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Aims The increasing use of insertable cardiac monitors (ICM) produces a high rate of false positive (FP) diagnoses. Their verifi-
cation results in a high workload for caregivers. We evaluated the performance of an artificial intelligence (AI)-based ILR- 
ECG Analyzer™ (ILR-ECG-A). This machine-learning algorithm reclassifies ICM-transmitted events to minimize the rate 
of FP diagnoses, while preserving device sensitivity.

Methods 
and results

We selected 546 recipients of ICM followed by the Implicity™ monitoring platform. To avoid clusterization, a single episode 
per ICM abnormal diagnosis (e.g. asystole, bradycardia, atrial tachycardia (AT)/atrial fibrillation (AF), ventricular tachycardia, 
artefact) was selected per patient, and analyzed by the ILR-ECG-A, applying the same diagnoses as the ICM. All episodes 
were reviewed by an adjudication committee (AC) and the results were compared. Among 879 episodes classified as ab-
normal by the ICM, 80 (9.1%) were adjudicated as ‘Artefacts’, 283 (32.2%) as FP, and 516 (58.7%) as ‘abnormal’ by the AC. 
The algorithm reclassified 215 of the 283 FP as normal (76.0%), and confirmed 509 of the 516 episodes as abnormal (98.6%). 
Seven undiagnosed false negatives were adjudicated as AT or non-specific abnormality. The overall diagnostic specificity was 
76.0% and the sensitivity was 98.6%.

Conclusion The new AI-based ILR-ECG-A lowered the rate of FP ICM diagnoses significantly while retaining a > 98% sensitivity. This will 
likely alleviate considerably the clinical burden represented by the review of ICM events.
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What’s new?

• A new artificial intelligence (AI)-based ILR-ECG Analyzer™ 
(ILR-ECG-A) has been developed to lower the rate of false positive 
(FP) diagnoses in insertable cardiac monitors (ICM), while retaining a 
sensitivity of over 98%.

• The ILR-ECG-A algorithm reclassified 76% of the episodes that 
were originally identified as FP by the ICM as normal, thus reducing 
the workload for caregivers in verifying these false positives.

• The ILR-ECG-A retained a high sensitivity of 98.6% in detecting ab-
normal episodes, which makes it a reliable diagnostic tool for ar-
rhythmias, including atrial tachycardia (AT) and atrial fibrillation (AF).

• The ILR-ECG-A algorithm uses machine learning to discern the char-
acteristics of the ECG associated with each abnormality, thereby re-
ducing the number of FP detections.

• The ILR-ECG-A is CE marked class I and Food and Drug 
Administration (FDA) cleared class II through a 510(k) submission.

• The ILR-ECG-A has the potential to alleviate the clinical burden as-
sociated with the review of ICM events, allowing caregivers to focus 
on patients who require urgent attention.

Introduction
Follow up of recipients of implantable cardiac electronic devices has been 
facilitated by automatic remote monitoring (RM) which offers early event 
detection and enables, when needed, timely treatment.1 For example, 
insertable cardiac monitors (ICM) permit much longer monitoring of 
patients with suspected atrial fibrillation (AF) compared to usual care2

or standard 24-h ambulatory ECG recordings.3 ICMs are now widely 
and increasingly used in routine care and represent an important diagnos-
tic instrument, most notably for cryptogenic strokes, unexplained syn-
cope, palpitations, and a variety of arrhythmias, and particularly AF.4,5

However, adjudication of device events presents a huge workload to clin-
ic staff. While ICM diagnostic algorithms differ among manufacturers and 
device models, clinical experience and peer-reviewed medical literature 
suggest consistently that these systems are highly sensitive to arrhyth-
mias, but are vulnerable to a high rate of FP detections6–8 reported to 
be between 46% and 86%, depending on implant indication.9 Several so-
lutions have been proposed to increase specificity. Among them, artificial 
intelligence (AI) may filter only the most actionable data to clinicians.10

These algorithms use large amounts of data to ‘train’ the computer by 
labelling each case according to one of many predefined abnormalities, 
allowing the machine to discern what characteristics of the ECG are 
associated with any given abnormality.

Here, we hypothesized that the ILR-ECG Analyzer™ (ILR-ECG-A) 
machine learning algorithm (Implicity™, Paris, France) designed to re-
classify ICM recorded arrhythmias, would diminish the percentage of 
FP episodes i.e. increase specificity. This algorithm is CE marked class 
I and Food and Drug Administration (FDA) cleared class II.

Methods
Study design
Among 2643 recipients of Reveal LINQ, DX, or XT ICM entered in the 
Implicity database, we selected on 2020-11 546 patients (as was required 
by a preliminary sample size calculation) from 18 French and 13 US medical 
centres, with a random draw from a uniform distribution. Three different 
versions of the manufacturers’ ICM are then included in this study, in pro-
portion close to what they were in this RM platform at the time of patient 
selection. The data for these patients had been transmitted between the 
ICM and the platform as part of the patients’ routine care. For these pa-
tients, we extracted all episodes transmitted from January 2014 to 
October 2020. For this study, the daily transmissions were anonymized, 
and the events were collected towards a retrospective analysis of the 
new ILR-ECG-A algorithm’s performance. Since this was a retrospective 

analysis of clinical data, this study was exempt from reviews and approvals 
by the institutional review boards of the participating institutions, in accord-
ance with the European ‘General Data Protection Regulation’ (UE 2016/ 
679). All patients had granted their written approval to contribute the 
data at the time of activation of RM. All data were de-identified to ensure 
the protection of personal health data, according to the regulation and 
French reference methodology.

ICM-detected events
The three ICM algorithms can detect four main types of abnormal rhythms: 

(1) Asystole, defined as the absence of ventricular activity for a duration 
longer than a programmable value (1.5 s, 3 s, 4.5 s—the default is 3 s).

(2) Bradycardia, defined as consecutive RR intervals (the intervals between 
two consecutive R-waves) above a programmable value (1.2 s, 1.5 s, 
2.0 s—the default is 2.0 s).

(3) Atrial tachycardia or atrial fibrillation (AT/AF) is detected using an auto-
matic algorithm based on the R-R interval variability within a 2-min 
period. The differences between consecutive R-R intervals are dis-
played in a Lorenz plot. Pattern recognition is used to identify the 
AT and AF episodes; R-R intervals are highly irregular and uncorre-
lated during episodes of AF, whereas they are regular during episodes 
of AT. In addition, for Reveal LINQ specifically, a P-wave presence al-
gorithm allows for the filtering of episodes that presents detectable 
P-wave in R-R intervals.

(4) Tachycardia (Tachy) is defined as a ventricular rhythm with consecu-
tive RR intervals below a programmable value (ranging from 0.27 s 
to 0.50 s—the default is 0.34 s).

These episodes are programmed at the time of ICM implantation and 
may be modified during follow-up. ICM has two means of recording the 
episodes: 

(1) The device analyzes the cardiac signal incessantly and records and 
stores the ECG when an episode is detected by the algorithm. Such 
episodes have durations ranging from 5 s to 2 min, with a sampling 
rate of 256 Hz for each of the three considered ICM devices.

(2) The ICM captures an episode upon manual activation by the patient, 
who uses an assistant device or, in the latest models, a smartphone ap-
plication. These episodes are usually activated when the patient ex-
periences a symptomatic event, establishing a temporal relationship 
between symptoms and ICM recording.

While programming of the algorithm closely adapts the device to the pa-
tient’s needs, it is often insufficient to control the high rate of FP detections, 
mostly due to loss of R-wave amplitude, premature atrial and ventricular 
events, oversensing of P and T waves, or noise artefacts.

Artificial intelligence-based detections by the 
ILR-ECG-A
ILR-ECG-A, an AI-based algorithm, was developed to reclassify episodes re-
corded by the ICM, with a view of limiting the rate of FP detections. This 
algorithm uses the ICM signals as input and detects either a ‘Normal 
Rhythm’ or a list of abnormal events, classified as ‘Asystole’, ‘Bradycardia’, 
‘AT/AF’, ‘VT’ (‘ventricular tachycardia’), ‘Artefact’ (uninterpretable signals), 
or ‘Unspecified Abnormality’. This algorithm comes with a suggestion to 
healthcare professionals to review in priority every episode not diagnosed 
as ‘Normal Rhythm’ with the same level of importance, as it is optimized to 
identify as few abnormal episodes as possible with this diagnosis. It is com-
patible with the transmission files of the ICM and can be interfaced with the 
RM platform. This allows access to the ECG signals with the highest accur-
acy and the transmission of its results to the interface used by the caregiver 
to follow patients remotely (Figure 1). To classify the episodes, the AI-based 
algorithm automatically uses the settings of asystole, bradycardia, and tachy-
cardia intervals programmed during ICM implantation. The algorithm was 
developed by a combination of expert features, which include morphologic-
al and frequential analyses of sensed QRS and P waves. For example, in 
addition to the pattern recognition applied to the Lorenz plot included in 
the ICM algorithms, the acceleration of the heart rate and the related 
time span between subsequent identifiable rhythms is computed as a fea-
ture. This allows us a better differentiation atrial tachycardias from normal 
sinus tachycardias. An improved QRS detection algorithms using an 
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Optimized Knowledge-Based method11 also allowed for better algorithmic 
interpretations of Lorenz plots. To these expert features, a neural network 
was added to provide additional automatic features. The underlying archi-
tecture is a 1D Convolutional Neural Network (CNN), employing shortcut 
connections in a manner similar to the Residual Network architecture, as 
described by Hannun et al.12 It has six output classes instead of twelve, cor-
responding to the first six classes detected by ILR-ECG-A (The ‘Unspecified 
Abnormality’ output corresponding to the absence of the other six classes). 
The activations of the penultimate layer are then concatenated to expert 
features, to extend the information provided by these features. The result-
ing features are used as input of six machine learning classifiers, which com-
pute scores for each of the possible diagnoses, and classify signal according 
to the outputs of the classifiers and fixed thresholds determined at the 
training stage.13

Training methodology of the ILR-ECG-A
A development dataset of 3405 ICM episodes diagnosed by a panel of 9 ex-
pert cardiac electrophysiologists was used to train and validate the algo-
rithm (Figure 2). These episodes were collected from 870 patients of 22 
European medical centres using the Implicity™ platform to follow their pa-
tients. They were selected to have a high variety of ICM episode types: these 
episodes were selected so that at most 5 episodes per patient and per ICM 
diagnosis could be selected. As such, the episodes were balanced with re-
spect to the ICM diagnosis. On each of these episodes, the experts anno-
tated the start and end of each diagnosis on the ECG trace. Using a 
subset of these episodes with expert adjudication, six machine learning al-
gorithms (XGBoost) were trained to qualify the samples as sequentially 
‘Artefact or not Artefact’, ‘Asystole or not Asystole’, ‘Bradycardia or not 
Bradycardia’, ‘AT/AF or not AT/AF’, ‘VT/ventricular fibrillation (VF) or 
not VT/VF’ and ‘Normal Rhythm or not Normal Rhythm’. The evaluation 
of each of these classifiers successively on any episode returns a qualification 
of this episode according to each qualification type. These six algorithms 
were all trained on binary classification tasks, with the previously described 
features as input, to which the output of previously trained classifiers, and 
with the binary label corresponding to their specific task as an optimization 
target. A hyper-optimization had been performed for each of the six algo-
rithms, with the training dataset, sequentially, to determine their optimal 
hyper-parameters, and the optimal sequence of algorithms (i.e. the order 
in which the six algorithms were trained and evaluated).

These qualifications were converted into a final diagnosis by the 
ILR-ECG-A algorithm using the following rules: 

• If any of the abnormal qualification are fulfilled, the final diagnosis is the 
exhaustive list of abnormal qualification fulfilled for the episode

• Else, if the ‘Normal Rhythm’ qualification was fulfilled, the final diagnosis 
is ‘Normal Rhythm’

• Else, the final diagnosis was ‘Unspecified Abnormality’

As such, ILR-ECG-A algorithm is conservative on the ‘Normal Rhythm’ 
diagnosis, as the final diagnosis of an episode can only be ‘Normal 
Rhythm’ if no abnormality was detected by ILR-ECG-A in any part of the 
ECG trace.

The performances of the trained algorithms were evaluated on a subset 
of the development dataset (of patients not included in the training of the 
algorithm) using the endpoints described in the ‘Study endpoints’ section. 
The overall expected performance for the algorithm was a sensitivity 
over 90%, and a specificity over 60%. The performance target set for 
each individual label was that no Asystole, Bradycardia, or VT would be mis-
diagnosed as Normal Rhythm by ILR-ECG-A. The fixed thresholds used to 
classify signals were obtained by optimizing for these expected perfor-
mances on the validation dataset. The algorithms reached these perform-
ance targets on the validation dataset, before the collection and 
evaluation of this study.

Episode selection
To test the ILR-ECG-A algorithm’s performance in a variety of arrhythmias, 
we sampled unique episodes of each type of arrhythmia transmitted by the 
patients. When multiple episodes of the same type were transmitted by the 
same patient, a single sample was retained for the analysis, using a uniform 
random sampling among the episodes of the same patient and type, to pre-
vent a cluster effect. This data collection method was designed to sample 
the widest variety of abnormalities and discard redundant episodes. We ex-
pected this method to result in a low within-patient correlation among sig-
nals, conferring sufficient statistical power to our analysis. This episode 
selection method selected 1000 episodes for analysis (Figure 3). All patient- 
activated episodes were excluded from the analysis, as the ILR-ECG-A 
algorithm, which implements the rules used by ICM to detect abnormal epi-
sodes, does not reclassify these signals. Events <9.5 s in duration, too short 
for analysis by the algorithm, were likewise excluded.

ILR Patient
mon itor

Manufacturer
web platform

Remote
mon itoring

platform

Episode ECGs
ILR ECG analyzer
qualific ations

ILR ECG analyzer
algorithm

Medical staff

Figure 1 Progression of an ILR event with the addition of the ILR-ECG-a algorithm to the diagnostics. As is usual with RM, the event emitted by the 
device is transmitted to the manufacturer’s Internet-based platform via the Patient Monitor. From there, the event is transmitted to a RM Platform 
interfaced with ILR-ECG-A. The event is sent to the algorithm, which adds its diagnostic results before the final transmission to the caregiver.
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Study endpoints
This study was designed to evaluate the ability of the ILR-ECG-A algorithm 
to decrease the rate of FP events recorded by Reveal ICM. As such, this 
study evaluated the ability of the ILR-ECG-A algorithm to detect FP events 
(i.e. diagnose these episodes as ‘Normal Rhythm’), while misdiagnosing 
few true positive (TP) episodes—‘Abnormality’—as ‘Normal Rhythm’. 
Therefore, this study uses a binary endpoint to describe the results of 
ILR-ECG-A. ‘Artefact’ episodes are defined in this study as episodes where 
the presence of a non-cardiac signal distorts the ECG enough to prevent 
medical interpretation. They were then not clearly identifiable as TP or 
FP events, as it was not possible in the scope of this study to associate 

them with real patient events. They then constituted a third category, to be 
analyzed separately from ‘Normal Rhythm’ and ‘Abnormality’. Events were col-
lected by medical centres different from those where the machine learning clas-
sifier was trained and selected as described earlier. Therefore, no patient 
included in this study had episodes that had been used to train or validate 
the algorithm. The same events were analyzed by an independent adjudication 
committee (AC) and by the AI-based algorithm. The AC included five experi-
enced cardiac electrophysiologists (Appendix 1), who did not participate in the 
review of the algorithm’s training data, and who had no access to the patients’ 
clinical information. They examined each ECG recording and classified them as 
(i) ‘Abnormality’ (asystole, bradycardia, AT/AF, VT/VF, or other abnormalities), 

ILR ECG analyzer
results

Reference
diagnosis

Medtronic ILR episodes
Development dataset

Medtronic ILR episodes
Clinical dataset

ILR ECG analyzer
algorithm

Annotation &
adjudication

ILR-ECG-A
evaluation

Adjudication
committee

ILR ECG analyzer
Sensitivity,
Specificity

Results
comparison

Figure 2 Training of the AI-based ILR-ECG-a, and its evaluation, using an independent dataset, as described in the ‘methods’.

Patients included in study
n = 546

Events sampled ICM
n = 1,000

Events excluded from analysis
n = 121

Events entered in analysis
n = 879

From US institutions n = 331 (60.6%)
From French institutions n = 215 (39.4%)

Patient-activated n = 117 (96.7%)
Event < 9.5 s in duration n = 4 (3.3%)

Figure 3 Patient selection and flow of events from the initial inclusion of a predetermined sample of 1000 to the final inclusion of 879 events in the 
analysis.
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(ii) ‘Normal (sinus) Rhythm’, or (iii) ‘Artefact’, considering the settings of the 
ICM as the only rule for the events’ classification. Each event was reviewed 
by two members of the AC and, in case of disagreement, was adjudicated 
by the Chairman or in a consensus meeting of the Committee. The AC diag-
noses were considered as the reference for the evaluation of the manufac-
turer’s and Implicity’s algorithms.

The ILR-ECG-A algorithm diagnoses were compared with the AC adju-
dications as a binary classification, excluding ‘Artefacts’ for primary end-
points. The successful or unsuccessful identification of ‘Normal Rhythm’ 
and ‘Abnormality’ events by the AI-based algorithm was classified as TPAI, 
FPAI, True Negative (TNAI) or False Negative (FNAI). The sensitivity of 
the ILR-ECG-A algorithm was the proportion of arrhythmic episodes not 
classified as ‘Normal Rhythm’, calculated as TPAI/(TPAI + FNAI). Its specifi-
city was the proportion of FP diagnoses by the ICM reclassified as 
‘Normal Rhythm’ by the algorithm, calculated as TNAI/(FPAI + TNAI). The 
sensitivity and specificity of the ILR-ECG-A algorithm were the primary 
endpoints of the study. In the context of this study, only signals which 
were diagnosed as ‘Abnormality’ (positive) by ICMs were available.

Statistical analyses
No adjustment for multiplicity was made. A single device may have trans-
mitted multiple events. Hence, a patient represents a cluster of personal 
signals. To minimize a within-cluster/patient correlation of the binary end-
point, the episodes were selected as described earlier. Therefore, the 
within-patient correlation among signals was assumed to be very low, and 
independence among signals was assumed in the primary analysis. In pres-
ence of multiple signals per patient, a generalized estimating equation 
(GEE) model assuming a compound symmetry correlation structure was 
fitted to account for signal correlation within each patient, to verify this as-
sumption. The confidence intervals (CI) were calculated with the 
Clopper-Pearson exact test, assuming independence between episodes.

The statistical calculations were made, using the SAS software (SAS 
Institute, Cary, NC). Binary endpoints were estimated along with 95% CI. 
Tests were performed at the 0.05, two-sided, α-level of significance.

Results
The mean age of the 546 patients included in this study, of whom 331 
(60.6%) underwent implants in the United States and 215 (39.4%) in 
Europe, was 68.0 ± 17.2 years. The ICM models included 455 
(83.3%) LNQ11, 87 (16.0%) REVEAL XT 9529 and 4 (0.7%) REVEAL 
DX 9528. Figure 3 summarizes the event-sampling procedure. Of the 
1000 episodes sampled (mean = 1.6 ± 0.8/patient), 117 patient- 
activated and 4 lasting <9.5 s were excluded from the analysis. All 

the 546 patients had at least one episode included in the analysis. 
Table 1 lists the diagnoses made by the AC vs. the ICM for the 879 re-
maining episodes. Since >1 abnormal rhythm might have been identi-
fied in a single event, by the AC or by ILR-ECG-A, the overall 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Episodes and diagnoses made by the AC and by the ICM, without and with the ILR-ECG-a algorithm

Events diagnoses By the AC By the ICM

Without ILR-ECG-A With ILR-ECG-A

Normal rhythm 283 (32.2) Not applicable 229 (26.1)

Abnormality 516 (58.7) 879 (100) 577 (65.6)

Artefact 80 (9.1) Not applicable 91 (10.3)

Abnormality details

AT or AF 370 (42.1) 313 (35.6) 451 (51.3)

Asystole 90 (10.2) 208 (23.7) 98 (11.1)

Bradycardia 58 (6.6) 117 (13.3) 63 (7.2)

Other 28 (3.2) Not applicable Not applicable

VT or VF 10 (1.1) 241 (27.4) 18 (2.0)

Unspecified abnormality Not applicable Not applicable 31 (3.5)

Values are numbers (%) of observations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 A. Sensitivity and B. Specificity of the ILR-ECG-A 
algorithm

A. Sensitivity (n/N)

Overall analysis 98.6 [97.2–99.5] (509/516)

By AC event type

AT/AF 98.7 (365/370)

Asystole 100.0 (90/90)

Bradycardia 100.0 (58/58)

Other 92.9 (26/28)

VT 100.0 (10/10)

Artefact 92.5 (74/80)

Abnormalities + artefacts 97.7 [96.09–98.71] (582/596)

B. Specificity (n/N)

Overall analysis 76.0 [70.6–80.8] (215/283)

By ICM event type

AT/AF 75.0 (89/120)

Asystole 85.7 (54/63)

Bradycardia 73.7 (42/57)

VT 67.4 (29/43)

Table A, the sensitivity is firstly computed for all ‘Abnormality’ events. Then, the 
Table presents the same sensitivity statistics computed for each particular 
‘Abnormality’ event (as diagnosed by the AC). In the last line, the sensitivity on 
‘Abnormality’ and ‘Artefact’ events was computed considering ‘Artefacts’ as 
‘Abnormality’, as ILR-ECG-A device suggests healthcare professionals using it to 
consider ‘Artefact’ and all other ‘Abnormality’ outputs with the same level of 
importance. 
B, the specificity is firstly computed for all ‘Normal Rhythm’ events. Then, the table 
presents the same specificity statistics on the episodes diagnosed with a particular 
event type by the ICM device. Values are percentages (95% CI).
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‘Abnormality’ event count was inferior to the sum of the count of epi-
sodes annotated with each specific abnormality type. The AC anno-
tated more AT/AF episodes than the ICM devices, as among the 241 
episodes classified as ‘Tachy’ by ICM devices, 154 (63.9%) were diag-
nosed as AT, i.e. AT/AF by the AC.

The AC identified 516 episodes as ‘Abnormality’ and 283 as ‘Normal 
Rhythm’. The sensitivity and specificity were calculated for the overall 
sample, and for each ICM model and event type subgroups. A GEE 
model was fitted for each endpoint and ensured the validity of the as-
sumption of independence between episodes, thus validating the use of 
Clopper-Pearson exact 95% CI.

Study endpoints
The overall sensitivity of the ILR-ECG-A algorithm, i.e. the proportion 
of arrhythmic events which were not classified as ‘Normal Rhythm’ by 
the AI-based algorithm, was 98.6% (97.2%—99.5%) (superior to the 
90% objective). The sensitivity measured by event type is presented 
in Table 2A. A detailed analysis of the FN events, performed to verify 
the detection of all serious events, and the associated comments by 
the AC, are shown in Table 3. None of these 7 FN episodes was con-
sidered diagnostically unambiguous by the AC, they were all diagnosed 
as Normal Rhythm by one annotator before being adjudicated as Other 
or AT/AF by the AC. Among these False Negatives, three had been 
identified as AT/AF by the ICM, three as Tachy, and one as Asytole. 
The sensitivities were consistent in subgroup analyses by event types 
(Table 2A), by territories (USA vs. Europe) and device models (see 
Supplementary Material, Supplementary material online, Table S1).

The overall specificity of the ILR-ECG-A algorithm (Table 2B), i.e. the 
proportion of FP classifications by the ICM reclassified as ‘Normal 
Rhythm’ by the algorithm was 76.0% (95% CI: 70.6—80.8) (superior 
to the 60% objective). In the analysis by ICM event type, the lowest spe-
cificity of the algorithm (29/43–67.4%) was on the VT label. As among 
episodes diagnosed as VT by the ICM, many were normal sinus tachy-
cardia and AT. These events are particularly difficult to differentiate on 
ICM traces, especially when the atrial activity is not visible on the ECG 
and/or the start and end of the episode were not recorded as part of 
the episode. For this reason, ILR-ECG-A misdiagnosed multiple 
Tachycardia ICM FP as AT instead of Normal Rhythm (for a normal si-
nus tachycardia) in such cases. The proportion of FP classifications by 
ICM reclassified as ‘Normal Rhythm’ by the algorithm cannot be 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 FN events detected by the ILR-ECG-a algorithm

Diagnoses Additional AC comments

By the 
ICM

Adjudicated by 
AC

Tachy 
Tachy

AT/AF 
AT/AF

While these events appeared normal, 
the clockwise regularity of the 

rhythm at a 400-ms cycle length 

favoured the diagnosis of AT

Asystole 

Tachy 
AT/AF

AT/AF 

AT/AF 
AT/AF

These events were very noisy and their 

analysis was most challenging. 
Nevertheless, they appeared to be 

normal rhythm or AT

AT/AF Other P waves are visible in a type I second 

degree atrioventricular block 
periodicity, therefore not abnormal 

and classified as ‘Other’.

AT/AF Other The baseline rhythm was normal with 

brief ‘pauses’ consistent with mild 

sinus node dysfunction, classified as 
‘Other’.

AC, adjudication committee

100

ROC curve for the abnormality diagnosis

80

60

40

S
en

si
tiv

ity
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%
)

20

0

0 20 40
100 – Specificity (%)

60 80 100

Decision threshold

ILR ECG analyzer ROC curve (AUC = 0.95)

Figure 4 This ROC-curve was plotted for the ‘abnormality’ decision criteria of ILR-ECG-a. The ‘Decision Threshold’ lines display the Sensitivity and 
Specificity with the threshold used by the algorithm—which correspond to the results Overall Analysis line of Table 2.
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described by AC event type, as the only FP classification available to the 
AC was ‘Normal Rhythm’ without further details.

To better visualize the trade-off between sensitivity and specifi-
city, the receiver operating characteristic curve (ROC-curve) of 

ILR-ECG-A was computed for the ‘Abnormality’ score, which is 
to classify signals as either ‘Abnormality’ or ‘Normal Rhythm’ 
(Figure 4). The figure displays the decision thresholds lines, which 
intersect the ROC-curve at the threshold used by ILR-ECG-A 
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Figure 5 Excerpts of ECG episodes reclassified by ILR-ECG-a, representative of several situations that occurred in this study. (A) ICM diagnosis: AT/ 
AF; ILR-ECG-A diagnosis: Normal Rhythm; AC adjudication: Normal Rhythm. (B) ICM diagnosis: AT/AF; ILR-ECG-A diagnosis: AT/AF; AC adjudication: 
AT/AF. (C) ICM diagnosis: Asystole; ILR-ECG-A diagnosis: Normal Rhythm; AC adjudication: Normal Rhythm. (D) ICM diagnosis: VT; ILR-ECG-A diag-
nosis: Normal Rhythm; AC adjudication: Normal Rhythm. (E) ICM diagnosis: VT; ILR-ECG-A diagnosis: Normal Rhythm; AC adjudication: AT/AF. 
(F) ICM diagnosis: VT; ILR-ECG-A diagnosis: AT/AF; AC adjudication: Normal Rhythm.
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trained algorithm and then corresponds to the overall sensitivity and 
specificity of the algorithm.

Six examples of signals included in this study are presented in Figure 5, 
with their diagnosis by the AC, the ICM, and ILR-ECG-A. The Figure 5A, 
C and D are TNAI for ILR-ECG-A (TNAI), the Figure 5B is a TPAI, the 
Figure 5E is a FNAI, which corresponds to the fourth line of Table 3. 
and the Figure 5F is a FPAI.

Discussion
This international study showed that ILR-ECG-A machine learning algo-
rithm led to a correct reclassification of 76.0% of FP episodes, attribut-
able to the filtering of the ICM episodes. Moreover, the algorithm 
sensitivity was 98.6%, and no critical episode, i.e. asystole, bradycardia, 
or VT, was identified as ‘Normal Rhythm’ by the device.

D

16s
17s

18s
19s

20s
21s

22s
23s

VS
540

VS
540

VS
520

VTS

290
VFS

230
VFS

250
VTS

300
VTS

260
VTS

280
VFS

230
VFS

220
VS

590
VS

440
VS

490
VS

490
VTS

300
VFS

220
VTS

290
VFS

170
VS

1330

270
VTD

79s
80s

81s
82s

83s
84s

85s
86s

VS VS
4400 450

VS
440

VS
440

VS
430

VS
430

VS
430

VS
430

VS
430

VS
420

VS
420

VS
420

VS
420

VS
410

VS
420

VS
410

VS
410

VS
410

E

13s
14s

15s
16s

17s
18s

19s

VS

400
VTS

390
VTS

390
VTS

390
VTS

390
VTS

390
VTS

370
VTS

380
VTS

380
VTS

380
VTS

370
VTS

370
VTS

370
VTS

370
VTS

370
VTS

370
VTS

370
VTS

370
VTS

380
VS

410

F

Figure 5 Continued

8                                                                                                                                                                                                E. Crespin et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/europace/article/26/1/euad375/7505492 by Bibliotheque de L'U
niv de Bourgogne user on 29 M

ay 2024



Although RM decreases the need for on-site evaluations, manage-
ment of associated transmissions consumes healthcare resources, 
with limited reimbursement. The volume of transmissions that trained 
professionals need to interpret has grown by several orders of magni-
tude in the past three decades and continues to increase.14 False posi-
tives are a source of increasing frustration and current proposed 
solutions include changes from the device nominal settings,14 with no 
evaluated impact on sensitivity. An AI system, such as the algorithm 
evaluated in this study, is an alternate strategy that can be directly con-
nected to the ICM data transmissions and integrated in the clinician 
workflow, helping healthcare professionals improve their interpret-
ation of alerts, especially when the volume of data increases. 
Moreover, AI algorithms may support the medical team focus on fewer 
‘actionable’ signals without missing important events. In comparison 
with a change in the device settings, this allows an equivalent decrease 
in the rate of FPs to be reviewed, while keeping the filtered episodes in 
store in the RM platform, should further examinations or investigations 
be needed. Importantly, the AI algorithm should not filter TP episodes. 
We found a 98.6% overall sensitivity of the AI-based algorithm, due to 7 
FN events (Table 3). Although this study focused on the detection of FP 
events as ‘Normal Rhythm’, the clinical usefulness of such AI algorithm 
could be analyzed further by evaluating its performance as a multi-class 
classifier. This would assess its capability to identify the correct list of 
abnormalities shown in a given ICM episode, in addition to correctly 
identifying them as abnormal.

In one prior study of AI applied to ICM diagnosed AF episodes, the 
most common reason for FP AF events was premature atrial contrac-
tions, and the algorithm reduced AF FP events by 39.5% to 66.4%, de-
pending on the cohort. However, that study differs significantly from 
ours since it analyzed total episodes labelled as AF by ICM devices i.e. 
1500 episodes for 425 patients. In comparison, we sampled one 
episode per patient per ICM diagnosis, and included a wider range of 
diagnoses i.e. asystole, bradycardia and VT, which represent an import-
ant proportion of FP alerts emitted by ICM.

A study using a single-lead ECG combined with a machine learning 
algorithm demonstrated the possibility to improve the early identifica-
tion of patients at risk for AF-induced cardiomyopathy.15 In a recent 
publication, it has been demonstrated the ability of a AI-based algorithm 
to predict the risk of AF from sinus rhythm recordings.16 Thus, 
AI-based algorithms are probably the future of atrial fibrillation diagno-
sis, either for ICM or for wearable devices.17 This study focused on the 
Reveal DX, XT and LINQ I (Medtronic) devices, with limited analytical 
capabilities; the new generation of ICM, such as the Linq II (Medtronic), 
introduces an algorithm based on AI, improving sensitivity. The main 
challenge in the near future will be to convince healthcare professionals 
to trust AI algorithms in their clinical practice, without delegating their 
responsibility.18 To achieve this goal, AI algorithms must integrate 
transparency, traceability,19 and explicability20 The use of AI in medi-
cine is no more a novelty. It is used in cardiology and in particular in 
rhythm analysis, such as ECG21 and atrial fibrillation.16,22

The Implicity platform is designed as an agnostic tool, able to display 
all manufacturers devices data with the same ergonomics. In addition, 
alerts are filtered and sorted by severity. This approach has been shown 
to reduce reviews by 57%.23 For this reason, we can expect a reduction 
in the workload of the medical team. By extension, costs can be ex-
pected to be reduced, as health professionals can focus their activities 
on relevant alerts requiring early intervention.

Study limitations
As mentioned in its FDA 510(k) approval, ILR-ECG-A interpretation 
results are not intended to be the sole means of diagnosis. It is offered 
to physicians and clinicians on an advisory basis only in conjunction with 
the physician's knowledge of ECG patterns, patient background, clinical 
history, symptoms, and other diagnostic information.

The study included only 16% and 0.7% of patients with a Reveal XT 
or Reveal DX. These proportions were obtained by randomly sam-
pling patients followed with the Implicity™ platform on 2020–2011, 
and are expected to be representative of the Medtronic device repar-
tition as that time, but it means that the level of proof for ILR-ECG-A 
sensitivity and specificity is lower on older devices than on the more 
recent Reveal LINQ I. Additionally, the ethnicity and gender of the pa-
tients included in this study were not collected. Hence, potential bias 
of the algorithm results across ethnicity and gender are not evaluated 
in this study and is only mitigated by the variety of medical centres in-
cluded in this study.

One hundred and seventeen patient-activated episodes were ex-
cluded from the analysis, as the ILR-ECG-A algorithm, which imple-
ments the rules used by ICM to detect abnormal episodes, does not 
reclassify these signals. Further development of the algorithm could al-
low it to provide clinical value with a reclassification of these episodes.

Data collection in each patient selected a single type of episode, po-
tentially introducing a selection bias in favour of rare kinds of episodes. 
This procedure was used to minimize the intra-patient correlations and 
expose the algorithm to a variety of events. A preliminary study evalu-
ating the proportion of episodes diagnosed as Normal Rhythm in an un-
biased dataset was conducted and showed that 33% of all episodes 
(including episodes without ECG trace and patient-activated episodes) 
were reclassified as Normal Rhythm by ILR-ECG-A.24

Conclusion
Given that ICM implant volume coupled to RM is expected to grow in 
upcoming years, the novel ILR-ECG-A AI-based algorithm that filters 
nearly 100% of FP ICM events and can be easily integrated into current 
workflow provides an opportunity to alleviate the heavy device clinic 
workload associated with ICM management.
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Supplementary material is available at Europace online.
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