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Abstract: Computer-assisted pronunciation training (CAPT) is a helpful method for self-directed
or long-distance foreign language learning. It greatly benefits from the progress, and of acoustic
signal processing and artificial intelligence techniques. However, in real-life applications, embedded
solutions are usually desired. This paper conceives a register-transfer level (RTL) core to facilitate
the pronunciation diagnostic tasks by suppressing the mulitcollinearity of the speech waveforms. A
recently proposed heterogeneous machine learning framework is selected as the French phoneme
pronunciation diagnostic algorithm. This RTL core is implemented and optimized within a very-
high-level synthesis method for fast prototyping. An original French phoneme data set containing
4830 samples is used for the evaluation experiments. The experiment results demonstrate that the
proposed implementation reduces the diagnostic error rate by 0.79–1.33% compared to the state-of-
the-art and achieves a speedup of 10.89× relative to its CPU implementation at the same abstract
level of programming languages.

Keywords: computer-assisted pronunciation training; high-level synthesis; embedded designs;
machine learning; FPGA

1. Introduction

Phoneme pronunciation is one of the most important basic skills for foreign language
learning. Practicing pronunciations in a computer-assisted way is helpful in self- directed
or long-distance learning environments [1]. The computer-assisted pronunciation training
(CAPT) programs record and analyze user speech acoustically, comparing their pronuncia-
tion and prosody with a native speaker sample using visual feedback. Although users often
require additional training to ensure that they can interpret the feedback, such programs
can be used to improve their prosody and vowel pronunciation [2,3].

Recent research projects indicate that machine learning provides nice opportunities to
improve CAPT systems. From the view point of natural language processing, pronunciation
diagnostic tasks are essentially acoustic pattern recognition problems [4], which have made
great progress [5–16]. For example, Gulati et al. [12] achieved a 1.9% word error rate on
clean test data by using more than 900 hours of labeled speech training data. Turan and
Erzin [13] address the close-talk and throat microphone domain mismatching problem by
using a transfer learning approach based on stacking denoising auto-encoders, which allows
improvement of the acoustic model by mapping the source domain representations and the
target domain representations into a common latent space. Sun and Tang [14] propose a
method for supporting automatic communication error detection through integrated use of
speech recognition, text analysis, and formal modeling of airport operational processes. It
is hypothesized that it could form the basis for automating communication error detection
and preventing loss of separation. Badrinath and Balakrishnan [15] present an automatic
speech recognition model tailored to the air traffic control domain that can transcribe air
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traffic control voice to text. The transcribed text is used to extract operational information
such as call-signs and runway numbers. The models are based on recent improvements
in machine learning techniques for speech recognition and natural language processing.
Jiang et al. [16] applied the recent state-of-the-art DNN-based training methods to the
automatic language proficiency evaluation system that combines various kinds of non-
native acoustic models and native ones. The reference-free rate is used as the machine
score to estimate the second-language proficiency of the English learners. The evaluations
based on the English-read-by-Japanese database demonstrate that it is an effective method
to improve the language proficiency assessment techniques.

Despite many significant theoretical achievements in the terms of speech recognition
algorithms, the utility value of today’s CAPT modalities is limited to the hardware devices,
especially in the aspects of portability, maintainability, and resource consumption. Usually,
the developments and evaluations of CAPT tools are realized by using general-purpose
processors, which can hardly satisfy these requirements entirely; some more efforts there-
fore need to be made to prototype them embeddedly. E. Manor et al. [17] point out the
possibility of efficiently running networks on a Field Programmable Gate Array (FPGA)
using a microcontroller and hardware accelerator. In the work of Silva et al. [18], a support
vector machine multi-class classifier is implemented within the asynchronous paradigm
in a 4-stage architecture. It is claimed that a reduced power consumption of 5.2 mW, a
fast average response time of 0.61 µs, and the most area-efficient circuit of 1315 LUTs
are obtained as a result. Chervyakov et al. [19] propose a speech-recognition-available
CNN architecture based on the Residue Number System (RNS) and the new Chinese
Remainder Theorem with fractions. According to the simulations based on the Kintex7
xc7k70tfbg484-2 FPGA, the hardware cost is reduced by 32% compared to the traditional
binary system. Paula et al. [20] apply the long short-time memory network to the task of
spectral prediction and propose a module generator for an FPGA implementation. Evalua-
tions demonstrate that a prediction latency of 4.3 µs on a Xilinx XC7K410T Kintex-7 FPGA
is achievable. Up to present, mature embedded machine learning toolkits like OpenVINO
have been developed and widely used in real-life research and developments [21–25].
These successful cases significantly improved the products in different scenarios.

This work focuses on the French CAPT embedded solutions with the goals of high
development productivity and running efficiency performance. It is conducted by the
Algorithm-Architecture Adequation (AAA) methodology, first introduced by the AOSTE
team of INRIA (French National Institute for computer science and applied mathemat-
ics) [26]. The key feature of AAA is the ability to rapidly prototype complex real-time
embedded applications based on automatic code generation. The concerned algorithm
and its hardware architecture are studied simultaneously within a Software/Hardware
co-design framework, which allows an embedded implementation optimized both in the
algorithm and hardware level.

Concerning the pronunciation diagnosis algorithm, a high-accuracy and low-consumption
classifier is desired to balance accuracy and efficient performance. A recently-proposed heteroge-
neous machine learning CAPT framework [27] is therefore selected. For the reason that the
phoneme utterances are made from the base vibrations of vocal cords through resonance
chambers (buccal, nasal, and pharyngeal cavities) [28,29], the predictors of the phoneme
feature vectors are highly probably collinear, resulting in a multicollinearity problem. The
multicollinearity problem means that one of the predictor variables in a classification model
can be linearly predicted from the others with a substantial degree of accuracy. Although it
is usually difficult to figure out a precise mathematical model to explain the fundamentals
ofal least squar a certain pattern recognition problem, research indicates that suppressing
the multicollinearity by using some suitable method is helpful to improve the pattern dis-
criminability [30–32]. Yanjing et al. [27] estimate the condition indices of a French phoneme
utterance spectrum set, and 87.27% of its elements exceed 10. This means that the predictor
dependencies start to affect the regression estimates [33]. The framework of this work
first suppresses the multicollinearity among the predictors of the phoneme sample vectors
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by using the partial least square (PLS) regression algorithm and then classifies them via
soft-margin SVMs. Considering that FPGA is one of the most commonly used embedded
devices for its benefits in terms of running cost, power consumption, and flexibility [34–41],
our team therefore prototyped it as a hardware core within the register-transfer level for
FPGA-available solutions.

The main challenge of this project is how to implement the desired algorithm behavior
at the register transfer level efficiently with acceptable running efficiency and resource
cost performance. For the purpose of high development productivity and maintainability,
high-level synthesis techniques are developed. The work of E. Manor [42] demonstrates
that this method is an important and effective solution for fast embedded prototyping with
efficient performance. This work uses a recently-proposed very high-level synthesis (VHLS)
based SW/HW co-design flow [43,44] to facilitate the implementing process from Matlab
to RTL. Moreover, different interface and parallel optimizations are made to accelerate
the implementations. The evaluation experiment in this paper is conducted using a data
set including 35 phonemes ×6 sessions ×23 persons = 4830 samples. The experiment
results show that the outputs of the final RTL implementation are exactly the same as
its Matlab prototype, implying that the Matlab-to-RTL synthesis process of this work is
reliable. Comparing to the PLS regressor, SVMs, and deep neural network models, the
proposed method achieves the lowest diagnostic error rate in the experiment of this paper.
Additionally, the hardware performance evaluations of the RTL implementation indicate
that the optimizations used in this paper achieve a speed up of 10.89× relative to that of
the CPU.

The main novelties of this work are summarized as follows:

(a) An FPGA-suitable CAPT framework is conceived and trained, in which the phoneme
pronunciation diagnostic algorithm is based on the partial least squares regression
method and an improved support vector machine, so that it could raise the accu-
racy performance of the framework by suppressing the collinearity problem among
the predictors.

(b) The phoneme diagnostic core is implemented at the register-transfer level (RTL) via
the recently-proposed Matlab-to-RTL SW/HW co-design flow for the purpose of
high development productivity and maintainability. The implementation is further
accelerated at the instruction-level, and a speedup of 10.89× is achieved relative to its
CPU implementation.

(c) The proposed RTL implementation of the CAPT framework is functionally verified
and evaluated by using a French phoneme utterance database, demonstrating its
application values.

The remainder of this paper is organized as follows: Section 2 describes the proposed
embedded CAPT framework and explains how it is trained; Section 3 presents the im-
plementation and optimization processes of the proposed CAPT framework; Section 4
analyzes the evaluation experiment results; and finally, Section 5 gives the final conclusion
of this work.

2. Architecture of the CAPT Framework

The overall framework of the desired French phoneme utterance detectors is shown
in Figure 1. Users utter the phoneme to learn it and record it as the input of the system.
According to Figure 1a, the normalized frequency spectrum of the utterance waveform x is
assigned to the detector as the training or testing predictor vector. Figure 1b zooms into the
architecture of the detector unit, which is implemented as an Intellectual Property (IP) core
in this paper. This architecture is a 2-layer network whose output y can be mathematically
described as

y = δ(2)(h(2)(δδδ(1)(h(1)(x(1))))) (1)
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where δ(1) and δ(2) are two activation function sets. h(1) and h(2) are the propagation
functions of the first and second layers expressed as

h(1)(xxx(1)) = x(1) ×W(1) (2)

and
h(2)(xxx(2)) = x(2) ×W(2) + b (3)

x(1) =< x11, x21, . . . , xm1 > (m is the vector size and set as 16,384 in this paper) is the input
of the detector to which the predictor vector x is assigned directly. W(1) and W(2) are the
coefficient matrices of the two layers, respectively. Their sizes are m-by-n and n-by-1, where
n = 35 is the phoneme number of the French language. b is the bias value of the second
layer. x(2) is the output of the first activation function set δδδ(1), whose element functions
are rectified linear units (ReLU). For the second layer, the sigmoid function is used to its
output as the activation function in order to constrain y into a reasonable range from 0 to 1.

Figure 1. Architecture of the phoneme utterance detectors: xxx(1) =< x11, x22, . . . , xm1 >, and m is the
size of the input sample vector xxx(1).

The decision of the system is made by comparing the output of the detector y, which
is the diagnosis score corresponding to the utterance quality, with a threshold η to feedback
the diagnosis result. This work trains the detectors through a heterogeneous process
presented in [27]. It consists of partial least square (PLS) regression and soft-margin
support vector machines.

2.1. Training Method of Layer 1

The diagnosing ability of the design is impacted by the multicollinearity problem
among the utterance sample predictors; the partial least square (PLS) regression method
is therefore applied to train the feature extraction layer of the French phoneme utterance
detectors. PLS is a common class of methods for modeling relations between sets of
observed variables by means of latent variables. The underlying assumption is that the
observed data is generated by a system or process that is driven by a small number of
latent (not directly observed or measured) variables. Its goal is to maximize the covariance
between the two parts of a paired data set, even though those two parts are in different
spaces. That implies that PLS regression can overcome the multicollinearity problem by
modeling the relationships between the predictors. In the case of this paper, we train the
first layer of the detector to extract the PLS feature of the samples to facilitate the classifying
task of the second layer.

As presented in [32], let X and Y be two matrices whose rows are the predictor vectors
xi and their responses yi corresponding to the i-th sample. According to the nonlinear
iterative partial least squares algorithm [31,45], the optimizing problem of PLS regression
is to search for some projection directions that maximizes the covariance of the training
and response matrices:

max
wx ,wy :||wx ||=||wy ||=1

C(wx, wy) = max
wx ,wy :||wx ||=||wy ||=1

1
m

wT
x XTYwy (4)
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where N is the number of training samples, wx and wy are two unit vectors corresponding
to the projection directions. The directions that solve (4) are the first singular vectors
wx = u1 and wy = v1 of the singular value decomposition of Cxy

Cxy = UΣVT (5)

where the value of the covariance is given by the corresponding singular value σ1. In this
paper we apply the same data projecting strategy through deflation in order to obtain
multiple projecting direction.

The PLS regression algorithm is programmatically described in Algorithm 1. The
inner loop computes the first singular value iteratively, which results in ui converging
to the first right singular vector YTXi. Next, the deflation of Xi is computed. Finally,
the regression coefficients θb is given by WWW(1) = ŨUU(pppTŨUU)−1CCCT, where CCC is a matrix with
columns ci = YYYTXXXiui/(uT

i XXXT
i XXXiui) [46].

Algorithm 1 Pseudocode of PLS regression algorithm

Input: training matrix XXX, response variables YYY, projection direction number k

Output: regression coefficients WWW(1)

1: initialization

2: for i = 1, 2, . . . , k do

3: ui ← first column of XXXTYYY

4: ui ← ui/||ui||

5: repeat

6: ui ← XXXT
i YYYYYYTXXXiui

7: ui ← ui/||ui||

8: until convergence

9: pi ← XXXT
i XXXiui/(uT

i XXXT
i XXXiui)

10: ci ← YYYTXXXiui/(uT
i XXXT

i XXXiui)

11: XXXi+1 ← XXXi(I − ui pT
i )

12: end for

13: WWW(1) = ŨUU(pppTŨUU)−1CCCT

2.2. Training Method of Layer 2

The second layer of the detector is trained by using soft-margin SVMs [47]. SVM is a
type of binary classifier that has been widely used [10,47–49] in speech processing. Classical
SVMs build the classifier by searching for some hyperplane (WWW(2), b) that maximizes the
margin between the two target clusters (correct pronunciations or not). This method
classifies the utterance samples with a "hard margin" determined by support vectors, which
may result in an over-fitting problem. For this issue, based on the SVM model of this paper
(see (3)), we propose to use soft-margin SVMs to build the classifier by searching for some
hyperplane (WWW(2), b) that maximizes the soft margin between the two target clusters:

min
WWW(2),b

1
2
||WWW(2)||2 + C

N

∑
i=1

Jε(h(2)(xxx
(2)
i )− y(2)i ) (6)
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where xxx(2)i is the i-th predictor vector used to train the second layer, and C is the regulariza-
tion constant. Jε is the insensitive loss function:

Jε(zzz) =
{

0 if |zzz| ≤ ε
|zzz| − ε otherwise

(7)

where ε is the maximum error between the prediction results and the corresponding labels.
The problem above can be solved by using the lagrange multiplier method. We introduce
two slack variables ξi and ξ ′i that correspond to the dissatisfaction degree with the margin
constraint, so that

min
WWW(2),b,ξi ,ξ ′i

1
2
||WWW(2)||2 + C

N

∑
i=1

(ξi + ξ ′i)

s.t. h(2)(xxx(2)i )− y(2)i ≤ ε + ξi

y(2)i − h(2)(xxx(2)i ) ≤ ε + ξ ′i
ξi ≥ 0

ξ ′i ≥ 0

(8)

with
i = 1, 2, . . . , N

The lagrange function of (6) L therefor can be written as

L(WWW(2), b, ααα, ααα′, ξξξ, ξξξ ′, µµµ, µµµ′) =
1
2
||WWW(2)||2 + C

N

∑
i=1

(ξi + ξ ′i)−
N

∑
i=1

µiξi −
N

∑
i=1

µ′iξ
′
i

+
N

∑
i=1

αi(h(2)(xxx
(2)
i )− y(2)i − ε− ξi)

+
N

∑
i=1

α′i(y
(2)
i − h(2)(xxx(2)i )− ε− ξ ′i)

(9)

where ξi and ξ ′i are the slack variables. µi ≥ 0, µ′i ≥ 0, αi ≥ 0 and α′i ≥ 0, which
correspond to the columns of µµµ, µµµ′, ααα and ααα′, are the lagrange multipliers and can be solved
by building the dual problem of (8) with the Karush-Kuhn-Tucher constraints [27]. The
desired coefficient matrix WWW(2) of the second layer are obtained by computing the partial
derivatives of (9) with respects to WWW(2), b, ξi and ξ ′i . The final bias b is

b =
1
N

N

∑
i=1

bi (10)

with

bi =

{
y(2)i + ε−∑N

j (α
′
j − αj)xxx

(2)
i xxx(2)j

T
if 0 < αi < C

0 otherwise
(11)

where bi is the bias value corresponding to (xxx(2)i , y(2)i ).

3. Prototyping of the Proposed CAPT Framework

This paper prototypes the proposed CAPT framework by using a VHLS-based SW/HW
co-design flow. As shown in Figure 2, this workflow allows one to synthesize the algorithm
behavior from a high-abstract program language level (Matlab) down to low ones (register
transfer languages) via intermediate C++ code. More precisely, the algorithm behavior is
specified in Matlab, then automatically transformed to intermediate C++ code by using
Matlab Coder. The generated C++ function is further verified and optimized manually in
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GCC. Finally, the desired RTL implementation is generated and evaluated in Vivado HLS
(formerly AutoPilot from AutoESL) [50]. The methodology of this work was approved in
writing by the Ethics Committee of the Foreign Language College, Capital University of
Economics and Business.

Figure 2. VHLS based SW/HW co-design flow: the full- and dotted-line blocks represent the
automatic and manual development cycles, respectively.

3.1. Original Implementation

Considering that the diagnosing tasks are activated when the interested signals are
segmented and pre-processed, the proposed CAPT detector is prototyped as a slave IP core,
allowing a master module to invoke it at any time. In order to facilitate the updating of
the network parameters, parameter ports are designed. Moreover, the data ports should
be parallelizable, allowing parallelizing the computing by accessing multiple data sets
simultaneously. The final interface protocol is shown in Table 1. It includes a group of
logical control signals (CLK, RST, START, DONE, IDLE, READY, and RETURN) and the
data ports (x_∗, W1_∗, W2_∗, B and ETA). The parameter ports are implemented in the
classical memory protocol, allowing the core to access the external memory with an index
when needed. x_∗ is the utterance sample to be diagnosed, and its size is determined by
the sampling precision of the system. In the case of this paper, we set n as 14, allowing
a sampling frequency of 2n = 16384 Hz. W1_∗ and W2_∗ are the parameter matrices of
the first and second layers of the proposed framework, respectively. The size of W2_∗ is
set as 26 = 64, and W1_∗ is therefore a 2n+6 = 1048579-element array, which can cover
the 35 phonemes in the case of this paper. If desired, the data and parameter ports can be
expanded to accelerate the processing speed by communicating parallelly. B is the bias
value of the second layer. ETA is the threshold value of the decision cycle. If the diagnosis
result is positive, RETURN output true, otherwise false when negative.

Algorithm 2 shows the Matlab pseudocode of the proposed CAPT implementation.
Because Matlab provides a vector-available programming environment, the target behavior
can be efficiently described. The algorithm’s behavior starts the diagnostic processing after
parameter initializations. Lines 2 and 4 correspond to the regression operations of the
first and second layers (see (2) and (3)), whereas Lines 3 and 5 correspond to the ReLU
and sigmoid active functions. The final decision is made in Line 6. The operator ".×"
returns a matrix whose elements are the products of the corresponding elements of the two
input matrices.

Next, we transform the algorithm behavior from Matlab into C++ code via the source-
to-source compiler Matlab Coder. For the reason that C++ is only available for scalar
variables and operations, the matrix computations in Matlab are mapped into loops line by
line. The pseudocode of the generated C++ behavior is shown in Algorithm 3. The first nest
loop (Lines 2–8) computes the PLS regressions (see (2)) with the help of a newly-allocated
register. The second loop with a “if” body (Lines 9–15) corresponds to the ReLU function.
Lines 17–20 compute the SVM regressions (see (3)). Here, the buffer of the first loop is
reused to save the hardware sources. Line 21 is the sigmoid function, and the decision is
made within Lines 22–26.
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From this point, we can start to synthesize the C++ code down to the register level
through the HLS process. HLS extracts the source code as a control-and-datapath flow
graph (CDFG) [51] and then represents it as a finite state machine (FSM) [52]. Figure 3
shows the diagram of the extracted FSM, in which each node is a state including a series of
subsequent operations, and the arrows are the operating orders. L∗ is the line number of
Algorithm 3. As presented in [44], this method allows us to formally implement it at RTL
in a standardized way.

Table 1. Interface protocol of the original CAPT IP core.

RTL Ports I/O Bits Protocol

CLK I 1 ap_ctrl_hs
RST I 1 ap_ctrl_hs
START I 1 ap_ctrl_hs
DONE O 1 ap_ctrl_hs
IDLE O 1 ap_ctrl_hs
READY O 1 ap_ctrl_hs
RETURN O 1 ap_ctrl_hs

x_ADDRESS O 2n (n ∈ N+) ap_memory
x_CE O 1 ap_memory
x_Q I 32 ap_memory

W1_ADDRESS O 2n+6 (n ∈ N+) ap_memory
W1_CE O 1 ap_memory
W1_Q I 32 ap_memory

W2_ADDRESS O 26 ap_memory
W2_CE O 1 ap_memory
W2_Q I 32 ap_memory

B I 32 ap_none
ETA I 32 ap_none

Algorithm 2 Pseudocode of the original CAPT implementation
Input: utterance sample xxx, coefficients W1W1W1, W2W2W2, B and ETA

Output: decision RETURN

1: Initialization

2: h1h1h1← xxx×W1W1W1

3: δ1δ1δ1← (h1h1h1 > 0).× h1h1h1

4: h2← δ1δ1δ1×W2W2W2 + B

5: δ2← 1/(1 + exp(−h2))

6: RETURN ← δ2 ≥ ETA

Figure 3. Diagram of the finite state machine of the original C++ implementation: S∗ is the state of
identification, L∗ is the line number of Algorithm 3, n and m = m1 + m2 are the iteration numbers.
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Algorithm 3 Pseudocode of the C++ CAPT implementation
Input: utterance sample xxx[m], coefficients W1W1W1[n×m], W2W2W2[n], B and ETA

Output: decision RETURN

1: Initialization

2: for i ∈ {1, 2, . . . , m} do

3: reg← 0

4: for j ∈ {1, 2, . . . , n} do

5: reg← reg + xxx(j)×W1W1W1(i, j)

6: end for

7: h1h1h1(i, j) = reg

8: end for

9: for i ∈ {1, 2, . . . , m} do

10: if h1h1h1(i) ≤ 0 then

11: δ1δ1δ1(i)← 0

12: else

13: δ1δ1δ1(i)← h1h1h1(i)

14: end if

15: end for

16: reg← 0

17: for i ∈ {1, 2, . . . , m} do

18: reg← reg + δ1δ1δ1(i)×W2W2W2(i)

19: end for

20: h2← reg + B

21: δ2← 1/(1 + exp(−h2))

22: if δ2 ≥ ETA then

23: RETURN ← true

24: else

25: RETURN ← false

26: end if

3.2. Optimizations

Automatically synthesizing the behavior from high to low abstract levels allows
fast algorithm prototyping, but there are still performance gaps between it and man-
ual implementations in terms of time control, execution speed, consumption, and other
factors [53,54]. As indicated in ref. [52], the quality of the HLS-based implementations is
impacted by the following three factors: high-level description of language, optimization
forms, and applying orders of optimization forms [55,56]. In the case of this paper, multiple
optimization forms are made successively at the interface, loop, and instruction levels in
order to accelerate the implementation by improving the parallelism of the code.

According to the estimations, the first loop nest costs almost all the clock cycles in the
original implementation (7454790 vs. 7455344 cycles), so the main goal of the optimization
work is to accelerate this part. First, the memory ports of the target core are optimized
in order to mitigate access conflicts and reduce consumption due to the logic controls.
According to Algorithm 3, xxx and W1W1W1 are the frequently-activated ports in the first loop nest,
and this will lead to access conflicts when parallelizing. We therefore partition the related
arrays from a single to multiple ones to expand the bus width. An index Dopt = 4, 8, 16, . . .
is defined to present the optimization depth. The optimized memory port protocol is shown
in Table 2, demonstrating that the band of the two ports is multiplied by Dopt×. With
Vivado HLS, this optimization is made by inserting the directives of array_partition into
the code (see Lines 1 and 2 of Algorithm 4). The option cyclic creates smaller arrays by
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interleaving elements from the original array. The array is partitioned cyclically by putting
one element into each new array before coming back to the first array to repeat the cycle
until the array is fully partitioned. The option f actor specifies the number of smaller arrays
that will be created.

Table 2. x and W1 ports of the optimized CAPT IP core: Dopt is the optimization depth index.

RTL Ports I/O Bits Protocol

. . .

x_{1, 2, . . . , Dopt}_ADDRESS O 2n (n ∈ N+) ap_memory
x_{1, 2, . . . , Dopt}_CE O 1 ap_memory
x_{1, 2, . . . , Dopt}_Q I 32 ap_memory

W1_{1, 2, . . . , Dopt}_ADDRESS O 2n+6 (n ∈ N+) ap_memory
W1_{1, 2, . . . , Dopt}_CE O 1 ap_memory
W1_{1, 2, . . . , Dopt}_Q I 32 ap_memory

. . .

Algorithm 4 Pseudocode of the Optimized CAPT implementation at Dopt

Input: utterance sample xxx[m], coefficients W1W1W1[n×m], W2W2W2[n], B and ETA

Output: decision RETURN

1: #pragma HLS ARRAY_PARTITION variable=xxx cyclic factor=Dopt dim=1

2: #pragma HLS ARRAY_PARTITION variable=W1W1W1 cyclic factor=Dopt dim=2

3: Initialization

4: for i ∈ {0, 1, , 2 . . . , n− 1} do

5: for j ∈ {0, 1, 2, . . . , m/Dopt − 1} do

6: #pragma HLS OCCURRENCE

7: ind_{1, 2, . . . , Dopt} ← {j× Dopt, j× Dopt + 1, . . . , j× Dopt + Dopt − 1}

8: reg_{1, 2, . . . , Dopt} ← xxx(ind_{1, 2, . . . , Dopt})×W1W1W1(i, ind_{1, 2, . . . , Dopt})

9: h1h1h1(i)← ∑
Dopt
k=1 (reg_{k})

10: end for

11: end for

12: for i ∈ {0, 1, 2, . . . , n} do

13: #pragma HLS PIPELINE

14: if h1h1h1(i) ≥ 0 then

15: reg← reg + h1h1h1(i)×W2W2W2(i)

16: end if

17: end for

18: h2← reg + B

19: δ2← 1/(1 + exp(−h2))

20: if δ2 ≥ ETA then

21: RETURN ← true

22: else

23: RETURN ← false

24: end if

Next, the FSM control flow is simplified via loop manipulations. As shown in
Algorithm 4, we first move all the register allocation operations of Algorithm 3 to the
beginning of the routine, which fuses States 0 and 7 into a single one during synthesis.
The isolation between the second and third loops is therefore broken, so we can further
simplify the control flow via loop mergence. The merged loop is shown in Lines 13–18 of



Appl. Sci. 2023, 13, 5835 11 of 21

Algorithm 4, and the new loop control is shown in Figure 4, whose size is reduced from 13
down to 9 states. We insert the "pipeline" directives into the loops of the optimized code
(see Lines 6 and 13 of Algorithm 4) in order to accelerate the iterations.

Figure 4. Diagram of the finite state machine of the optimized implementation: S∗ is the state of
identification, L∗ is the line number of Algorithm 4, n = n1 + n2 and m are the iteration numbers.

Finally, the code of Algorithm 4 is optimized at the instruction level depending on the
symbolic expression manipulation strategies presented in [52]. In the original C++ code,
the iterations of Line 5 have dependent relationships between each other, so they cannot be
parallelized only via loop unroll. We therefore partially unroll the loops with a factor of
Dopt, and then re-specify the iteration information and body manually. As shown in Lines
5–10 of Algorithm 4, the loop body is repeated Dopt times during each iteration, and the
iteration number is reduced by Dopt accordingly. The body operations are described in
polynomial form:

h1h1h1 =
(i+1)×Dopt−1

∑
k=i×Dopt

xxx(k)×W1W1W1(i, k) (12)

The re-specified code avoids the dependence between the loops, enabling paralleliza-
tion of the operation schedule. Figure 5 compares the original and optimized loop body
operation schedules at Dopt = 4. Despite higher hardware resource consumption, the
optimizations achieve a speedup of 2.67×.

Figure 5. Comparison of the original and optimized loop body operation schedule at Dopt = 4.

It should be noted that in Figure 5, the time-cycle consumptions of each operation are
equal, but the realities are not. The operators available for different devices are usually
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different. The speedup gain of this case Gopt is therefore formulated as the running time
ratio of the original and optimized implementations:

Gopt =
Tori

Topt
(13)

with

Tori = Dopt × (TRD + TFMUL + TFADD + TWR) + Tctrl
ori (Dopt)

Topt = TRD + TFMUL + (log2 Dopt + 1)× TFADD + TWR + Tctrl
opt (Dopt)

(14)

where T∗ is the time cost of the operator ∗ = RD, FMUL, FADD or WR (see Figure 5).
Tctrl

ori and Tctrl
opt return the time cost values due to control operations of the original and

optimized implementations at different Dopt, respectively. The consumptions of the p-th
device element for the optimized implementation are estimated as

Cp
opt =

Nope

∑
i=1

Cp
i (15)

where Nope is the operator number and Cp
i is the consumptions of the p-th element for the i-

th operator. The final goal of this optimization is to maximize Gopt with resource constraints:

min Gopt

s.t. ∀p, Cp
opt ≤ Cp

av
(16)

where Cp
av is the number of the p-th available element.

4. Experiments

This section evaluates the proposed embedded CAPT framework. First, the function of
the phoneme diagnostic IP core is verified experimentally. Next, the resource consumption
and speedup gains of the optimized RTL implementation are estimated.

4.1. Function Verifications

This subsection verifies the function of the VHLS implementation. The experiments
are conducted by the CUEB French Phoneme Database 1.0 established by the Capital
University of Economics and Business and the Institute of Acoustics CAS [27], which
includes 35 phonemes × 6 sessions × 23 participants = 4830 samples. The participants in
the data collection are asked to read the French phonemes shown in Table 3 six times to
perform six different data sessions.

Table 3. French phoneme table.

15 Vowels

Vowel: [A], [i], [e], [E], [y], [u], [o], [O], [@], [ø], [œ]
Nasal vowel: [ã], [Õ], [Ẽ], [œ̃]

3 semi vowels [j], [w], [4]

17 consonants

Deaf consonants: [p], [t], [k], [f], [s], [S]
Sound consonants: [b], [d], [g], [v], [z], [Z]
Lateral consonants: [l], [r]
Nasal consonants: [m], [n], [N]



Appl. Sci. 2023, 13, 5835 13 of 21

Figure 6 shows the test bench of the experiments. The preprocessing cycles of the
input phoneme waveform include band filtering, Fourier transforming, and normalizing.
The normalized frequency spectrum is used as the predictor vector for the detectors. We
verify the functions of the proposed implementation (capt_vhls) by comparing it with its
Matlab prototype (capt_matlab) and C++ routine (capt_cpp). Moreover, in order to evaluate
the diagnostic error rate of the selected algorithm, the PLS regressor (pls_matlab), hard-
margin SVM (hmsvm_matlab), soft-margin SVM (smsvm_matlab), and deep neural network
(dnn_matlab) are implemented in Matlab as references. All the reference implementations
are specified in Table 4. All the implementations are considered to be constructed by
input, hidden, and output layers. The hidden layer numbers of capt implementations and
dnn_matlab are two and three, and those of the other implementations are one. The lost
value and maximal iteration number are set as 1× 10−6 and 1000, respectively. The ReLU
and sigmoid functions are used as the activate functions of dnn_matlab. Considering that
machine learning modules necessitate high data precision and the values of speech signals
usually have a large dynamic range, the data type of the proposed implementation is set to
floating-point one. We also tried to use the fixed-point data to realize the same function and
found that all the threshold values must be carefully set if the similar accuracy performance
are desired. That is, fixed-point implementation may lead to unknown risks in the case of
this paper.

Figure 6. Testbench of the proposed phoneme diagnostic IP cores.

Table 4. Implementation specification I.

Implementations Layer Sizes
(Input/Hidden/Output) Descriptions

pls_matlab 16,384/16,384/1 Matlab implementation of PLS
regressor

hm_matlab 16,384/16,384/1 Matlab implementation of
hard-margin SVM

sm_matlab 16,384/16,384/1 Matlab implementation of
soft-margin SVM

dnn_matlab 16,384/2048/512/128/1 Matlab implementation of
neural network

capt_matlab 16,384/16,384/64/1 Matlab prototype of
Algorithm 2

capt_cpp 16,384/16,384/64/1 C++ routine of Algorithm 3

capt_vhls 16,384/16,384/64/1 VHLS implementation of
Algorithm 2

We divide the data set into two groups for training and testing, each with different
size ratios. The size ratios are R = 1:5, 2:4, 3:3, 4:2 or 5:1. The average diagnostic error rate of
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three measurements is used to determine the final evaluation result. Figure 7 compares the
diagnostic error rates of all the implementations. First, it demonstrates that the diagnostic
error rates decrease with the increases in the training set size. This is because enough
training data improves the machine learning classifiers by overcoming the over-fitting
problems. Second, when the different implementations have the same training set size,
the implementations of capt_∗ achieve similar diagnostic results, indicating that the VHLS
procedure used in this paper correctly synthesize the Matlab prototype to the register-
transfer level automatically. Third, among the PLS-only, SVM and DNN implementations,
smsvm_matlab achieves the best accuracy performance at R = 1:5, 2:4 and 3:3, whereas
the dnn_matlab at R = 4:2 and 5:1. Comparing to them, capt_vhls improves it by 1.24%,
0.79%, 1.33%, 0.97% and 0.89%. That is, the CAPT framwork of this paper possesses the
best accuracy performance in this experiment. Finally, it should be noted that it shows
that capt_vhls achieves similar diagnostic error rate corresponding to capt_matlab and
capt_cpp, but that does not mean that the new implementation possesses lower accuracy
performance. This tiny difference is caused by dividing the data set randomly into the
training and testing groups, which introduces random factors in the evaluations.
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Implementations

0

2

4

6

8

10

12

14

D
ia

g
n

o
st

ic
 e

rr
o

r 
ra

te
 (

%
)

pls_matlab
hmsvm_matlab
smsvm_matlab
dnn_matlab
capt_matlab
capt_cpp
capt_vhls

Figure 7. Diagnostic error rate of different implementations (see Table 4 for the definition of acronyms).

4.2. Hardware Resource Consumptions

This subsection analyzes the hardware resource consumptions of the original C++
implementation (capt_vhls_ori) with that of the optimized versions (capt_vhls_opt_∗, ∗ =
1, 2, 3, . . . , Dopt). The Zynq development and evaluation board (part: xc7z020clg484-1) of
Xilinx is used as the target device. The element utilizations of different implementation
versions are listed in Table 5. According to the element utilization percentage, the imple-
mentation optimizing is mainly constrained by the number of DSP48Es, so the optimizing
goal of (16) can be rewritten as

min Gopt

s.t. CDSP48E
opt ≤ CDSP48E

av
(17)

where CDSP48E
opt is the overall DSP48E consumptions, CDSP48E

av is the available DSP48E num-
ber of the target device. In this case the DSP48E elements are used to generate the single- or
double-precision floating point operating instances. Table 6 specifies the DSP48E-based
instances of different optimizing versions. f add and f mul refer to single-precision floating
point adders and multiplexers, and they are allocated for PLS regressions (Lines 7–9 in
Algorithm 4). The number of these two elements are multiplied with the raising of Dopt.
dadd is the double-precision floating point adder, and dexp outputs the value of e raised to
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the input value’s power. Despite of these operations are frequently invoked, HLS enables
hardware reuse by binding one instance to multiple operations, so the resource cost can be
well economized. The relationship between the DSP48E consumptions CDSP48E

opt and the
optimizing depth Dopt in this paper can be formulated as

CDSP48E
opt =

1
2

CDSP48E
fadd Dopt + CDSP48E

fmul Dopt + CDSP48E
dadd + CDSP48E

dexp (18)

Table 5. Element utilizations.

Implementations BRAM_18K DSP48E FF LUT

capt_vhls_ori 1(≈0%) 34(15%) 6565(6%) 9691(18%)
capt_vhls_opt_4 1(≈0%) 45(20%) 7571(7%) 11,130(20%)
capt_vhls_opt_8 1(≈0%) 61(27%) 9004(8%) 13,242(23%)
capt_vhls_opt_16 1(≈0%) 93(42%) 11,867(11%) 17,456(32%)
capt_vhls_opt_32 1(≈0%) 157(71%) 17,590(16%) 25,850(48%)
Available 280 220 106,400 53,200

Table 6. Instance list.

Instance DSP48E FF LUT
Quantity

Dopt = 4Dopt = 4Dopt = 4 Dopt = 8Dopt = 8Dopt = 8 Dopt = 16Dopt = 16Dopt = 16 Dopt = 32Dopt = 32Dopt = 32

f add 2 205 390 2 4 8 16
f mul 3 143 321 4 8 16 32
dadd 3 445 1149 1 1 1 1
dexp 26 1549 2599 1 1 1 1

According to Table 6, the DSP48E number costed by f add, f mul, dadd and dexp
instances are CDSP48E

fadd = 2, CDSP48E
fmul = 3, CDSP48E

dadd = 3 and CDSP48E
dexp = 26, so (18) can be

simplified to 4× Dopt + 29. Considering that the Dopt must be an integer divisor of the
iteration number m = 16384, according to (17), the optimal optimizing depth in this case is
Dopt = 32.

4.3. Running-Time Performance

This subsection first analyzes the operation schedules of the proposed implementation,
then evaluate its running-time performance by comparing it with multiple reference imple-
mentations. For the purpose of fairness, all the references are implemented in high abstract
environments, including Matlab and C++. This allows us to evaluate the implementations
within the similar development productivity constraint. The optimizing depth is set as
Dopt = 32 in order to well balance the hardware consumptions and running time efficiency.

For better understanding, the optimized behavior code, Algorithm 4, is divided into
the following four scopes to analyze: (a) Scope 1: Line 3, (b) Scope 2: Lines 4–11, (c) Scope 3:
Lines 12–17 and (d) Scope 4: Lines 18–24. The four scopes execute in sequence, so the total
latency cost Lopt can be estimated as

Lopt = Ls1 + Ls2 + Ls3 + Ls4 (19)

where Ls1, Ls2, Ls3 and Ls4 are the latency costs of the four scopes. According to the
scheduling results of Vivado HLS, the first scope includes only two constant data reading
accesses (B and ETA). The memory access operations cost one cycle and they are parallelly
scheduled, so Scope 1 costs one cycle totally.

The second scope is a perfect loop nest corresponding to the PLS regression. The
scheduling results of the inner loop body is shown in Figure 8, as well as the latency cost of
each operator. All the operations are scheduled as indicated in Figure 5. The latency cost of
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the loop body is 37 cycles, and that of Scope 2 therefore is Ls2 = n×m× 37/Dopt + n×
Lloop

interval = 663110 cycles, where Lloop
interval = 2 is the interval latency of the outer loop.

Figure 8. Schedule result: Lines 7–9 of Algorithm 4.

The third scope is a dependent loop whose iterations are pipelined. Figure 9 shows
the scheduling result of the i- and (i + 1)-th iterations of this scope. The latency cost of a
single iteration is 11 cycles. Because this is a dependent loop, the iteration interval latency
due to the pipelining optimization is LPIPELINE

interval = 4 cycles. Thus, its total latency cost is
Ls3 = (n− 1)× LPIPELINE

interval + 11 = 147 cycles.

Figure 9. Schedule result: Lines 14–16 of Algorithm 4.

The fourth scope is a series of operations executing in sequence. They cannot be
parallelized due to the data dependencies. As shown in Figure 10, the latency cost of this
part is Ls4 = 62 cycles. It should be noted that the instance library available to the target
device provide only double-precision floating point exponent and dividing operators (dexp
and ddiv), so f pext and f ptrunc operators are necessitated for data format transforming
between f loat, which is pre-defined, and double data.

Figure 10. Schedule result: Lines 18–24 of Algorithm 4.

According to (19), the latency cost of this optimized implementation is Lopt = 663,320 cy-
cles. The running time costs of RTL implementations can be estimated as Topt = Popt× Lopt,
where Popt is the estimated clock period. It should be noted that the value of Popt varies with
the optimizing depth Dopt. In this case, the evaluation report for Vivado HLS indicates that
Popt = 8.63 ns at Dopt = 32, so its running time is Topt = 8.63 ns × 663,320 cycles = 5.72 ms.
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For the purpose of unbiased evaluation results, we compared the running-time per-
formance of the final implementation with multiple references. Table 7 specifies their
developing environments. capt_matlab is the very original version for algorithm verifica-
tions. capt_cpp is developed from the Matlab-to-C transforming version, which is used as
the input of the high-level synthesis process. capt_vhls_ori is generated from the capt_cpp
code without any optimizations. capt_vhls_opt_Dopt (Dopt = 4, 8, 16, or 32) are the versions
optimized from capt_vhls_ori with different optimizing depths. capt_vhls_opt_32 is the
proposed CAPT prototype of this paper.

Table 7. Implementation specifications II.

Implementations Clock Period (ns) Routines Environments Devices

capt_matlab 0.55 Algorithm 2 Matlab 2017b Win10-64bit Intel Core i7,
1.80 GHz 32 GB RAM

capt_cpp 0.55 Algorithm 3 VS 2015 Win10-64bit Intel Core i7,
1.80 GHz 32 GB RAM

capt_vhls_ori 8.62

Algorithm 4 Vivado HLS 2017 Windows 10-64bit xc7z020clg484-1

capt_vhls_opt_4 8.63

capt_vhls_opt_8 8.63

capt_vhls_opt_16 8.63

capt_vhls_opt_32 8.63

Figure 11 plots the acceleration ratios over the different implementing versions, in
which capt_matlab is set as the base. It illustrates that the C++ version achieves a speedup
of 1.8×, whereas the original VHLS version 0.97×. This result means that synthesizing
the Matlab code directly down to register-transfer levels do not obtain acceleration gains
corresponding to today’s commonly-used processors and developing environments. How-
ever, the optimizing methods used in this paper effectively improve the running-time
efficiency of the VHLS implementations. Comparing with capt_vhls_ori, the optimiz-
ing forms made in this paper accelerate the implementations by 2.36×, 3.85×, 6.50×
and 11.28× at Dopt = 4, 8, 16 and 32. Comparing with the two CPU-based implementa-
tions capt_matlab and capt_cpp, the proposed CAPT prototype capt_vhls_opt_32 achieves
speedups of 10.89× and 6.02×, respectively. Meanwhile, it should be noted that the VHLS
implementations can be further accelerated by raising the optimizing depth value, but that
will cost more hardware resources. Within the device xc7z020cl484-1 used in this paper, we
have maximized the resource cost. If desired, the implementation can be further accelerated
by using a bigger device.

capt_matlab capt_cpp capt_hls_ori capt_hls_opt_4 capt_hls_opt_8 capt_hls_opt_16capt_hls_opt_32
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Figure 11. Running time comparison (see Table 7 for the definition of acronyms in this figure).
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5. Discussions and Conclusions

This paper implements a new-developed phoneme pronunciation diagnostic frame-
work for French CAPT modalities as a register-transfer level core. Classical machine
learning networks are impacted by the multicollinearity problem among the predictors
of the utterance sample vectors, the PLS algorithm is therefore applied in to the desired
network as the feature extracting layer to suppress the collinearity. Next, the soft-margin
SVM is used to perform the second network layer to enhance the classifying ability of
the network. Experiments results demonstrate that this method possesses better accuracy
performance than the state-of-the-art. Yet, we must claim that the performance of the DNN
implementations are constrained by training data size, so the experiments of this paper
cannot prove that the algorithm of this paper inevitably leads to the best performance.
Considering that a classical DNN model include 5 layers at least (1 input, 3 hidden and
1 output layers), whereas the proposed one only 4 (1 input, 1 PLS feature extracting, 1 SVM
classifying and 1 output layers), the latter is more suitable for the systems on chips.

As far to the register-transfer level implementing of the design, we prototype it via
a new-proposed VHLS SW/HW co-design flow in order to facilitate the development
works and maintenances. During this work, it is found that synthesizing directly the
behavior from Matlab down to RTL prevents the implementation from benefiting from the
running-efficiency advantages of FPGAs, a series optimizing forms are therefore made in
the loop and instrument levels. The CUEB French Phoneme Database is used to evaluate
the achievements of this work. The experiments results verify the basic function of the new
implementation by comparing it with its Matlab and C++ implementations. The hardware
evaluation experiments demonstrate that the prototype of this paper make efficient use of
the given hardware resources, and achieves a speedup of 10.89×, which making better use
of the hardware resources. Despite of many benefits of development productivity and easy
maintenances, it should note that high level synthesis seriously constrain the performance
of FPGA implementations in the terms of hardware costs and running-efficiency comparing
to the low abstract level implementations. If high performance is desired, some more
bottom optimizations are still required, especially when the constraints of Placing and
Routing cycle is taken into account.

In the future research, we will further improve the methods of this paper. The PLS
methods and hardware implementing experiences will be considered as a potential solution
of sparse learning to solve the data-hungry problems, which may also benefit the embedded
CAPT applications from deep learning methods. Meanwhile, there exists still some other
hardware solutions worth trying, such as MicroBlaze, which may provide nice performance
if well optimized.
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