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1. Introduction

In sports, at both professional and recreational levels, the risk of
accidents that leads to injuries or musculoskeletal pathologies is
high (e.g., muscle tears, fractures, sprains). These events are likely
to induce a training cessation or, in some cases, a prolonged period
of physical inactivity (e.g., bed rest and/or immobilization). Even if
necessary, this reduction in physical activity, or hypoactivity, can
be problematic when considering sports practice and rehabilita-
tion. Indeed, in addition to its harmful effects on physical (e.g.
fatigability) and psychological health (e.g., depression), hypo-
activity adversely and globally affects motor functions, decreasing
athletic performance [1]. Thus, the rehabilitation protocols must

consider the impairments in motor function at the local (injury
location zone) and general levels, caused by the traumatic event,
but also the subsequent period of hypoactivity.

A recent review explored the association between hypoactivity
and central lesions [2], so here we focus on hypoactivity induced
by peripheral disabling events. The undesirable effects of hypo-
activity differ according to the nature of the disuse: hypoactivity
caused by prolonged bed rest (e.g., fracture of a leg bone during a
ski descent) primarily affects walking and postural balance [3],
whereas immobilization of the upper limb (sprained wrist during a
tennis match) has deleterious effects on arm motor skills [4]. To
understand the neurophysiological changes leading to such motor
impairments in injured people, the most common method is to
reproduce hypoactivity in healthy individuals (e.g., immobilization
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A B S T R A C T

Background: In sports, the risk of pathology or event that leads to an injury, a cessation of practice or even

to an immobilization is high. The subsequent reduction of physical activity, or hypoactivity, induces

neural and muscular changes that adversely affect motor skills and functional motor rehabilitation.

Because the implementation of physical practice is difficult, if not impossible, during and immediately

following injury or immobilization, complementary techniques have been proposed to minimize the

deleterious impact of hypoactivity on neuromuscular function.

Objective: The current narrative review aimed to discuss the contributions of motor imagery and action

observation, which enhance motor (re)learning and induce neural adaptations in both healthy

individuals and injured athletes.

Methods: Online literature research for studies of the effects of motor imagery, action observation and

their combination on hypoactivity, extracting relevant publications within the last decade (2009–2020).

Results: From published studies and the authors’ knowledge of both motor imagery and action

observation, some elements are provided for developing applied protocols during and after the

immobilization period. Such interventions consist of associating congruent action observation with

kinesthetic motor imagery of different movements, organized in increasing difficulty. The aim is to

maintain motor functions and promote motor relearning by activating sensorimotor cortical areas and

corticomotor pathways of the injured effector.

Conclusion: This narrative review supports the implementation of combined motor imagery and action

observation protocols in the context of sports rehabilitation.
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in healthy participants minimizes the impact of confounding
variables (e.g., immobilization duration, immobilization cause,
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ssociated pain, potential comorbidities), bringing clear informa-
ion about the exclusive hypoactivity-induced effects on neuro-
hysiological processes. As presented below, the current results
emonstrate that hypoactivity affects cortical activity, corticospi-
al excitability, neuromuscular properties and motor behavior.

At the cortical level, functional imaging reveals the presence of
tructural and functional changes due to hypoactivity [5–8]. For
nstance, Koppelmans et al. [5] reported a regular decrease in grey

atter volume in areas involved in movement planning and
xecution, such as the primary motor cortex, the somatosensory
ortex and the cerebellum, throughout the bed rest period (8.5,
0.5 and 66 days after the procedure started). This significant
tructural decrease was associated with functional degradation of
ostural balance and mobility, as measured after bed rest.

mpaired interhemispheric inhibitory balance between primary
otor cortices was also reported [9,10]. Crucially, Avanzino et al.

9] revealed that the imbalance depends on the over-use of the
on-immobilized arm, inducing deeper inhibition in the immo-
ilized arm-related primary motor cortex.

At the corticospinal level, by means of transcranial magnetic
timulation, Roberts et al. [6] observed a decrease in corticospinal
xcitability in leg muscles right after and 2 weeks after a 90-day
ed rest period. These results are consistent with Karita et al. [11],
ho found a decrease in corticospinal excitability with shorter

mmobilization duration (24 hr). However, these results are
hallenged by Zanette et al. and Leukel et al. [12,13], who observed
n increase in corticospinal excitability following limb immobili-
ation. Modification at the spinal level may preferentially explain
he increased corticospinal excitability. Nonetheless, the specific
pinal pathway (direct monosynaptic or indirect polysynaptic) is
till debated because of contradictory findings.

At the muscular level, decreased strength after immobilization
s accompanied by changes in muscle properties, such as fiber
trophy (reduction of the cross-sectional area) and slowing
uration of the maximum M-wave [14]. This latter finding may
e explained by changes in muscle fiber conduction velocity,

ncreased temporal dispersion between the responses of different
otor units, and/or alterations in the muscle cell membrane

roperties. The authors also claimed that neural factors (primarily
eficits in central activation) explained 48% of the variability in
trength loss, whereas muscular factors (primarily sarcolemma
unction) explained 39% of the variability, thereby attesting that
oth components are affected by immobilization.

At the behavioral level, studies reported deteriorated motor
erformance in various tasks after upper-limb immobilization
7,8,15–18]. These deteriorations were mainly characterized by
ncreased movement duration and loss in movement accuracy as

ell as loss of tactile acuity. The decrease in motor performances
as been associated with impaired feedback and feedforward
echanisms of motor control, affecting motor command imple-
entation, postural anticipations and on-line movement correc-

ions.
To counteract hypoactivity effects, rehabilitation programs

ased on physical practice are implemented during and after
mmobilization [19]. Physical practice preserves motor abilities
ecause of its positive effects on both neural and musculoskeletal
tructures as well as on sensorimotor representations. However,
hysical practice is not always possible, or sufficient. Moreover,

mmobilization is likely to limit the use of physical training (e.g.,
ocomotion exercise with immobilized legs), which implies the

2. Method

The main objective of the current narrative review was to
examine the efficiency of MI and AO interventions to counteract
hypoactivity effects and to discuss the benefits of combining MI
and AO in a rehabilitation protocol. We conducted an online search
in PubMed/MEDLINE, Web of Science and Google scholar
electronic databases for English-language original studies and
review articles of relevance. Search terms included ‘‘hypoactivity’’,
‘‘immobilization’’, ‘‘injury’’, ‘‘motor imagery’’, ‘‘action observation’’
and/or ‘‘combined motor imagery and action observation’’. In
addition, related publications were manually extracted by cross-
referencing. Given past reviews [20,21] and the increasing number
of subsequent studies, we focused on publications published
during the last decade (2009–2020).

3. Results

3.1. Motor imagery, action observation and immobilization

3.1.1. Motor imagery

MI is the internal simulation of a movement without its
concomitant production. Different modalities frame MI; the 2 most
used are kinesthetic MI (the focus on sensorial and muscular
aspects of action) and visual MI (the self-visualization of a
movement). According to Jeannerod [22] and Decety [23], MI and
actual execution are neurofunctionally equivalent (Table 1). At the
cortical level, MI and actual execution share overlapping neural
substrates [24]. Moreover, transcranial magnetic stimulation
studies have shown an effector- and temporal-specific increase
in corticospinal excitability during MI [25]. Behaviorally, MI shares
the temporal properties associated with the corresponding gesture
execution (isochrony) as well as a similar integration of
biomechanical and environmental constraints [26]. From a
computational perspective, the common properties would be
due to an equivalent solicitation of the sensorimotor mechanisms
involved in motor planning.

The neurofunctional equivalence between MI and actual
execution may explain motor skill learning without gesture
execution. Corroborating that idea, numerous studies showed
beneficial effects of MI on motor acquisition, consolidation and
retention [27]. MI-induced neuroplastic changes may explain
these benefits at least in part (see [28] for a detailed review). Since
the pioneering work of Pascual-Leone et al. [29], 3 mechanisms
underlying MI-induced plasticity have been identified [28]: (1) MI
contributes to a somatotopically dependent reorganization of
cortical maps [30]; (2) MI also contributes to the strengthening of
intersynaptic communication, at both cortical and spinal levels
[31,32]; and (3) MI reduces presynaptic inhibition at the spinal
level, facilitating the signal transmission [33].

3.1.2. Action observation

AO solicits the brain regions responsible for the corresponding
motor execution in the observer’s brain via the frontoparietal
mirror network [34,35]. Similar to MI, AO increases corticospinal
excitability in an effector-specific manner [36]. The activation of
the sensorimotor system during AO helps the observer understand
the actions of others. From a mechanistic point of view, Jeannerod
[22] proposed that AO implicitly generates an internal simulation
evelopment of complementary and alternative techniques.
ecause motor imagery (MI) and action observation (AO) are

requently used in clinical settings, this narrative review focuses on
he efficiency of MI and AO interventions to counteract hypo-
ctivity effects and discusses the benefits of combining MI and AO
n a rehabilitation protocol.
2

of the action. That mechanism, called motor resonance, would
modulate the motor behavior of the observer and promote
imitation learning (Table 1).

Several studies demonstrated that AO contributes to improve
the learning of a wide variety of motor tasks, from simple (e.g.,
pointing) to complex (e.g., sport, poly-articular) movements
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[37]. As for MI, motor learning through AO can be explained by AO-
induced neuroplastic reorganizations [38]. These beneficial effects
on motor learning have been observed in both healthy and injured
participants (e.g., post-stroke), thereby enhancing the develop-
ment of AO-based treatments to facilitate motor (re)learning [20].

3.1.3. Potential interest of motor imagery and action observation for

sports rehabilitation

MI and AO induce corticospinal adaptations and promote
(re)learning with or without actual execution, so they are assumed
to be efficient in a sport rehabilitation framework. Such an
approach could indeed have implications for treating sports-
related pathologies leading to movement restrictions or immobi-
lization (e.g., muscle injury, sprain, ligament injury, dislocation,
fracture).

However, and even if MI and AO are promising and
complementary alternatives to physical exercise, one must first
evaluate the effects of an experimentally induced and controlled
hypoactivity on these processes. Indeed, if actual execution is
impaired after immobilization, MI and AO would likely be affected
as well. Of note, the potential impairment of MI and AO after
immobilization should not be considered an impediment to their
implementation in a rehabilitative context. Indeed, Ruffino et al.
[39] recently demonstrated that MI quality improved after a single
session of MI practice in healthy individuals. Before being excluded
from the experiment, the participant/patient should be familiar-
ized with the intervention modalities.

3.1.4. Effect of immobilization on motor imagery and action

observation

First focusing on MI, studies reported that the short-term
immobilization of a limb (<1 day) affected isochrony and vividness
(i.e., the clarity of simulated action) at the level of this limb
[40]. These impairments are due to the somatotopic- and laterally-
dependent effects of short immobilization on sensorimotor
representations [41,42]. In a multimodal study combining trans-
cranial magnetic stimulation, magnetoencephalography and func-
tional MRI, Burianova et al. [43] sought to observe the effect of
24-hr hand immobilization on MI-associated neural and corticos-
pinal responses. For MI of the constrained hand, data showed
decreased neural activation, disturbed event-related synchroniza-
tion and desynchronization and decreased corticospinal excitabil-
ity after immobilization. From their findings, the authors proposed

the authors suggested that immobilization effects remained
restricted to the effector network. As a consequence of immobili-
zation effects on MI neural substrates, the neural state of the
patients should be considered to provide individual MI instruc-
tions. To our knowledge, the question remains of whether a longer
immobilization also affects sensorimotor representations in a
broader manner. To the best of our knowledge, no study has
addressed the question of immobilization effects on AO. Therefore,
we are limited in our understanding of the impact of hypoactivity
on this process.

3.2. Benefits of motor imagery and action observation during

hypoactivity

In the current section, we focused on the effect of acute and
chronic MI and AO interventions on neurophysiological parame-
ters and motor function in both healthy individuals and patients.

3.2.1. Motor imagery

Because kinesthetic and visual MI have different effects on
corticospinal excitability and learning [19], MI modality deserves
consideration. In Meugnot et al. [45], participants were subjected
to an acute mental training (15 min) after 24 hr of brachial
immobilization and were assessed on a laterality judgement task
(mental rotation). MI training consisted of 4 distinct tasks:
(1) finger tapping, (2) adduction/abduction of the wrist, (3) flex-
ion/extension of the wrist, and (4) hand clenching and unclench-
ing, with 25 trials each. MI modality varied among groups (i.e.,
kinesthetic vs. visual vs. no training). Kinesthetic MI training
maintained response time duration after immobilization, with an
increase for other groups. For the authors, kinesthetic MI would
therefore contribute to the reactivation of sensorimotor repre-
sentations. In another study, Stenekes et al. [46] aimed to
characterize the effects of kinesthetic MI training on the
preservation of hand function after a longer immobilization period
(6 months). After finger flexor surgery, patients of the MI and
control groups imagined or not 80 finger flexions per day,
respectively. Primarily interested by the central aspects of hand
function, the authors compared finger flexion of the uninjured
hand before immobilization to those of the injured hand after
immobilization. They reported a smaller increase in reaction time
between the 2 hands for the MI group than for the control group
(F = 5.901, P = 0.024), which suggests that MI training helped to

Table 1
Main processes and effects of motor imagery and action observation.

Motor imagery Action observation

Main processes Explicit

Implication of predictive neural mechanisms

Effector-specific activation of corticospinal pathways,

associated with cortical activations of the sensorimotor system

Implicit

Motor resonance, possible implication of predictive neural mechanisms

Effector-specific activation of corticospinal pathways, associated with

cortical activations of the sensorimotor system

Behavioral effects Motor skill enhancement:

Muscle strength

Balance

Gait mobility

Upper limb functionality

Motor skill enhancement:

Balance

Gait mobility

Upper limb functionality

Neurophysiological

mechanisms

Brain activations of frontoparietal areas, putamen and

cerebellum regions

Modulation of pre-synaptic spinal activity

Corticospinal excitability increase

Brain activations of frontoparietal

areas

Corticospinal excitability increase
that the attenuation of MI-associated neural responses after
immobilization relies on a decrease of sensorimotor representa-
tion specificity, also called dedifferentiation. For longer immobili-
zation durations (e.g., 48 hr), Meugnot et al. [44] reported a
transfer to the unconstrained contralateral limb. Because no
impairments were observed for MI of other body parts (i.e., foot),
3

conserve the central properties of motion control. In the same
study, Stenekes et al. [46] reported no effects of MI on muscle
strength and kinematic analysis. These results are in part
contradictory to those of Frenkel et al. [47]. In that experiment
[47], MI performed during immobilization preserved dorsal
extension (1.77% loss) and ulnar abduction (7.71% loss) of the



w
(
r
e
p
d
D
n
a
r
p
p

t
s
w
t
c
m
t
d
g
t
r
t
g
t
e
e
t
d
im
t
m
c
g

r
c
t

3

m
l
A
i
fi
a
c
g
a
g
d
l
l
t
i
f
c
b
m

t
p
i

D. Rannaud Monany, C. Papaxanthis, A. Guillot et al. Annals of Physical and Rehabilitation Medicine 65 (2022) 101541
rist joint as compared with the immobilized control group
11.88% and 29.42% loss, respectively), in agreement with previous
esults [48]. We suggest that the differences in results could be
xplained in part by the dissimilarities in samples (surgical
articipants in [46] vs. healthy participants in [47]) and by the
uration of immobilization (6 weeks for [46] vs. 3 weeks for [47]).
espite the presence of these contradictory results, the effective-
ess of kinesthetic MI on the maintenance of muscular strength
fter immobilization has been the subject of a recent systematic
eview [49]. The results of that review strongly pointed to the
ositive effects of MI to reduce strength loss for both healthy
articipants and patients.

The results presented in the previous section may be due in part
o the effects of MI at both cortical and corticospinal levels. In the
tudy by Clark et al. [50], participants were immobilized at the
rist and hand for 4 weeks and were assigned or not to an MI

raining (immobilization group with and without MI). The training
onsisted of 52 imagined maximal contractions of wrist flexor
uscles 5 times a week. In addition to muscle strength measures,

he authors studied the effect of MI on cortical silence period
uration, reflecting corticospinal inhibition. The immobilization
roup with MI showed a smaller decrease of muscle strength than
he immobilization group without MI (23.8 � 5.6% vs. 45.1 � 5.0%
eduction). A silence period extension, observed for the immobiliza-
ion group without MI, was not observed for the immobilization
roup with MI, which suggests that MI allows for relative preserva-
ion of the intracortical balance. In another experiment, Debarnot
t al. [51] studied the effect of MI training on both corticospinal
xcitability and MI performance (hand laterality task) during short-
erm immobilization (11 hr). For the imagery group, MI training was
ivided into 5 distinct sessions of 15 min, every 2 hr and consisted of

agining mono-articular (e.g., wrist extension) movement during
he first 2 sessions, then imagining both mono- and poly-articular

ovements (e.g., throwing a ball) during the 3 last sessions. Both
orticospinal excitability and MI performances were preserved for the
roup that performed MI practice.

To briefly conclude, the above articles suggest that MI helps
estrain the deleterious effects of hypoactivity. These benefits
ould rely on MI-induced intracortical and corticospinal modula-
ions.

.2.2. Action observation

As a reminder, immobilization affects cortical structures and
odulates corticospinal excitability relative to the constrained

imb. Bassolino et al. [52] sought to compare the effectiveness of
O (and MI) practice on corticospinal excitability maintained after

mmobilization. All participants had immobilized forearm and
ngers for 10 hr. They were instructed to observe manual grasping
ctions (AO group), imagine a grasping movement with their
onstrained arm (MI group), or watch a documentary (control
roup). Measurements of corticospinal excitability, before and
fter immobilization, provided evidence of maintenance for the AO
roup only, which suggests that AO benefits cortical plasticity
uring immobilization. The authors suggested that MI might be

ess effective than AO owing to the frailty of predictive internal
oops elicited by immobilization. Considering internal model
heories, the correct estimation of MI features depends on
nformation available at the action initiation. In the context of
orearm immobilization, the initial state cannot be consistently
onsidered when imagining grasping movement. Hence, MI would

protocol by Bassolino et al. [52] involved grasping movements.
Moreover, in Debarnot et al. [51], participants could physically
practice the movement with their non-immobilized arm before MI
practice, which might have a positive effect on reactivation of the
corticomotor pathways specific to the imagined movement. These
results suggest that imagery content and protocol instructions are
important to help maintain motor functions.

3.3. Combined motor imagery and action observation

MI and AO have been separately studied for years, but recent
studies provided clear evidence that these 2 forms of practice
should rather be used complementarily. Indeed, a growing body of
neurophysiological and behavioral studies pointed out that
combined AO and MI led to a greater activity of the motor
execution network as well as better performance as compared with
MI or AO alone ([53], for review). In Marusic et al. [54], the authors
observed the effectiveness of a combined MI and AO protocol,
applied during (4 to 6 days) and 2 months after immobilization
induced by total hip arthroplasty. The protocol consisted of
observing an action on a screen and concomitantly imagining the
movement with a focus on kinesthetic action features (AO + MI).
The observed and imagined actions consisted of locomotor
movement of increasing difficulty (e.g., slow walking at first, then
walking on unstable surfaces or on stairs). As compared with the
group that benefited from only the standard rehabilitation
protocol, the combination of MI and AO resulted in greater
performance gains for gait speed, swing-time variability and better
scores on behavioral tests (Timed Up and Go and Four Square Step
Test). The authors suggested that AO allows for visual guidance,
permitting a better focus on MI kinesthetic features [55]. By doing
so, internal representation updating would be enhanced, leading to
motor performance improvement. Although the superiority of the
MI and AO protocol compared to MI or AO alone was not directly
tested, these results suggest the possibility of combining both MI
and AO as a complementary rehabilitative technique after post-
surgical immobilization.

4. Discussion and recommendations for practice

In this review, we aimed to identify the single and combined
contributions of MI and AO to counteract the effects of immobili-
zation-induced hypoactivity and to provide practical implications
in sport rehabilitation. The included studies (Table 2) underline the
efficiency of MI, AO, and their combined use, to maintain motor
functions during and after immobilization. In the following section,
we discuss the main recommendations that should be considered
for designing the optimal use of MI and AO in a sport rehabilitation
context.

Our main recommendation concerns the implementation of a
protocol combining MI and AO in sports rehabilitation. Combining
MI and AO in a single protocol would have a positive effect on
sensorimotor representations, promoting relearning after immo-
bilization more effectively than an isolated MI or AO protocol. To
our knowledge, there are no contraindications to the application of
such a protocol. Moreover, it would be beneficial in a large number
of cases; from simple sprain to immobilization following a fracture.
Consequently, it would be applicable in many sport rehabilitation
contexts. Aware of the temporal, ergonomic and human resource
e less effective, whereas AO, relying on another mechanism (i.e.,
otor resonance), would not be affected by this interference.

Challenging the above-presented results of Debarnot et al. [51],
hese opposite results lead to considering certain features of the MI
rotocols. Indeed, the MI protocol used by Debarnot et al. [51]

nvolved different movements of increasing difficulty, whereas the
4

limits in the rehabilitation field, the application of MI and AO
combined would not be time-consuming (in accordance with
Marusic et al. [54]; 20 to 30 min per day in the hospital, then
3 times per week at home).

To the best of our knowledge, there are no clear data as to when
these protocols should ideally start. However, because motor
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function decreases quickly during the immobilization procedure
(see introduction section), we recommend starting the protocols as
soon as possible/convenient for the patient during the immobili-
zation and/or rest procedure. Because improvements following
mental practice might depend on motor imagery quality, assess-
ment could be relevant to discriminate participants who could
directly benefit from the protocol from those who will need to
improve MI quality in a first time. Indeed, one can improve MI
quality after one or a few sessions [39]; therefore, the assessment
at the first session should not be directly excluded from the study/
intervention for participants/patients with initial low MI quality.

The protocol should include a familiarization phase for the
proper integration of instructions related to MI. Movements should
be presented in increasing difficulty [51], gradually adding
contextual elements involving subtle movement modifications
(e.g., walking on slippery ground, then on a downward- or upward-
slope, with obstacles). In addition, MI is more effective when
imagined in an ecological setting [56]. However, the patient may
be constrained to stay still during recovery. During that time, the
presentation of ecological images/videos could help the patient
recall vivid motor representations. As recently evidenced [57–60],
we recommend using AO in a first perspective for isolated body-
part movements (e.g., hand exercise) and using AO in a third
perspective for whole-body movements (e.g., locomotor exercise).
Concerning more specifically a third perspective AO, we recom-
mend to not use mirror movements (e.g., not observing a person
coming toward the subject, but observing a person walking in front
of the subject) in order to minimize additional mental rotation.
Moreover, biological similarities between the actor and the
observer (e.g., action observation of a woman for a female patient)
would maximize AO efficiency. Transitive and meaningful
movements are also recommended, allowing for greater solicita-
tion of AO neural substrates [61]. Finally, patient’s compliance with
the treatment should be carefully controlled [30].

Designing the appropriate content and recommendations for
MI requires specific attention. As evidenced in Meugnot et al. [45],
the use of kinesthetic rather than visual MI would be preferable to
reactivate sensorimotor representations. Because of the effect of
circadian rhythms on MI performance, MI quality assessment and
MI training should ideally be performed at the same time of day
(between 14:00 and 16:00 for adults) to ensure consistent results
[62]. If possible, an actual execution of the unconstrained
contralateral effector during interventions would also be welcome

to ease the reactivation of the corticomotor pathways specific to
the imagined movement. When actual movement is possible, the
person’s initial position should be congruent with the imagined
movement (e.g., standing for a locomotion exercise) [63]. The
incorporation of physical movements between MI trials is also
relevant owing to their positive effect on motor performance, MI
quality and mental fatigue minimization [64]. Therefore, we
recommend series of 10 imagined trials interspersed with 1 to
5 actual trials, when feasible (Table 3).

5. Perspectives

The current review points out the relevance of combining MI
and AO in a motor rehabilitation context. Despite the promising
effects observed in the included studies, the methodological
heterogeneities (e.g., healthy or patient participants, immobiliza-
tion durations) call for some caution in interpreting the results.
Moreover, many questions remain and need to be addressed to
provide appropriate and effective care assistance. First, the greater
benefits of a combined MI and AO protocol compared to MI or AO
alone must be explicitly tested. Although the benefits can be
reasonably assumed from reports in other framework (e.g., stroke),
this has not been studied in the case of peripherally induced
immobilization. Also, the effect of immobilization-induced hypo-
activity on AO should be examined, as studied for MI. Next,
whether circadian rhythms affect AO must be investigated to
determine optimal training periods. When movement is possible, a
protocol combining MI and AO might be improved by a recent and
innovative technique, called dynamic MI [65]. Dynamic MI consists
of performing simple movements concomitant to the imagination
of a more complex one, involving the same effector (e.g., oscillate
on legs while imagining locomotor movements). This method led
to better performance (i.e., more congruent results between actual
motion and MI) as compared with static motor imagery (i.e.,
without concomitant movement) [65]. When actual movement is
possible, one could reasonably assume that MI use would be
enhanced with that technique. Sports-specific assessment of the
efficiency of these techniques as well as comparative studies
regarding time to return to sport and time to return to initial level
should be assessed to contextually adjust rehabilitation protocols.
Given the effects of peripheral nerve stimulation on MI- or AO-
induced motor learning and motor performances [66,67], whether

Table 2
Classification of studies by research aim.

Effects of hypoactivity on

motor functions

Effects of

motor imagery

Effects of action

observation

Effects of motor imagery

and action observation

Reference number [1–18,40–44] [45–51] [52] [53]

Table 3
Main recommendations for MI, AO and AO + MI protocol.

General protocol

recommendations

MI recommendations AO recommendations AO + MI recommendations

Frequency

Hospital: every day

At home: 3 times a week

MI quality assessment

Kinesthetic rather than visual MI to

activate sensorimotor

Use AO in a 1st perspective for body-

part movements and in a 3rd

perspective for whole-body

Congruency between AO and MI

movements

Present videos in ecological and
Duration

20–30 min

Time of day

Ideally between 14:00 and 16:00

Difficulty

Increase across sessions

representations

When actual movement is possible:

congruence between body position

and imagined movement

Interspersed MI trials with actual

trials

movements

Use transitive and meaningful

movements

Execute actual movements in

reaction to the observed movement

familiar settings (e.g., to observe

someone uses cutlery rather than

isolated finger movements) to

improve motor imagery quality

AO: action observation; MI: motor imagery.
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eripheral nerve stimulation can enhance motor learning induced
y a combined AO + MI protocol should be assessed.

As mentioned previously, immobilization can induce an
ntracortical imbalance in favour of intracortical facilitation. If
O maintains corticospinal excitability after short-term immobi-

ization [49], MI would maintain the intracortical imbalance by
ncreasing the activity of intracortical inhibitory networks. Testing
he intracortical dynamics associated with MI and AO before,
uring, and after immobilization would help better picture their
espective effects on intracortical balance. Given the effects of
ypoactivity on corticospinal excitability, the effects of MI and AO
t the spinal level also could be investigated. Although the
odulation of spinal excitability by MI and AO has been observed

n other contexts [68], there is very little information concerning
he potential influence of MI and AO to counteract immobilization
ffects at the spinal level.

. Conclusions

This current narrative review supports the implementation of
ombined MI and AO protocols in the context of sports
ehabilitation. These protocols aim to minimize the loss of motor
unctions induced by hypoactivity and to promote the recovery of

otor function during rehabilitation. Further investigations
hould help in developing individual protocols for ecological sport
asks.
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