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Abstract: This paper describes the optimal design of a miniature fiber-optic linear displacement
sensor. It is characterized by its ability to measure displacements along a millimetric range with
sub-micrometric resolution. The sensor consists of a triangular reflective grating and two fiber-optic
probes. The measurement principle of the sensor is presented. The design of the sensor’s triangular
grating has been geometrically optimized by considering the step angle of the grating to enhance
the sensor’s resolution. The optimization method revealed a global optimum at which the highest
resolution is obtained.

Keywords: fiber-optic sensor; displacement; global optimum; measurement range; resolution; sensitivity

1. Introduction

Highly precise, low-power micro-electro-mechanical system (MEMS)-based devices
have been one of the main subjects of research in recent years. The development of
micro-sensors with high sensitivity, a large dynamic range, and low power dissipation
dominates the research field for various commercial applications, including transportation,
biomedicine, space, avionics, and environmental monitoring [1].

High-resolution optical displacement sensors based on Fabry–Perot interferometers
have been widely used in MEMS systems due to their high displacement accuracy and
immunity to electromagnetic noise [2]. The study conducted by Chung-Ping Chang et al. [3]
modified the design of the conventional Fabry–Perot interferometer, enabling a 100 mm
measurement range to be achieved with an optical resolution enhanced to a quarter of
the wavelength.

In the field of precision nanometrology, Kuang-Chao Fan et al. [4] developed a mea-
surement system that consists of a mini linear diffraction grating interferometer (LDGI)
with dimensions of 50 × 30 × 30 mm3. The LDGI, together with a focus probe, is integrated
into the spindle system of a micro-/nano-coordinate measurement machine (CMM). The
sensor delivers an accuracy of 30 nm over the 10 mm displacement range of the spindle.
Another example is the wide-range, three-axis grating encoder developed by Jie Lin et al. [5].
This sensor can measure the translational motions of the x-, y-, and z-axes of a stage si-
multaneously. The grating encoder is composed of a reflective-type planar scale grating
with a period of 8 µm and an optical reading head. To make the grating encoder more
compact, a double-grating beam-splitting unit and two diffractive optical elements are intro-
duced. The experimental results revealed a resolution of 4 nm for the axial displacement of
the z-axis.

Akihide Kimura et al. [6] described a three-axis surface encoder consisting of a planar
grating and an optical sensor head. It was designed and manufactured for sub-nanometric
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displacement measurement along the x-, y-, and z-axes. The optical sensor head had
dimensions of 50 mm (X) × 70 mm (Y) × 40 mm (Z), and the sensor resolution was better
than 1 nm in all three axes.

Several studies based on other optical technologies for linear displacement measure-
ment have also been conducted. A high-performance optical sensor was constructed by
A. Missoffe et al. [7]. The compact measurement system consists of a laser diode module
along with a photodiode array. This system is characterized by its insensitivity to major me-
chanical defects. The experimental results showed that the sensor can achieve nanometric
resolution over a centimeter travel range.

The actual study considers different aspects. The developed sensor should sat-
isfy several requirements, such as millimetric range, sub-micrometric resolution, and a
miniature size.

Fiber-optic technology is a very good candidate because it has several advantages,
such as high compactness, low-cost fabrication processes, and compatibility with other
optical components, making it an attractive instrument for sensing applications. Intensity-
based fiber optic sensors are the earliest and most widely used technology to date due to
their low cost, easy installation, and high sensitivity [8]. They could represent a credible
alternative to optical micro-encoders when high resolution over long-range measurements
are required [9].

The study presented by Tian-Liang et al. [10] illustrates the design of a novel fiber
Bragg grating (FBG) displacement sensor. The measurement principle is based on the use of
the transverse property of a suspended optical fiber with a pre-tension force. The theoretical
model has been derived and validated, and the design has an excellent sensitivity of
2086.27 pm/mm and a high resolution of 0.48 µm within a range of 1–2 mm.

One of the studies for displacement measurements using fiber-optic sensors is pre-
sented by Yeon-Gwan Lee et al. [11]. The paper introduces the design of a fiber-optic
displacement sensor with a large measurement range. It is composed of a transmissive
grating panel, a reflection mirror, and two optical fibers as a transceiver. The measured
bidirectional movement demonstrates a peak-to-peak accuracy of 10.5 µm, high linearity of
0.9996 with a resolution of 3.1 µm at the full bandwidth, and a signal-to-noise ratio of 27.7
during a movement of 16 mm.

The performance of the fiber-optic displacement sensor is influenced by its geometrical
parameters, such as the fiber aperture, the radius of the fiber core, the lateral separation of
the transmitting and receiving fibers, the angle between the two fibers, and the reflector
radius. It was observed that for better sensor sensitivity, there should be minimum spacing
between transmitting and receiving fibers [12].

The review presented by Chen Zhu et al. [13] illustrated the recent progress of fiber-
optic sensors, providing an overview of different physical and mechanical sensors based
on this principle. The working principle along with the signal demodulation methods are
also shown. Fiber-optic sensors are widely used thanks to their several advantages, such
as immunity to electromagnetic interference, corrosion resistance, and small size. On the
other hand, the paper presented by Zhilin Xu et al. [14] reported a monolithic dual cavity
extrinsic Fabry–Perot interferometer to realize 2D displacement measurement of a target.
Two-dimensional random movement detection and the repeatability of the system were
investigated experimentally, and demodulation errors better than 96 nm were achieved.
This system has many advantages, such as its non-contact characteristics, high accuracy,
and compact size, which make it promising to be applied in 2D acceleration measurement.
A comparative study of different optimization methods was conducted, and it is explained
in the following paragraphs.

For wireless sensor networks (WSNs), where several challenges involve potentially
conflicting objectives, satisfying one objective leads to degradation in the other’s perfor-
mance (if we focus on increasing network lifetime, latency may also increase, which is
not desired). So, multi-objective optimization methods are applied to solve this challenge
using nature-inspired meta-heuristic algorithms [15]. This method remains more com-
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plicated in comparison with the optimization method applied to the sensor in this study.
Another study, presented by Wioletta Trzpil et al. [16], proposes a new concept of photoa-
coustic gas sensing based on capacitive transduction. This method allows full integration
while conserving the required characteristics of the sensor. For the sensor performance
optimization, a Python programming environment was adapted, and an analytic model
was able to find the optimum geometric parameters of a cantilever for photo-acoustic
sensing with capacitive transduction. We can see that the geometric parameters can
change the sensor performance, which is similar to the optimization method applied in
this paper. Another study proposed developing a piezoelectric single-crystal accelerometer
with a novel tri-beam structure [17], where a dual objective optimization algorithm is
proposed to improve the overall performance; however, this method may be limited to
vibration sensors.

A miniature fiber-optic sensor able to provide nanometer resolution over a millimeter
range was proposed in the Roberval research laboratory. In two previous studies, the princi-
ple of the sensor in one dimension and in two dimensions was respectively validated [9,18].
The objective of this new study is to optimize the performance of the existing fiber-optic
displacement sensor regarding its resolution by improving its geometric design parameters.
Particularly, the geometric design of the planar reflective grating, in which the unfavorable
sensitivity is enhanced, will be focused on.

2. Sensor Principle

The sensor consists of two fiber-optic probes associated with a highly reflective surface.
Each probe has one center emission fiber and four reception fibers placed around the
emission fiber. The sensor performance when it is associated with a planar surface has
already been analyzed [9,18,19]. In the classical configuration, the emission fiber placed in
the center emits light on a flat reflective surface. The light reflected by the surface is injected
into the reception fibers and guided to a PIN photodiode. The voltage output of the sensor
is a function of the mirror displacement (see Figure 1). When the flat mirror is translated
perpendicular to the probe axis, the sensor response curve is as shown in Figure 2.

As seen in Figure 2, the sensor response curve comprises four zones [14]. The first
zone is the dead zone, where the reception fibers cannot collect the reflected light due to the
space between the emission and reception fibers. Zones 2 and 4 exhibit strong non-linearity
with poor resolution. Zone 3, on the other hand, is the most interesting working zone due
to its high sensitivity and linearity. The performance of the sensor is characterized by its
sensitivity and resolution in the working zone. The sensitivity (S) is calculated as a function of
the voltage output variation (∆V) and displacement in the linear zone (∆d) (Equation (1)):

S =
∆V
∆d

(1)
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Figure 2. Response curve of the fiber-optic displacement sensor.

The resolution (R) is deduced from the sensitivity (S) and the RMS noise of the sensor
(NRMS) (Equation (2)):

R =
NRMS

S
(2)

Nevertheless, zone 3 has a small linear measurement range (<200 µm for OMRON
fiber-optics) which is not suitable for long strokes in industrial applications.

To increase the measurement range for the linear zone, the displacement direction
of the flat mirror can be different from the normal vector orientation of its surface. This
results in the multiplication of the nominal range value by a factor of (sin ε)−1, where ε is
the inclination angle related to the grating axis [10], as shown in Figure 3. As a result, the
fiber-optic probe displaces laterally to the flat mirror.
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In the inclined mirror configuration, the measurement range increases by a factor of
(sin ε)−1, (Equation (3)):

dlateral =
daxial
sinε

(3)

where:

- dlateral: the displacement in the lateral case
- daxial: the corresponding axial displacement

And as dlateral > daxial, the sensitivity of the inclined mirror configuration will decrease
by a factor of (sin ε), as shown in the following equation:

Slateral= Saxial × sin(ε) (4)

where:
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- Slateral: the sensitivity of the sensor in the inclined mirror configuration (lateral case)
- Saxial: the corresponding axial sensitivity

Therefore, the sensor resolution with this inclined mirror configuration increases as a
function of the angle ε following this equation:

Rε =
R

sinε
(5)

where:

- R: the sensor resolution in the classical case
- Rε: the corresponding resolution in the inclined mirror configuration

As seen from the previous equation, the highest resolution (i.e., unfavorable resolution)
is obtained with small values of the angle ε, whereas for higher values of ε, the resolution is
improved. To increase the measurement range to several millimeters, the inclined mirror
configuration was duplicated, resulting in a grating of flat mirrors. The total displacement
of the sensor (dtotal) increases as a function of ε and the number of steps in the grating (n)
(Equation (6)):

dtotal = n × daxial
sinε

(6)

In the case of a grating of flat mirrors, two fiber-optic probes are needed to avoid
measurement loss due to the transition between two consecutive steps, and that ensures
continuous displacement measurement over the long range by alternately switching be-
tween the probes (Figure 4). In other words, the non-linear zone in the response curve of
the sensor has to be avoided. In order to ensure a useful and correct measurement in this
linear zone, two fiber-optic probes are used. When the first one arrives in the non-linear
zone, the measurement switches to the next probe. It is noted that the movement of the
mirror with respect to the probe can either be to the left or the right.
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A geometric model was developed to size the geometric parameters of the grating and
to simulate the performances of the long-range displacement sensor. This model takes as an
input the geometric dimensions of each fiber and each step of the grating. This model gives
the corresponding performance of the sensor as an output. These performances include
the sensor resolution and the overlap distance needed to easily switch between the two
fiber-optic probes.

Two conditions are taken into account in this model:

1. The distance between the probe and the grating step must be in the linear zone
(zone 3 of Figure 2).

2. The overlap distance needed to switch between two successive signals of the fiber-
optic probes to avoid the linear measurement discontinuity during the step transition
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depends on the speed of the measured displacement. It is generally considered to be
between 10 and 30 µm.

The algorithm based on the geometric model used to size the planar grating is pre-
sented in the following flow chart (Figure 5).

Sensors 2024, 24, x FOR PEER REVIEW 6 of 14 
 

 

1. The distance between the probe and the grating step must be in the linear zone (zone 
3 of Figure 2). 

2. The overlap distance needed to switch between two successive signals of the fiber-
optic probes to avoid the linear measurement discontinuity during the step transition 
depends on the speed of the measured displacement. It is generally considered to be 
between 10 and 30 µm. 
The algorithm based on the geometric model used to size the planar grating is pre-

sented in the following flow chart (Figure 5). 

 
Figure 5. Flow chart of the geometrical model. 

The parameters in the geometric model of the planar grating are shown in the fol-
lowing figure and table (Figure 6 and Table 1). 

 
Figure 6. Grating and emission fiber parameters. 

Table 1. Geometric design parameters. 

Symbol Quantity 
Φef (µm) Emission fiber diameter 
Φ (µm) Probe diameter 

β Emission fiber numerical aperture 
d (µm) Distance between probe head and grating 
dx (µm) Distance: x·sin(ε) 
ds (µm) Security distance 

ε (°) Grating angle 
x (µm) Lateral position 
l (µm) Step length 

Figure 5. Flow chart of the geometrical model.

The parameters in the geometric model of the planar grating are shown in the following
figure and table (Figure 6 and Table 1).
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Figure 6. Grating and emission fiber parameters.

Table 1. Geometric design parameters.

Symbol Quantity

Φef (µm) Emission fiber diameter

Φ (µm) Probe diameter

β Emission fiber numerical aperture

d (µm) Distance between probe head and grating

dx (µm) Distance: x·sin(ε)

ds (µm) Security distance

ε (◦) Grating angle

x (µm) Lateral position

l (µm) Step length

h (µm) Step height

z (µm) Illuminated zone diameter
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The geometric model developed in MATLAB calculates the distance (d) between the
probe and the grating, in addition to the overlap distance necessary to stay in the linear
zone and switch between the two probes. In the flow chart shown, we guarantee that the
distance (d), which is between the probe head and the grating, will be localized in the linear
zone of the sensor, and that the overlap has a suitable value between 10 µm and 30 µm. If
these conditions are not satisfied, the loop will be ended.

A sensor prototype based on the simulation algorithm was successfully modeled,
designed, and tested [10,14].

The following figure shows an illustrative example of the experimental validation for
the sensor principle of that prototype. As shown below, two fiber-optic probes are used in
order to stay in the linear zone of the sensor.

As seen from Figure 7, there is an overlap of 29 µm to facilitate the switching between
the two fiber-optic probes and ensure measurement continuity [14].
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In order to improve the sensor’s performance, an optimization method has been
proposed. Its aim is to improve the highest sensor resolution (the unsuitable resolution)
by reducing its corresponding value. This can be achieved with the help of the geometric
parameters, particularly the angle ε.

3. Optimal Design Approach

The main objective of this design is to determine the optimal dimensions of the sensor’s
planar grating, which can improve its resolution; the physical model of the sensor is not
yet implemented, and the MATLAB results are based on a program used before where
the sensor principle has been validated. Figure 8 shows the classical calibration curve of
the fiber-optic displacement sensor for a 300 µm displacement, which is considered in this
study [10]. It is observed that increasing the measurement range results in a decrease in
sensor sensitivity, as depicted in Figure 9, which shows the instantaneous sensitivity as a
function of the sensor displacement. It is evident that the sensitivity reaches its maximum
value at the inflection point of the curve, which is found at a displacement of 186 µm
and has a maximum sensitivity of 44.28 mV/µm. However, near the inflection point, the
sensitivity decreases as the measurement range increases.

The approach followed to reach the optimal performance of the sensor consisted of
dividing several zones around the inflection point of the sensor response curve, where
each zone has an additional 20 µm length compared to the previous one: (80 µm length for
zone 1, 100 µm length for zone 2, 120 µm length for zone 3. . .etc.). The analysis figured out
the zone for which the sensor resolution is optimal. For the overall analysis, six zones were
taken around the inflection point, which was sufficient to find the optimal resolution for
the sensor.
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In each zone, the sensitivity, the measurement range, and the resolution in both the
axial and lateral configurations were calculated. Concerning the axial configuration of the
sensor, the analysis considered the most unsuitable sensitivity of the measurement range
in each zone (the sensitivity at the extremity of the measurement range), from which the
maximum axial resolution was deduced (cf. Equation (2)). These values of sensitivity and
resolution were the ones considered in this study, with the objective of optimizing the
sensor resolution in the worst-case scenario.

Regarding the lateral configuration, the analysis found out the maximum inclination
angle (εmax) in the measurement range of each studied zone to optimize the sensor resolution
because the best resolution is attained at a high value of the angle ε. For that, and in order
to get the highest possible angle, it was necessary to fix a small overlap criterion because,
at a small overlap, the angle ε is high. For this study, an overlap of 10 µm was taken at each
zone as it was the minimum sufficient overlap, providing a high value of the angle ε.

So, the approach focused on the minimum sensitivity and, in consequence, the maxi-
mum resolution in the axial case (Saxial min, Raxial max) and the maximum angle (εmax) in the
lateral case.

Considering the analysis carried out for zone 1, which has a length of 80 µm around the
inflection point (this zone starts at 146 µm and ends at 226 µm), an axial measurement range
of 67.5 µm (starting at 158.52 µm and ending at 226 µm) was the one in which the minimum
axial sensitivity and maximum resolution were determined (Saxial min = 42.59 mV/µm,
Raxial max = 7.04 nm) and the maximum inclination angle (εmax = 5.54◦) was found.

Table 2 presents the different parameters obtained for each zone.
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Table 2. Optimal design parameters.

Zone Zone Length
(µm) MRaxial (µm) Saxial min

(mV/µm) Raxial max (nm) εmax (◦)

1 80 67.5 42.59 7.04 5.54

2 100 71 41.65 7.2 5.76

3 120 75.09 40.51 7.4 6.01

4 140 79.02 39.15 7.66 6.25

5 160 83.11 37.58 7.98 6.50

6 180 87.14 35.81 8.38 6.73
where: MRaxial: the axial measurement range; Saxial min: the minimum axial sensitivity; Raxial max: the maximum
axial resolution; εmax : the maximum angle.

Referring to Equation (2) and taking into consideration the minimal case for the
sensitivity (Saxial min); the maximum corresponding resolution will be obtained (Raxial max)

As seen from the previous table, MRaxial and εmax increase with the zone length.
Whereas Saxial min decreases and Raxial max increases.

The parameters that define the sensor performance (Saxial min, Raxial min and εmax) were
used to generate the targeted optimal resolution; this is explained in the next paragraphs.

4. Results and Discussion
4.1. Analysis of the Optimal Zone

The objective of this study is to define the best resolution for the sensor. It is generated
from the parameters previously obtained at each zone.

From (Saxial min and εmax), the lateral measurement range (MRlateral) is deduced, and
the lateral sensitivity (Slateral) and the lateral resolution (Rlateral) are obtained, respectively
(Equations (7)–(9)):

MRlateral =
MRaxial
sin(εmax)

(7)

Slateral = Saxial min× sin (εmax) (8)

Rlateral =
Raxial min
sin(εmax)

(9)

As seen from Table 3, MRlateral increases with zone length as a function of (sin(ε))−1.
Concerning Slateral and Rlateral, these two parameters showed their best performance in
zone 4 (Slateral increased to a maximum value at this zone, then it started to decrease; for
Rlateral, it decreased to its minimum value in zone 4, then it started to increase).

Table 3. Optimal design results.

Zone Zone Length (µm) MRlateral (µm) Slateral (mV/µm) Rlateral (nm)

1 80 700 4.11 72.98

2 100 709 4.19 71.77

3 120 718 4.25 70.73

4 140 726 4.28 70.32

5 160 735 4.27 70.51

6 180 744 4.22 71.44

The previous results proved that there is a global optimum for the sensor in which the
lateral sensitivity (Slateral) and the lateral resolution (Rlateral) were boosted despite enlarging
the measurement range, which was not the case in the axial configuration, as axially the
sensitivity decreased with the zone range.
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εmax increases as a function of the zone length, and in consequence, the lateral sensitiv-
ity and resolution are improved up to a certain limit (zone 4).

As a result, zone 4 is the optimal zone, for which the unsuitable resolution is improved.
This zone has a length of 140 µm and a lateral measurement range of 726 µm. The angle
εmax in this zone is 6.25◦, which enhances the lateral sensitivity to a maximum value of
4.28 mV/µm and the lateral resolution to a minimum value of 70.32 nm.

The geometric parameters which provided an angle ε of 6.25◦ are:

- Step length (l) = 1433 µm
- Step height (h) = 157 µm

These optimal performances were found at the smallest criterion of overlap (10 µm);
as at small values of the overlap, higher values of the angle ε are obtained, resulting in
better resolution.

4.2. Study of the Overlap Criterion

The overlap, in general, increases with the step length (l), which in consequence
decreases the step angle ε, and that will deteriorate the sensor lateral resolution (Rlateral),
(cf. Equation (5)).

So, increasing the step length (l) increases the signal overlap and the limit of resolu-
tion for the sensor. Figure 10 presents the results given by the existing geometric model;
(Figure 10a) is for the optimal zone where the step length (l) is 1433 µm and the correspond-
ing overlap is 10 µm; (Figure 10b) was plotted for a step length equal to 1460 µm, where
the overlap increased to 26.5 µm.
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The influence of the sensor angle ε on the overlap and the resolution was studied in
the optimal zone defined in this analysis (Zone 4). For that, the height of the step (h) in
the geometric model was kept constant at 157 µm, and several values of the step length
were applied in order to see how the overlap and the resolution change with the angle ε
(Figure 11).
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Figure 11 shows that the resolution is proportional to the step angle of the grating (ε),
as proved before, whereas the overlap is inversely proportional to the angle ε, which means
that at high values of overlap, the sensor resolution is not optimized. For that reason, in
this analysis, a minimum criterion was considered for the overlap (10 µm) to optimize the
sensor performances regarding the resolution.

On the other hand, the overlap criterion is related to the velocity of the measurement
system and its sampling frequency. It is necessary to have enough measured points in the
overlap zone in order to facilitate the switching between the two fiber-optic probes. Table 4
presents the number of points in the overlap zone of 10 µm at different velocities.

Table 4. Overlap criterion of 10 µm.

Velocity (mm/s) Overlap (µm) Sampling Frequency (Hz) Number of Points

0.2 10 100 5

0.2 10 200 10

2 10 100 0.5

2 10 200 1

As seen from Table 3, with an overlap of 10 µm and sampling frequencies (100–200 Hz),
there will be a smaller number of points in the overlap zone. In that case, the overlap
criterion should be increased (Table 5).

With an overlap of 30µm, a velocity of 0.2 mm/s, and sampling frequencies (100–200 Hz),
the number of points in the overlap zone is increased to 15 and 30 points, respectively,
which is more optimal for a better functionality of the sensor (with a high number of points,
the precision is improved). For the velocity at 2 mm/s, the overlap criterion should be
further increased at sampling frequencies of 100–200 Hz.
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Table 5. Overlap criterion of 30 µm.

Velocity (mm/s) Overlap (µm) Sampling Frequency (Hz) Number of Points

0.2 30 100 15

0.2 30 200 30

2 30 100 1.5

2 30 200 3

5. Conclusions

The geometric design of a fiber-optic displacement sensor is enhanced regarding
its sensitivity, resolution, and measurement range. In this paper, a global optimum is
generated between the sensor sensitivity and resolution, which, in consequence, improves
its overall performance. This global optimum has laterally enhanced the sensitivity and
the resolution, even if axially the performance was in its unfavorable case; this has been
carried out with the help of the angle ε, which was chosen to be at its maximum value.

The following approach proved its validity as the sensitivity of the sensor increased
to 4.28 mV/µm, despite enlarging the measurement range. However, higher values of
sensitivity could have been reached if, axially, the performances were better. On the other
hand, a suitable overlap criterion should be considered as a function of the measurement
system’s velocity and the sampling frequency.

The geometric parameters for the sensor at its optimal zone will be considered for
future fabrication of the grating to validate experimentally this global optimum. In addition,
here is a comparative table of several sensors. With the sensor mentioned in this study,
in terms of resolution and measurement range, it can be seen that even in the worst-case
scenario, the limit of resolution is nanometric (Table 6).

Table 6. Comparative between high-performance displacement sensors.

Sensor Range Resolution

Conventional Fabry–Perot interferometer [3] 100 mm Quarter wavelength

LDGI [4] 10 mm 30 nm

Optical sensor of laser diode module [7] Centimetric Nanometric

FBG [10] 1–2 mm 0.48 µm

Fiber-optic sensor [11] 16 mm 3.1 µm

Dual cavity Fabry–Perot interferometer [14] 7 µm 0.1 nm

Fiber-optic sensor of this study 726 µm 70.32 nm (in
worst-case scenario)
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