overlap method (Geleyn and Hollingsworth, 1979; Räisänen
et al., 2004). For the lowest 3000 meters a.s.l., we calculated the climatology of LCF and
LCOF with the maximum-random-overlap method (Geleyn and Hollingsworth, 1979). If
there were multiple contiguous low-level clouds present, the random overlap method
(Räisänen et al., 2004) was applied. These overlap assumptions follow the method used in
van der Linden et al. (2015).
Figure 3. Satellite products on 1200 UTC 21 August 2015 (a-c), and 0000 UTC 11 July 2010 (d-f) representing Cloud types from Day-Microphysical-Scheme (a), Night-Microphysical-Scheme (d), and SAFNWC (b and e); and cloud height and fraction from 2B-GEOPROF-LIDAR (c and f). The black dotted line in a-b and d-e depicts the path of the satellite, the data of which are shown in panels c and f. The red line in c. and f. represents the elevation.

c. Methods for comparing in-situ observations and satellite products

Low-level cloud fraction (LCF) and low-level cloud genus (LCG) at synoptic weather stations (SYNOP observations) are assessed by trained observers. Despite the subjective assessment and problems at night due to low illumination, various previous studies have shown their great value in obtaining cloud climatology and verification against satellite observations over Africa (van der Linden et al. 2015).

For the comparison with satellite products, the LCF climatology was calculated at synoptic weather station for time steps when the cloud genus (LCG) was either “stratocumulus” (genus...
4-5), “stratus” (6–7), or “stratocumulus and cumulus” (8). For all other low-level cloud genus (1, 2, 3, 9, i.e. cumulus and cumulonimbus clouds), the corresponding low-level cloud fraction was set to 0 oktas because these clouds are not strictly low-level clouds and likely seen as higher clouds from the satellites. Note that genus 1 (cumulus humilis), is rare, as its frequency of occurrence is less than 2% at night and about 6% at daytime. Thus, using cloud genera 4–8 for stratiform low-level clouds at stations and comparing it with satellite low-level clouds appears a tolerable inconsistency. The low cloud occurrence frequency (LCOF) for SYNOP observations was calculated by counting the occurrence of LCF higher than 4 oktas. For the evaluation of satellite products against SYNOP observations, we converted cloud occurrence around SYNOP stations to cloud fraction. We took the distance-weighted (cosine function from 0 to π/2) average cloud fraction in a radius of 20 km around the station at the time of the observation, under the assumption that the observer on the ground can classify clouds and their fractional cover in the sky up to this distance (WMO, 2019). Very low clouds, low clouds and fractional reassigned clouds (see section 2.2.5) are considered together for the calculation of low cloud fraction, similarly to the calculation of LCOF described in section 2.2.5. For the comparison of low-level cloud fraction from SYNOP observations and satellite data, days with more than 50% of higher clouds in the 20km radius around a station were excluded from the analysis. This condition was applied because high- and mid-level clouds prevent the detection of lower clouds from the satellites.

3. Results

This section shows in four parts the diurnal cycle of low-level clouds in WEA. The first two parts explore the low-level cloud fraction and low-level cloud genus from SYNOP observations on one hand and then the low-level cloud occurrence frequency from the three satellite datasets on the other hand. The third part shows a comparison between SYNOP observations and satellite data. The last part thoroughly compares the day and night evolution of low-level clouds from SYNOP observations and satellite data.

a. Ground observations of low-level cloud fraction and genus

The long-term (JJAS 1971–2019) mean diurnal cycle of low-level clouds fraction (LCF) is provided in Fig. 4. LCF with non-cumuliform clouds only (i.e. low topped low clouds, genus 4-8, Fig.4 i-p) and with only cumuliform clouds (genus 1-3 and 9, Fig. 4q-x) are also shown. Taking LCF calculated from all genus, the cloud fraction is clearly lower toward the Congo
Basin in the east (Fig. 4a-h). In eastern Gabon, eastern Cameroon and southwestern RC, LCF increases at night (Fig. 4h,a,b), remains high until noon (Fig. 4e), and is followed by a decrease in the afternoon (Fig. 4f-g). When taking non cumuliform clouds only (Fig. 4i-n) the decrease is more pronounced and occurs earlier in eastern Gabon and Cameroon, showing that these regions are affected by convection and the development of cumuliform clouds in the daytime (Fig. 4t-v).

Figure 4. JJAS (1971–2019) SYNOP low-level cloud fraction calculated from all genus (a-h), genus 4–8 only (i-p) and genus 1-3,9 only (q-x) per station and observation time.

The occurrence of cloud genus from SYNOP observations furnishes additional information regarding the type of low-level cloud cover in WEA (Fig. 5). Stratocumulus (Sc,
genus 04 and 05) is by far the most frequent type at night time (UTC 1800 – UTC 0300) representing two thirds of all cloud genus (Fig. 5f-j). The second most frequent cloud genus at night is cumulonimbus (Cb, genus 03 and 09) occurring at 21.1% of all observations.

During daylight (UTC 0600 – UTC 1500, Fig. 5a-e), stratocumulus is less prominent but remains the most frequent (44%) followed by “cumulus humilis” and “mediocris” (Cu, genus 01 and 02, 24.5%). The other main type is “cumulus and stratocumulus” (Cu & Sc, genus 08, 15.7%). The occurrence of stratus (St, genus 06 and 07) is very low (1 to 3%) during day and night (Fig. 5d,i). It is likely that many clouds referred to as stratocumulus by observers are stratus. In any case stratus and stratocumulus are both counted as stratiform low level clouds.

These results show that a significant number of low-level clouds are convective (Cu and Cb represent together 37.5% of all genus during the day and 23.5% at night). However, the portion of the sky covered by Cu and Cb is generally lower than Sc (oktas, x-axis of Fig. 5). Stratocumulus and stratus show a frequency distribution skewed to higher sky coverage (7-8 oktas, Fig. 5c-d and Fig. 5h-i). For cumulus, the distribution shows a higher frequency between 3 and 6 oktas and a distribution even skewed to lower cloud coverage (Fig 5a). The distribution of Cumulonimbus is centered around 4-7 oktas but is skewed to higher cloud coverage during the day (Fig. 5b) while the distribution is flatter at night (Fig. 5g).

Figure 5. JJAS (1971-2019) number of SYNOP observations low-level cloud genus by oktas from all stations for daytime (06–15 UTC,a-e) and night-time (18–03 UTC, f-j). Percentages at the top give the frequency for each type over all SYNOP observation times.

The frequency of the cloud types varies spatially throughout the day (Fig. 6). At night (1800 – 0300 UTC), the frequency of stratocumulus (genus 4 and 5) is high (>70%) especially in western Cameroon, Gabon and southwest RC. Some exceptions such as Porte-Gentil show a
lower amount of Stratocumulus at night. The simultaneous higher amount of Sc and Cu (genus 8), suggest that a specific cloud referencing by the observer in Port-Gentil might be the cause of this difference. In the morning, the amount of Sc markedly decreases everywhere but stays relatively high in the central part of Gabon. Simultaneously, the amount of cumulus (genus 1 and 2) increases, especially in Cameroon and RC, where it reaches a maximum around 1200 UTC. The cumulus & stratocumulus genius (genus 8) also reaches a maximum around 1200 UTC, but occurs more frequently near the coast of Gabon. It reflects the breaking of the stratocumulus deck in the course of the day. Further, the stratus deck is more persistent on the windward slope of the Chaillu massif. The frequency of cumulonimbus (genus 3 and 9) increases later, reaching a maximum around 1800 UTC, located mostly in Cameroon and RC, while staying very low near the coast of Gabon and RC.

Figure 6. JJAS (1971–2019) SYNOP cloud genus occurrence frequency per station and observation time. For each panel, the number at the left bottom shows at each observation time the average fraction of the given cloud genus.

b. Satellite observations of horizontal and vertical distributions of low-level clouds

The average diurnal evolution of low-level cloud occurrence frequency (LCOF) from SAFNWC and NMS/DMS are displayed in Fig. 7 at the same 3-hourly time steps as in figure 4. Between 0600 UTC and 0900 UTC, LCOF increases dramatically in both products (Fig. 7i-j and 7m-n), likely associated with the low solar angle that prevents the satellite from...
satisfactorily detecting low-level clouds just after the sunrise. This effect is conspicuous in the first hour of daylight with a large LCOF increase observed between 0600 UTC and 0700 UTC (Fig. S2). In DMS, the increase of LCOF continues between 0900 UTC and 1200 UTC, especially in Cameroon (Fig. 7n,d). Between 1200 UTC and 1500 UTC LCOF decreases in the entire area, quite sharply with DMS (Fig. 7d,h), but stays high in western Gabon mainly in SAFNWC (Fig. 7c,g). The lower LCOF in the eastern part of the region in the afternoon suggests a sky clearing likely due to a transition from stratocumulus to cumulus shown in SYNOP (Fig.6). Between 1500 UTC and 1800 UTC, corresponding to the period of the switch from the DMS to the NMS, the evolution of LCOF is different between the two satellite products SAFNWC (Fig. 7g,k) and the DMS/NMS microphysical scheme (Fig. 7h,l). While the LCOF continues to decrease during sunset in SAFNWC (a constant decrease according to Fig. S3), the LCOF starts to increase again in DMS/NMS, mainly in the coastal area. After 1800 UTC and throughout the night LCOF increases again in both products, but LCOF levels in NMS (Fig. 7b,f,l,p) are almost twice those of SAFNWC (Fig. 7a,e,k,o). The increase of LCOF in NMS is again remarkable over the windward slopes and summit of the main mountain ranges and the coast of RC and RDC and has a wider expansion along the Chaillu Massif between 0000 UTC and 0300 UTC (Fig. 7b,f).

The higher-level cloud occurrence frequency (HCOF) from SAFNWC and NMS/DMS is also shown in Fig.7 (black dots) and points out the areas of higher uncertainty in the detection of low-level clouds from satellites. HCOF is larger in Cameroon, northern RC and northern Gabon in both products and is increasing at night, reaching a 70% occurrence frequency in Cameroon under NMS.
Figure 7. JJAS Low-level clouds occurrence frequency (shading) and high clouds (dots) from SAFNWC and NMS/DMS for the eight observation times available at the analyzed stations in the period 2008–2019.

The twice-daily 2B-GEOPROF-LIDAR product does not allow to investigate the full diurnal cycle of the low-level cloud cover. However, it brings valuable information about clouds height, thickness and multilayers. Therefore, Figure 8 displays climatologies for around 12.30 UTC and 00.30 UTC of the vertical distribution (till 20km) of cloud occurrence frequency for six paths, and maps of LCOF (0-3000 meters a.s.l.). Around noon, the spatial variability of LCOF (Fig. 8d) is similar to the LCF (Fig. S4) and also similar to SAFNWC and DMS (Fig. 7c. and 7g.), namely a widespread stratiform deck in Gabon, the western part of RC and southwestern Cameroon. The main difference compared to SAFNWC is a larger number of low-level clouds near the coast of Gabon in 2B-GEOPROF-LIDAR (Fig. 8d). The vertical distribution of clouds also shows more low-level clouds from the coastal plains to the west of the Chaillu Massif (Fig. 8b, 4°S-2°N). The other main feature is a higher base of low-level clouds over land (Fig. 8b-c) compared to the ocean (Fig. 8a), which might be due to the elevated terrain (red line curves in Fig. 8a-c). The low-level clouds are also thicker north of 2°S (up to 3000 meters). In addition, multilayered higher clouds become more frequent towards northern areas (Fig. 8a-c) and mask the low-level clouds when detected by passive sensors onboard satellites.
At mid-night the LCOF from 2B-GEOPROF-LIDAR (Fig. 8f) shows generally less low-level clouds than at noon (Fig. 8d). A close inspection of Fig. 4i and 4m over central Gabon corroborates this finding, only later in the night and in the early morning the LCOF increases further and peaks in the diurnal cycle. In addition, the low-level clouds are more frequent near the coast and their amount decreases inland towards the east (Fig. 8f), which is consistent with the results found with SAFNWC (Fig. 7a,e,o) and NMS (Fig. 7b,f,p). The clouds might be advected inland from the ocean, but because of the scarce twice-daily over-flights the dynamics of the low-level clouds are difficult to estimate by 2B-GEOPROF-LIDAR. The vertical distribution of clouds confirms the expanded stratus deck to the west, i.e. on the windward slopes (Fig. 8e,g) while over the plateau further east (Fig. 1), the low-level cloud fraction is lower (Fig. 8h). The role of the topography is shown here clearer compared to daytime (Fig. 8a-c), likely due to the SW-NE orientation of 2B-GEOPROF-LIDAR path followed at night (Fig. 8f). In all night paths, there are also larger amounts of high level clouds over northern Gabon, northern RC, and Cameroon (Fig. 8e,g-h), consistently with SAFNWC and NMS (Fig. 7a-b).

The results suggest a widespread stratiform cloud deck in the morning that clears up in the afternoon mainly in the plateau east of Chaillu massif and Cristal mountains. However, some inconsistencies between products have been found mainly due to the inability of SAFNWC to detect low-level clouds at night. The multi-layered cloud cover mostly present in northern Gabon and southern Cameroon at night as seen from 2B-GEOPROF-LIDAR, may partly explain the lower number of low-level clouds detected with SAFNWC and NMS/DMS there compared to SYNOP observations (Section 3.1). The aim of the next section is to thoroughly compare SYNOP observations and satellite data.
Figure 8. JJAS vertical cloud occurrence frequency from 2B-GEOPROF-LIDAR along three paths at 12:30 UTC (a,b,c) and three paths at 00:30 UTC (e,g,h) for the period 2006-2017 during the day and 2006-2010 during the night. The red line is the topography. The LCOF calculated in each swath between the ground level and 3000 meters a.s.l. (horizontal red dotted line) are shown at 12:30 UTC (d.) and 00:30 UTC (f.)

c. Comparison of satellite and station observations

In this section, LCF from satellites and from SYNOP observations are compared. The average LCF in the entire area is very different between a LCF calculated with all SYNOP
genus or excluding cumuliform clouds (genus 4 to 8 only). During the day (1200 UTC-1500 UTC) the LCF excluding cumuliform clouds is lower by approximately 2 oktas. Focusing on the latter, the highest level (more than 5 oktas) is reached at 0600 UTC (Fig. 9a). The LCF decreases during the day to reach a minimum at 1500 UTC (3 oktas). The diurnal cycle of LCF from satellites is similar between SAFNWC and DMS during the day (0600 UTC – 1500 UTC, Fig. 9a) with a peak at midday. In the early morning (0600 UTC) when the solar angle is low, both satellite products underestimate the SYNOP observations because of a low illumination. LCF from satellites overestimates SYNOP observations at midday (1200 UTC) when cumuliform clouds are not counted in SYNOP observations (Fig. 9a). In the afternoon, satellite products show a decrease of LCF, reaching a number close to SYNOP observations (around 3 oktas at 1500 UTC). At night (1800 UTC to 0300 UTC), LCF from SAFNWC shows a large underestimation (2 oktas) compared to SYNOP observations while NMS show closer results to SYNOP observations (Fig. 9a).

The bias between satellite datasets and SYNOP observations is highly dependent on the region (Fig. 9b-q). At 0600 UTC the underestimation of LCF from satellites is larger in western RC and western Gabon (Fig. 9j,k). During the day LCF starts to be overestimated mainly in the north-east part of RC (Fig. 9n,o,d,e,h,i), where the cumuliform clouds are more prevalent (Fig. 6). At night (1800 UTC – 0300 UTC) less stations have a sufficient amount of data for the analysis (mainly in central Gabon), which degrades the accuracy of the results, but regional variability is still appearing. In western RC, a large underestimation appears in SAFNWC (Fig. 9l,p,b,f) while NMS shows a slight overestimation (Fig. 9m,q,c,g). On coastal Gabon, LCF is underestimated by a similar amplitude in both products. The bias in term of LCOF was also calculated (Figure S5) and show similar results. In addition, a statistical analysis of the comparisons between SYNOP observations and satellite data is shown in Fig. S6.
Figure 9. a. Spatially averaged diurnal cycle of LCF from SAFNWC, NMS (1800 UTC – 0300 UTC), DMS (0600 UTC – 1500 UTC) and SYNOP observations (all genus and genus 4 to 8 only). All stations have the same weight regardless of their sample size. b-q. Maps of the mean bias (in oktas) between LCF from SAFNWC or NMS/DMS and SYNOP observations (genus 4 to 8) for the period JJAS 2008–2019. “Avg” represents the average bias from all stations. The stations with less than 10% of available data have been removed from the analysis for each observation time.

The occurrence of low cloud genus from SYNOP observations and the occurrence of low cloud types from satellite data are finally compared to investigate how the satellites detect the different cloud genus. Figure 10 displays the diurnal cycle of the frequency of low-level cloud genus as observed at the stations (colored bars) for each satellite cloud type (individual panels).

Very low and low clouds together are the most frequent SAFNWC cloud types during the day (black line, Fig. 10) and are mostly detected when non-convective clouds (Stratocumulus) are observed from the ground (gray shade, Fig. 10b-c). Cloud free is detected more frequently at night and early morning (1800 UTC to 0600 UTC) and corresponds also mostly to stratocumulus (Fig. 10a), showing that a large part of stratiform clouds observed from the ground are not well detected by SAFNWC at night. As previously discussed in van der Linden et al. (2015), this is partly related to small temperature differences between low-level clouds and the ground, making it difficult to detect low-level clouds using IR brightness temperatures. In addition, high water vapor content in low levels makes it difficult to adjust
thresholds to detect cloudy pixels. During the day (0900 to 1500 UTC), Cumulus clouds prevail when no cloud is detected in satellites (Fig 10a.). Cumulus clouds are also frequent in the fractional type (Fig. 10f) due to the fractional characteristic of cumulus. Cumulus covers only a part of the sky (Fig. 5), so they are likely to be classified as cloud free in SAFNWC (Fig. 10a). The type “high semi-transparent” is also well represented and occurs steadily during the day at a frequency between 15 and 20% (black line, Fig. 10g). These high clouds from SAFNWC are associated with a significant number of stratocumulus in SYNOP observations (Fig. 10g) showing that the high clouds are likely hiding part of the stratocumulus situated underneath and seen from the ground.

The three DMS/NMS types include low-level clouds (MS lcc), higher level clouds (MS hcc) and cloud free (MS cloud free). These types have more inter-types similarities than SAFNWC in terms of partition of SYNOP cloud genus. The main difference among DMS/NMS types is a slightly higher proportion of stratocumulus in the low-level cloud type and a higher proportion of cumulonimbus in the cloud free type (Fig. 10h–j).

Figure 10. All stations diurnal partition of the SYNOP low-level cloud genus (colored bars) in the seven SAFNWC (“SAF” panels) and the three NMS/DMS (“MS” panels) cloud types for the period JJAS 2008–2019. The NMS was used from 18–03 UTC and the DMS from 06–15 UTC. Black line is the frequency of each SAFNWC cloud type relative to the
number of all available SYNOP observation days and stations. The stations with less than 10% of available data have been removed from the analysis for each observation time.

Overall, the comparison between SYNOP observations and satellite data described in this section suggests clearly that NMS is more realistic than SAFNWC in detecting the low-level clouds at nighttime. During the day, SAFNWC show similar LCF bias than DMS (Fig. 9) but shows a higher proportion of stratocumulus detected as low clouds (Fig. 10).

d. Spatial variability in the diurnal cycle of low-level cloud cover

The previous section has shown large differences between SYNOP observations and satellite products in absolute values of low-level cloud cover. Quantifying the change of low cloud cover between successive observation times may therefore better reveal the spatial consistencies of diurnal cycles in the different products. In this section, the evolution of JJAS low-level cloud occurrence frequency (LCOF) between successive observation times in the period 2008-2019 using NMS, SAFNWC and SYNOP observations is investigated (Fig. 11). NMS is used for night time (Fig. 11a,b) and SAFNWC for day time (Fig. 11c,d) because these products are more reliable in these respective periods, as shown in the previous section. 1800 UTC and 0600 UTC have been removed from this analysis since these times are not well captured by the satellites (Fig. 9), due to twilight conditions.

The results from SYNOP observations show that low cloud occurrence frequency increases in the evening, starting from western Gabon and western Cameroon, and spreading to the east (Fig. 11a,b). The results from the NMS satellite data show a similar spatial variability before midnight with the largest LCOF increase in the Cristal Mountains in northern Gabon and in south-central Cameroon (Fig. 11a). After midnight and until 0300 UTC, the cloudiness keeps increasing in these regions, but also increases further east (Fig. 11b).
Figure 11: Change of low-level cloud occurrence frequency (LCOF) compared to the
previous observation time for NMS (a-b) at nighttime and SAFNWC at daytime (c,d) for the
period JJAS 2008-2019. The circles are the in-situ observed change LCOF in the period JJAS
1971-2019 for stations with less than 10% of missing data. e) Location of the stations
investigated in f) and g). f)-g): Average and standard deviation of LCOF from SYNOP
observations (f) and satellites (g) at the coast (red), on the windward slopes and coastal plains
(orange), on the plateau (green), and leeward slopes of Congo Basin (blue). The vertical lines
in g) delineate the LCOF calculated from SAFNWC (06-15 UTC) and from NMS (18-03 UTC).

During the day, the SYNOP observations show generally a decrease of low-level cloud
cover, but some stations show a very small change in LCOF, mainly in the central and northern
part of RC (Fig. 11c-d), most likely due to the development of low-level cumulus clouds (Fig. 6). A stable LCOF is also evident in the coastal hinterlands on the windward side of the Cristal and Chaillu mountain ranges (Fig. 11c-d). The spatial variability of low cloud cover diurnal evolution from SAFNWC is moderately consistent with the SYNOP observations: it shows an increase in LCOF in the morning (0900 UTC - 1200 UTC) in the central and northern part of RC and the coastal hinterlands, in regions of very low change of LCOF according to SYNOP observations (Fig. 11c). Between 1200 UTC and 1500 UTC results from SAFNWC show a general decrease of LCOF except for the coastal hinterlands, in line with a stable or slight increase of LCOF in SYNOP observations (Fig. 11d).

To investigate the difference of mean diurnal cycle between different regions of the area, stations with at least 10% of available data for each observation between 0300 and 2100 UTC have been identified (Fig. 11e) and grouped according to their geographical locations. The average SYNOP observations and SAFNWC LCOF diurnal cycle for these stations have been calculated and reported on Fig. 11f and 11g. Looking at the SYNOP data, the coastal stations, including Pointe-Noire, Mayumba, Port-Gentil and Libreville (in red) show very high LCOF at night (80%), slightly decreasing during the day reaching 60% at 1500 UTC (Fig. 11f). The windward slopes of the Chaillu mountains represented by the stations Dolisie, Makabana, Tchibanga, Mouila and Lambarene (orange, cf. Fig. 1) are the cloudiest and show a steady LCOF around 70-80%. Stations in the plateau region, including Mouyondzi, Sibiti, Franceville, Lastoursville, Makokou and Mitzic (green) show a LCOF peaking at 80% around 0600 UTC then decreasing in the afternoon to less than 50%. Further east in the region including Brazzaville, Ndjili, Djambala and Souanké (blue, leeward slopes of plateau) the LCOF is generally lower and shows a stronger diurnal cycle with LCOF varying between 70% in the morning and 25% in the afternoon (Fig. 11f). Taking the grid point corresponding to each station, SAFNWC during the day (0600 to 1500 UTC) and NMS at night (1800 to 0300 UTC) the spatial variability of diurnal cycle is similar to SYNOP observations data (similar ranking of the groups of stations; Fig. 11g). During the day, we observe an eastward gradient, with a higher cloud occurrence frequency in the windward slopes and lower cloud cover toward the inland region (Fig. 11g). At night (0000-0300 UTC) the difference of low-level cloud cover between the windward slopes and the inland regions is reduced, similarly to SYNOP observations (Fig. 11f-g). Inconsistencies between SYNOP observations and satellites include a large underestimation of LCOF at 0600 UTC (see also Fig. 9) and a clear underestimation at the coastal stations due to less low-level cloud cover over the ocean in SAFNWC.
The reduced low-level cloud cover over the plateau in the afternoon has been previously associated to the topography favoring a foehn effect (Dommo et al. 2018). The afternoon clearing occurring on the plateau may also be associated with a shortwave heating and a stronger convection due to elevated terrain. The development of cumulus in eastern Gabon and central RC supports this statement (Figure 6). The June-July daytime clearing of the low-level stratus in southern Benin during the “convective phase”, as described in the conceptual model of Lohou et al. (2020), provides a potential mechanism in this regard. However, a clear distinction to the Benin site is the presence of a lush rainforest in Gabon and thus plant transpiration might be of larger importance. After sunset, the LW cooling of the ground and later of the cloud top might promote the formation of the clouds.

On the windward slopes of southern Cameroon, Equatorial Guinea, Gabon, and RC, the apparent increase of low-level cloud cover during the morning in the satellites, while collocated stations do not actually show any LCF increase (Figs. 7 and 11c), may be associated with an elevation of the boundary layer that make the low-level clouds ‘visible’ to the satellite. Early in the morning, the low-level cloud top temperature may not be significantly distinct from the ground temperature, such that the low-level clouds can easily be misclassified as cloud-free by the satellite’s algorithm. This result suggests a persistence of low-level level clouds as shown in the SYNOP observations (Fig. 11f) more than a real increase in low-level cloud cover. To the east of the coastal plains, at the western flank of the low mountain ranges, upslope winds will support the persistence of clouds. While for West Africa, it was found that advection of low-level marine stratus onto land plays an inferior role to the extent of the land-based stratus (Lohou et al., 2020), this may be a contributor south of Port-Gentil where low-level offshore clouds are frequent and widespread (Fig. 7).

Stations directly at the coast, like Port-Gentil at Cape Lopez and Pointe-Noire, but to a lesser extent Libreville (red stations in Fig. 11c) exhibit a decrease of low-level cloud cover in the morning, suggesting a frequent land-sea breeze activity, even during the cloudy dry season. It is interesting to note that the coastal upwelling develops south of Port-Gentil (Herbert and Bourselès 2018). Thus, the larger ocean-land temperature contrasts at Pointe-Noire and the “cape location” of Port-Gentil may favor decrease of low-level cloud cover in the morning due to a sea breeze.
4. Summary and Discussion

In this study, a data set of SYNOP observations of low cloud fraction and low cloud genus of unprecedented length (1971–2019) and completeness has been compiled for Western Equatorial Africa. It has been used to provide a climatology of low-level clouds and to evaluate satellite cloud products, namely SAFNWC and NMS/DMS for the common period JJAS 2008-2019. SAFNWC, NMS, and DMS products are based on the MSG SEVIRI multi-channel radiometer and thus have a high spatial (3 km x 3 km) and temporal (15 minutes) resolution. 2B-GEOPROF-LIDAR which is based on the CloudSat CPR and Calipso CALIOP instruments, and has a low sampling rate (two overflights per day and a return period of 16 days for the same swath), was also considered as it informs on the presence or not, of low-level clouds in case of a multi-layered cloud cover.

Our evaluations of the satellite products (Figure 9) underscore the previously known deficiencies of SAFNWC at detecting low-level clouds at night in tropical Africa (van der Linden et al. 2015; Dommo et al. 2018) The lower skill of SAFNWC compared to NMS at night is demonstrated by the proportion of undetected low-level clouds (all genera): in NMS only ~25% (Fig. 10h) of the SYNOP low-level clouds are classified in the cloud free category (among which a significant number of cumulonimbus), whereas in SAFNWC this number is above 40% (Fig. 10b-c and comprises mainly stratocumulus). Thresholds used in the NMS algorithm are probably more efficient to capture low clouds, especially in case of a small contrast between the ground and the cloud top temperature. A negative bias at night in SAFNWC due to such a small contrast has previously been reported (van der Linden et al. 2015). Therefore, the use of the NMS, adapted for tropical conditions (Schrage and Fink, 2012) is also recommended for WEA. Consequently, the concatenation of SAFNWC for daylight hours (0600–1500 UTC) and NMS for nighttime (1800–0300 UTC) hours yields the most realistic diurnal cycle compared to SYNOP observations, although caution should be exerted around sunset and sunrise as both products show large biases. Our study clearly improves on the results by Dommo et al. (2018) as this former study shows a maximum of low-level cloud cover in the middle of the day in all parts of WEA, whereas low-level cloud cover (excluding cumuliform clouds) peaks at late night /early morning.

The satellite products SAFNWC and NMS were together able to produce a similar spatial variability of low-level clouds diurnal cycle compared to SYNOP observations. Mostly, over the windward slopes of the Cristal and Chaillu mountains (Fig. 1), there is more low-level clouds all day, while the plateau regions are characterized by a larger amplitude in the diurnal
cycle with higher LCOF in the morning, a decrease of LCOF (clearing) in the afternoon, and low-level clouds that reform late at night (Figs. 7 and 11). However, frequent higher clouds, making it impossible for most satellite instruments to detect clouds underneath, render the results more uncertain in the northern part of the study region (i.e. South Cameroon, Fig. 7). This higher cloud frequency is clear in the 2B-GEOPROF-LIDAR vertical profiles (Fig. 8). It partly explains the larger underestimation of low-level clouds by SAFNWC and the microphysical schemes compared to SYNOP observations in this region.

Despite uncertainties in both eye observations of clouds at stations and satellite cloud products, the present study yields the most complete low-level cloud climatology for western equatorial Africa to date and can provide a basis for further investigations on climate change aspects of low-level clouds. First, this paper points to the observational and satellite products that can be used for validating climate models over the historical period for the region. Second, it documents the mean diurnal evolution of the low-level cloud cover and the spatial variability of cloud fraction and frequency of occurrence. If models show a good performance at reproducing these key characteristics over the historical period, then one should have some confidence to use them for exploring the medium to long-term future evolution of the low-level cloud cover. Coupled and forced CMIP6 models have still large deficiencies in simulating the low-level oceanic and continental clouds in the region (Camberlin et al. 2022), but convection-permitting model simulations, including sensitivity studies, should be suitable to shed more light on the physical processes involved in the genesis and lysis of the low-level clouds.

Acknowledgements.

The authors thank the reviewers for their time spent on the manuscript and their valuable comments. We also thank the AERIS/ICARE data center (http://icare.univ-lille1.fr/) for providing access to the SAFNWC CT data used in this study. This study was part of the project DYVALOCCA (https://dyvalocca.osug.fr/) funded by ANR and DFG under Contract ANR-19-CE01-0021 and DFG FI 786/5-1

Data availability statement.

The datasets used to create the concatenated SYNOP dataset are from different sources: EECRA is available at https://rda.ucar.edu/datasets/ds292.2/#access ISD is from https://www.ncei.noaa.gov/products/land-based-station/integrated-surface-database.
MIDAS is from https://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0.

SAFNWC is available upon request from the AERIS/ICARE data center (http://icare.univ-lille1.fr/).

2B-GEOPROF-LIDAR is available here: 2B-GEOPROF-LIDAR | CloudSat DPC (colostate.edu)

The concatenated SYNOP observations dataset and the low cloud occurrence frequency and low cloud fraction from SAFNWC, NMS/DMS and 2B-GEOPROF-LIDAR produced in this study are available upon request.

REFERENCES

Camberlin, P., and Coauthors, 2022: The Representation of Dry-Season Low-Level Clouds Over Western Equatorial Africa in Reanalyses and Historical CMIP6 Simulations. Submitted to Climate Dynamics.

Hu, Z.-Z., B. Huang, and K. Pegion, 2008: Low cloud errors over the southeastern Atlantic in

