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ARTICLE INFO ABSTRACT

Keywords: Remote photoplethysmography (rPPG) is an emerging technology that allows for non-invasive monitoring of
rPPG estimation physiological signals such as heart rate, blood oxygen saturation, and respiration rate using a camera. This
Data augmentation technology has the potential to revolutionize healthcare, sports science, and affective computing by enabling

Near-infrared continuous monitoring in real-world environments without the need for cumbersome sensors. However, rPPG

technology is still in its early stages. It faces challenges such as motion artifacts, low signal-to-noise ratio, and
the challenge of conducting near-infrared measurements in low-light or nighttime conditions. The performance
of existing rPPG techniques has been significantly improved by deep learning approaches, primarily due to
the availability of large public datasets. However, most of these datasets are limited to the regular RGB
color modality, with only a few available in near-infrared. Additionally, training deep neural networks
for specific applications with distinctive movements, such as sports and fitness, would require extensive
amounts of video data to achieve optimal specialization and efficiency, which can be prohibitively expensive.
Therefore, exploring alternative methods to augment datasets for specific applications is crucial to improve
the performance of deep neural networks in rPPG. In response to these challenges, this paper presents a novel
methodology to generate synthetic videos for pre-training deep neural networks to estimate heart rates from
videos captured under challenging conditions accurately. We have evaluated this approach using two near-
infrared publicly available datasets, i.e. MERL (Nowara et al., 2020) and Tokyotech (Maki et al., 2019), and
one challenging fitness dataset, i.e. ECG-Fitness (Spetlik et al., 2018). Furthermore, we have collected and
made publicly available a novel collection of near-infrared videos named IMVIA-NIR. Our data augmentation
strategy involves generating video sequences that animate a person in a source image based on the motion
captured in a driving video. Furthermore, we integrate a synthetic rPPG signal into the faces, considering
various important aspects such as the temporal shape of the signal, its spatial and spectral distribution, as
well as the distribution of heart rates. This comprehensive integration process ensures a realistic incorporation
of the rPPG signals into the synthetic videos. Experimental results demonstrated a significant reduction in
the mean absolute error (MAE) score on all datasets. Overall, this approach provides a promising solution for
improving the performance of deep neural networks in rPPG under challenging conditions.

Fitness scenarios
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1. Introduction

In recent years, there have been significant advancements in con-
tactless technologies for measuring physiological signals (e.g. [1-3]).
Remote photoplethysmography (or rPPG) is one such method that
remotely measures subtle skin color fluctuations, which reflect complex
light-tissue interactions [4]. rPPG signals can be reliably measured
using webcams or more advanced professional cameras. Due to its
non-invasive and contactless nature, rPPG technology has numerous
potential applications. One of the most promising applications is in
healthcare, where rPPG can be used for continuous monitoring of
cardiovascular function in patients including newborns [5] or patients
with skin pathologies that prevent the use of contact sensors [6]. In ad-
dition, rPPG can be used in sports and fitness applications for monitor-
ing athletes’ heart rates [7], emotion detection and stress monitoring,
security and surveillance applications such as monitoring drivers for
fatigue, or even for human—computer interaction [8]. With its diverse
range of potential applications, rPPG technology has the potential to
revolutionize various fields.

The initial approach for rPPG signal estimation relied solely on
the green channel [9]. Later, techniques using blind source separation,
such as PCA [10], ICA [11], constrained ICA [12,13], PVM [14],
and those based on light-tissue interaction models, such as PbV [15],
POS [16], and CHROM [17], were proposed. Recently, some methods
have adopted deep neural networks for physiological measurements
from video sequences, leveraging their strong and non-linear modeling
abilities. These methods produce good results without requiring in-
depth problem analysis from the designer [18], which can be critical
for rPPG technology.

In 2018, the pioneering architecture featuring a series of 2D con-
volution layers and an attention mechanism was introduced [19]. Sub-
sequently, numerous more sophisticated architectures have emerged,
enhancing performance. These models typically combine spatial and
temporal modules; the former employs face tracking to extract facial
frames from videos [20-22], sometimes using predefined regions of in-
terest [23-26]. Certain methods, like Deep-HR [27] and DeepPhys [19],
utilize CNNs to analyze the spatial rPPG signal distribution. In addi-
tion to spatial information, most deep learning architectures utilize a
temporal module to process features along the temporal dimension.
Several researchers have introduced prior knowledge to the neural
networks by computing spatial-temporal maps [23,25,26,28,29]. These
maps are generated by manipulating the spatial regions of interest
and concatenating them temporarily. End-to-end solutions for rPPG
signal extraction from videos have also been developed, often using 3D-
CNNs for simultaneous spatial-temporal analysis, although real-time
processing remains a challenge due to high computational costs [20,
30-34].

As mentioned earlier, recent rPPG methods have shown high perfor-
mance in some scenarios due to the availability of numerous datasets.
In 2017, UBFC-rPPG dataset [35] containing approximately 50 rel-
atively simple videos was released, and since then, several other
databases dedicated to rPPG applications, with several hundred or even
thousands of videos, have been proposed (e.g. in [25]). Although these
datasets have significantly contributed to the success of recent rPPG
methods, they still have some limitations. For instance, a notable lim-
itation is the lack of sufficient representation of individuals with dark
skin tones. For example, the UBFC-rPPG datasets primarily consist of
participants with white skin tones, whereas the majority of participants
in the VIPL-HR dataset are Asian. Furthermore, there need to be more
datasets with challenging movements like ECG-Fitness [22]. There are
numerous applications of rPPG technology in a fitness context. Still,
they require improvements in the robustness of current models to
movement, especially periodic movements whose frequency may be
close to the heart rate, making separating the two signals challenging.
Utilizing large databases that include these periodic movements to train
the deep learning models could enable them to be trained to remove
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the movement component effectively. This training approach would
significantly enhance the models’ ability to capture heart rate signals
despite confounding movement artifacts accurately. Moreover, there
also need to be more datasets with near-infrared (NIR) videos. Esti-
mating heart rate from NIR videos presents a particularly challenging
task. This is primarily due to the lower sensitivity of cameras in these
wavelengths and weaker absorption of hemoglobin, resulting in weaker
temporal variations due to blood perfusion. Consequently, the signal-
to-noise ratio is much less favorable than in color videos, making it
more challenging to estimate heart rate from NIR videos accurately.
Despite these challenges, enhancing rPPG model performance in the
NIR is critical and would be beneficial to multiple applications. First,
NIR cameras with invisible NIR illumination can robustly operate
under various lighting conditions. This is particularly advantageous
in unstable lighting environments, such as in driving scenarios [36].
Another important application of rPPG in NIR imaging is for remote
monitoring of vital signs in darkness, such as for unobtrusive sleep mon-
itoring. The availability of new massive datasets specifically tailored
to address these particular challenges would undoubtedly enhance
the performance of existing models. However, it is essential to note
that acquiring a substantial number of videos for such datasets incurs
significant costs in a project.

For all these reasons, researchers have proposed methods to aug-
ment existing datasets. One of the main advantages of using data
augmentation (DA) is that it can increase the amount and diversity
of training data [37], which can help to improve the performance of
the deep-learning models. For example, by applying various transfor-
mations to the original videos, such as rotation, scaling, and flipping,
it is possible to generate many new synthetic videos that can be used
to train a model to estimate heart rate from videos. Additionally, data
augmentation can help to reduce overfitting, which occurs when a
model is too closely fit to the training data and performs poorly on
new, unseen data. Recently, more advanced methods dedicated to the
rPPG application have been proposed for augmenting datasets through
generative models [38] or computer graphics simulations [39]. Syn-
thetic approaches offer the flexibility to simulate various appearances
and precisely control all synthetic video parameters. However, it is hard
to generate completely realistic videos with computer-graphic tools,
and a significant “sim-to-real” performance gap can be expected, given
that models trained exclusively on computer-graphics-generated data
frequently struggle to generalize successfully to real-world videos [40].
Other approaches focus on improving the training process; for example,
Zije et al. [41] utilized a self-supervised learning approach, employing
data augmentation to generate positive and negative samples that
match the signal frequencies of a given video sample. Tsou et al. [42]
proposed a multi-task learning-based video augmentation technique,
simultaneously augmenting the training data while learning the rPPG
estimation model. Birla et al. [43] introduced contrastive learning,
utilizing temporal scaling-based data augmentation to overcome the
skewed training data distribution. Additionally, Song et al. [29] uti-
lized data augmentation through transfer learning with synthetic rPPG
signals to train their CNN model. Each approach showcases different
strategies for augmenting data to enhance the robustness of their
models.

This paper introduces a novel approach for augmenting small
datasets, specifically aimed at training deep learning models for heart
rate estimation in challenging scenarios. The main contributions of this
study are summarized as follows:

» We propose a new methodology dedicated to augmenting small
rPPG datasets. Our method is based on generating animation from
a single image and a video of another person and integrating the
synthetic rPPG signal into the faces, considering various essential
aspects such as the temporal shape of the signal, its spatial and
spectral distribution, and the distribution of heart rates. This com-
prehensive integration process ensures a realistic incorporation of
the rPPG signals into the augmented videos.
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Fig. 1. Generating synthetic videos process.

» This methodology has been validated for augmenting small
databases for two distinct applications. Therefore, we propose an
evaluation of the use of synthetic videos in training rPPG models
in the context of NIR imaging and fitness activities. These two
examples are especially relevant due to the scarcity of available
NIR datasets and the repetitive movements of fitness scenarios.
We also collected and made publicly available a novel collection
of near-infrared videos named IMVIA-NIR.

The remainder of the paper is organized as follows: Section 2
elaborates the proposed data augmentation methodology, Section 3
presents the evaluation protocol, Section 4 the results and Section 5
the conclusion.

2. Proposed data augmentation methodology

The proposed methodology is outlined in Fig. 1. Our method lever-
ages an image animation technique to generate synthetic video se-
quences that animates a person in a source image, harnessing the
captured motion from a driving video. Through this process, we can
generate many synthetic videos by initially utilizing only a few facial
images and motion videos. We integrate a synthetic PPG signal into
the augmented videos to ensure the synthetic videos are suitable for
training neural networks in heart rate estimation applications. Several
important factors are considered during this integration process. Firstly,
we account for factors that influence the shape of the PPG signal,
including breathing rate and cardiac variability. Additionally, we care-
fully consider the spatial distribution of the signal on the face, the
distribution of the signal across the RGB channels, and the distribution
of heart rate values among the synthetic videos.

In the subsequent sections, we provide an in-depth, step-by-step ex-
planation of our data augmentation approach, offering detailed insights
into the implementation and integration of each component to generate
synthetic videos.

2.1. Synthetic PPG signals generation

It is important to clarify that we use the term “PPG signal” to refer
to the analytically created synthetic signal. On the other hand, we use
the term “rPPG signal” when referring to the integrated signal within
the video sequence depicting a person’s face.

The approach employed for generating synthetic PPG signals is
inspired by the work of Perepelkina et al. [44], which utilized sinu-
soidal signals to generate synthetic PPG signals. In addition to this,

our technique models various components of the PPG signal [45],
including the distinctive shape of a PPG signal with the presence of the
dicrotic notch, respiratory rate with its associated baseline wander and
amplitude modulation, Gaussian noise to simulate instrument measure-
ment noise and frequency modulation reflecting cardiac variability. By
incorporating these factors into the generation of synthetic PPG signals,
our technique ensures a realistic representation of the PPG signal’s
characteristics. This enhances the suitability of the synthetic data for
training and evaluating neural networks in the domain of heart rate
estimation. We define the synthetic PPG signal s(7) as:

s(t) = p(t) + d(t) + C,b(t) + n(t) (€8]

where s(7) is composed of four main components: the pulse signal and
its dicrotic notch p(r) and d(z), the breathing rate b(r) and the Gaussian
noise n(r). p(t) and d(¢) are defined in Egs. (2) and (3), respectively:

p(1) = (A + Cyb(0)) - sin (27 - (f4, (1) + C3b()) - 1+ ¢,) @)

d(t) = (Ay + Cob(®)) - sin (47 - (f,,(1) + C3b()) - 1 +2¢,) 3)

where A; and A, are the pulse signal and its dicrotic notch amplitudes,
respectively. f,,.(r) is the instantaneous heart rate at time ¢, and ¢,
is the pulse signal phase at origin. f},.(¢) is sampled from a uniform
distribution f},+ f,.6,,, where f;, is a reference heart rate for the signal
and 6, refers heart rate variability (we use §,, = 0.05). Similarly, the
breathing baseline wander is given by:

b(t) = Aj - sin (2727 ()t + ¢b) “)

with A; the baseline wander amplitude, and ¢, the breathing signal
phase at origin. C;, C,, and C; are constants and were found empir-
ically, being C; = 0.05, C, = 0.01, and C; = 0.15. A;, A, and A,
are randomly sampled from [0.2,0.7], [0,0.3] and [0.3,2] respectively.
The breathing rate f,.(r) at time ¢ is sampled from f,. + f,,.6,. with
5. = 0.1. The reference breathing rate of the signal f,, is set between
0.2 and 0.4 Hz. The frequency range for the reference heart rate f,, is
set between 0.7 and 3 Hz; however, we do not sample reference heart
rates from a uniform distribution but a non-parametric distribution that
allows us to best match the data distribution of a set of heart rates
estimated on the dataset we want to augment. Indeed, as observed
in [46], the heart rate distribution in a training database has a major
impact on the performance of a neural network architecture for an rPPG
application.

In order to make as few assumptions as possible about this distri-
bution, we use a non-parametric estimate based on kernel smoothing,
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Fig. 2. Examples of three synthetic PPG signals.

or kernel density estimation (KDE). Let f ,’;r be the average heart rate
estimated from the ith video of a training dataset, where i = 1,2,...,n
and n the number of videos. The KDE model estimates the underlying
probability density function of the heart rates with the following:

n 1
g(fh,>=$;1<<%>. ®)

In this expression, g(f},) represents the KDE distribution at point
fnr- The kernel Gaussian function K(-) is applied to each individual
sample (f,,.— f ;”), scaled by the bandwidth 4. The bandwidth 4 controls
the smoothness of the estimated density. By sampling the instantaneous
heart rates from this KDE distribution, we ensure that the distribution
of heart rates in the synthetic video matches the existing dataset. Fig. 2
depicts some examples of the final synthetic PPG signals.

2.2. Synthetic videos generation

Spatial embedding. In order to integrate the PPG signal in the facial
region of a person in a synthetic video, it is essential to consider
that the signal is not uniformly distributed over the skin. Some areas
of the skin are more vascularized than others. Notably, studies have
demonstrated that the amplitude of the signal is higher in regions such
as the cheeks and forehead [47]. Therefore, we employ the following
procedure to determine the spatial distribution of the signal on the
face. Let I be an image of a subject. We use a deep learning-based
model specialized in skin detection, denoted as ¥, to acquire a binary
mask of skin pixels M; = ¥ (1,6 ) with ¢, the model weights. In this
work, the BlazeFace [48] approaéh is used to detect and extract faces
and a semantic segmentation network [49] is used for skin detection
in both NIR and RGB videos. The edges of the binary mask M, are
smoothed using a median filter. In order to consider the distribution
of the amplitude of the signal on various areas of the skin, we use a
neural network specialized in generating an attention mask on the skin
(such as the appearance branch of DeepPhys [19]), namely ¥,, having
M, =Y,I,0,) with 6, the weights of the network and M, the attention
mask. Finally, the spatial distribution of the rPPG signal M is obtained
with the element-wise multiplication between the attention mask and
the binary skin mask: M = M, © M.

Channel embedding. At the basis of most rPPG methods, it is well
known that the proportion of the rPPG signal is different in the 3 RGB
channels. The relative amplitude of the rPPG signal in the light reflected
from the skin varies as a function of wavelength. The signal is strongest
in the green channel due to the absorption peak of hemoglobin around
these wavelengths. Fig. 3 shows the relative amplitude of the PPG
signal (AC/DC) in light reflected from the skin. The amplitude varies
as a function of wavelength, peaking at around 550 nm. Consequently,
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we use a weight vector w to distribute the rPPG signal across the 3 RGB
channels [50]:

[twg, wg, wp] = [0.23,0.41,0.36]. 6)

It is important to note that, in this work, we consider that NIR videos
are monochrome, which is often the case. Consequently, the question
of channel distribution does not arise in that case.

Video generation and motion embedding. Using an image of a face I,
along with a synthetic PPG signal s(¢) and its corresponding spatial dis-
tribution M and spectral distribution w, we employ an image animation
technique to generate a synthetic video sequence. This process involves
integrating the motion captured from a driving video into the synthetic
sequences, resulting in realistic and dynamic animations. We begin by
duplicating 7' times the frame I, generating the T-length video F. Then,
the PPG signal is embedded into F with:

Fl(i,j,1) = F (i, j,0) + yw M, j)s(?) )

with ¢ € {R, G, B} the red, green and blue channel, y a parameter to
adjust the signal amplitude and F’ is the video with the embedded
rPPG component. In the case of monochrome video, the rPPG signal
embedding is given by F’(i, j,t) = F(i,j,t) + yM(i,j)s(t) omitting w. i,
j and ¢ are the location and temporal indices. This integration is based
on Shafer’s dichromatic reflection model [16], which provides a frame-
work for modeling both color changes and motions used in multiple
previous works (e.g. [15] or [17]). The dichromatic reflection model
explains skin color in images as a sum of two components: a static
term representing the constant skin tone and a dynamic, pulsatile term
that varies with blood flow. Now that the PPG signals are embedded
in F’, we can refer to this signal as rPPG. Although F’ contains an
rPPG signal, the subject within the scene remains static. Therefore,
it is necessary to add motion to the video frame to make it more
realistic, using an image animation technique. In this work, we employ
a neural network specialized in transmitting motion (¥,,), based on
the first-order motion model proposed by Siarohin et al.et al. [52]. We
eventually obtain F”" =¥, (F’,0,,) where 6,, are the network weights,
and F” is the final synthetic video that embeds an rPPG component
and realistic motion. These videos can be used in the neural network
training procedure to estimate an rPPG signal. Examples of synthetic
videos are given in Section 4.

3. Evaluation protocol
3.1. Datasets

Our particular focus lies on scenarios involving NIR imaging and
fitness activities because these two distinct applications are especially
relevant due to the scarcity of available NIR datasets and the repetitive
movements of fitness scenarios. As a consequence, we have selected
the following three public databases and we also collected and made
publicly available a novel collection of near-infrared videos, named
IMVIA-NIR.!

MERL-RICE [36] indoor dataset is the first dataset of face videos
for remote photoplethysmography (rPPG) that were collected simulta-
neously in broadband RGB and narrow-band NIR, with pulse oximeter
recordings as ground truth of the vital signs. The dataset contains
eight subjects with still and motion experiments. We only use the still
experiment in this work. The dataset totally contains 15 videos, and the
length of each video is 3 min. TokyoTech-NIR [48] contains NIR facial
videos of nine subjects and corresponding reference finger-attached
PPG sensor data. The nine 3-minute long videos are split into nine
20-second segments. Each 3-minute video contains three parts (about

1 IMVIA-NIR dataset webpage: https://sites.google.com/view/ybenezeth/
imvia-nir.
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Fig. 3. Relative amplitude of an rPPG signal with respect to the wavelengths. Plot generated from data in [51].

60 s each): relax, exercise, and relax again. In the exercise session, the
subjects were asked to perform hand-grip exercises. ECG-Fitness [22]
database is challenging due to its versatile nature and realistic lighting
conditions. It consists of RGB videos of subjects performing physical
activities on fitness equipments. There are a total of 17 subjects. The
subjects perform activities such as rowing, speaking, running in an
elliptical trainer, and riding a stationary bike. There are a total of 204
videos lasting one minute. The dataset addresses challenges such as
non-uniform lighting, rapid motions with blur, strong facial expressions
etc.

The applications of rPPG in NIR vision are very numerous, but
unfortunately, the existing public databases are very few. Therefore, we
decided to collect a new database of NIR videos and make this database
publicly accessible to researchers working on the subject. IMVIA-NIR
dataset contains a set of 45-second-long NIR videos acquired from 10
subjects in an indoor environment. The dataset has both male and
female subjects. We have also chosen subjects from varying ethnicities
to improve the generality of the database. A few sample frames from
the NIR datasets and ECG-Fitness databases used in our experiments
are shown in Figs. 4 and 5, respectively.

3.2. Metrics

In this work, we use a set of four metrics to evaluate our data
augmentation strategy, with two metrics evaluating the heart rate esti-
mation, namely Mean Absolute Error (M AE) and Pearson’s correlation
coefficient (r), and two metrics evaluating the quality of the estimated
rPPG signals namely, Template Match Correlation (TM C) and Signal-
to-Noise-Ratio (SN R). Where the value of M AE should be minimized,
and the values of SN R, r, and T M C should be maximized. The analysis
was carried over sequential temporal windows of 15 s and a step size
of 0.5 s.

Mean Absolute Error. MAE corresponds to the average absolute error
between HR, and HR, in bpm calculated over all the windows for all
videos.

k=1

1
MAE =~ Y |HR, (k) - HR (k)| ®

n
where HR, (k) and HR.(k) denote the heart rates estimated from the
kth window of the rPPG and the contact-based or synthetic PPG sig-
nals, respectively. These window-wise heart rates are derived from
the highest peak in the FFT of both the rPPG and contact-based or
synthetic PPG signals, within the standard heart rate frequency range
of f €[0.7,3] Hz.

Pearson correlation coefficient. r coefficient measures the linear cor-
relation between vectors HR, and HR,.. A value of r = 1 means a
positive total linear correlation, while » = —1 implies a negative linear
correlation. Finally, r = 0 indicates that there is no linear correlation
between the estimations and the reference values. r is given by:

iy (HR, (0 - AR, ) (HR.(0) - R,

_ \/ it (HRr<k) - W)z\/ hI (HRcac) - H_RE)2

where HR, and HR, represents the average of HR, and HR, respec-
tively.

r

9

Signal-to-noise ratio. SN R measures the quality of rPPG signals as the
ratio of the power of the main pulsatile component and the power of
background noise, computed in d B due to the wide dynamic range of
the signals:

7 hyigua(DIF (500} 21
SNR = 1010g10 I 3 (10)
J77 huoise (DIF 30} s

where F{5(#)} is the FFT transform of the estimated rPPG signal 3(7), f;
and f, the lower and upper limit of the integral defined by the possible
physiological range of the heart rate (40 to 240 bpm in our case), and
a double-step function 4 for the first and second harmonics, defined by
the convolutions:

hgigna(f) = [8(f = fo) +8(f = 2f)1 * [ [/
hnm’se(f) =1- hsignal(f)

with 6 the Dirac delta function, f, the fundamental frequency (i.e. peak
of the periodogram), convoluted with the rect function, noted as ] of
half-width f,.

an

Template match correlation. TMC is another signal quality metric in
the temporal domain [53]. The following steps are performed:

1. The signal peaks are detected.

2. The median beat-to-beat interval is calculated.

3. With a window width equal to the median beat-to-beat interval,
all pulses are extracted individually centered on their respective
peak.

4. The template is calculated as the average of all the pulses.

5. The TMC coefficient is calculated as the average of the correla-
tion of all the pulses with the template.

A value close to TMC = 1 means that the pulse shape of the
evaluated signal is uniform, and, therefore close to the expected signal,
while a value close to TM C = 0 indicates the contrary.
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Fig. 4. Sample frames from NIR databases - Row 1: TokyoTech, Row 2:MERL-RICE, Row 3:IMVIA-NIR.

Fig. 5. Sample frames from ECG-Fitness database. Row 1: Rowing exercise, Row 2: Running on an Elliptic trainer, Row 3: Stationary bike.

3.3. Models and implementation details

We evaluate our proposed data augmentation strategy with two
different 3D-CNN architectures, namely Physnet [20] and the real-time
rPPG model named RTrPPG [33] networks. These networks consist of
an encoder E and decoder D. The encoder E is used to transform the

given input into a compressed form. The latent representation of the
input is then fed as an input to the decoder D to generate the rPPG
signal § = [5(1),5(2),...5(T)]. The rPPG estimation is given by the
equation:

[5(1),5(2), ... ()] = ¥, ppc([F(1), FQ2) ... F(T)));0,ppc (12)
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where F(1), F(2) ... F(T) represents the input frames given to network
and 6,pp; represents the parameters of the network. We use all the
default parameters suggested in the original papers of Physnet [20]
and RTrPPG [33]. The BlazeFace approach [54] is specifically designed
for the rapid and efficient detection of faces, ideal for real-time im-
age processing applications. This model operates using a streamlined,
lightweight convolutional network architecture that ensures both high
speed and accuracy. In addition to face detection, we utilize a color-
agnostic semantic segmentation network [49] for skin detection across
NIR and RGB videos. For more precise physiological signal embedding,
we apply the appearance branch of the DeepPhys model [19], which
generates soft-attention probability maps. These maps focus on areas
of the skin showing stronger physiological signals. Furthermore, image
animation in our work is driven by the first order motion model
proposed by Siarohin et al. [52]. This model separates appearance
from motion using a self-supervised learning framework, resulting in
realistic animations through learned keypoints and local affine trans-
formations that respond to the dynamics of a driving video. It also
features an occlusion-aware generator, which maintains the visibility
and continuity of animated figures.

Once the rPPG signal is estimated, the window-wise heart rate was
calculated from the highest peak of the FFT within the limits of normal
heart rate f € [0.7,3] Hz over a temporal moving window of 15 s
using a step size of 0.5 s. Subject-independent 5-fold cross-validation
is performed for all the databases used for evaluation. A learning rate
of 0.0001 is chosen based on fold-wise hyper-parameter tuning. The
batch size for training and evaluation is set as 8, and all the folds are
trained for 20 epochs. Synthetic videos are used to pre-train the rPPG
models, i.e. Physnet and RTrPPG, and models are then fine-tuned on
the target dataset. For this, a set of 1000 synthetic videos were created
to augment the NIR datasets and a total of 2000 synthetic videos were
created to augment the ECG-Fitness dataset. Data augmentation process
is applied only to the videos of the training sets.

4. Result analysis

In this section, we present the evaluation of our data augmentation
method for training deep learning models in rPPG applications. First,
we present in Fig. 6 examples of synthetic videos generated by the pro-
posed method. The first row presents frames extracted from a driving
video, whereas the following rows (2 to 4) showcase the synthetic NIR
videos. In each of rows 2 to 4, the first image presents the original NIR
image that underwent the animation process. It is possible to observe
that the motion of the driving video is correctly applied to NIR videos,
resulting in realistic movements in our synthetic videos. However, com-
plex movements can cause unrealistic deformations, especially during
large head rotations (e.g. in penultimate column) and mouth move-
ments like smiling (e.g. in final column). Since photorealism is not
our goal, we can argue that these artifacts introduce diversity among
synthetic videos generated from the same driving video.

Quantitative results of heart rate estimations are displayed in Ta-
bles 1 and 2, illustrating the performance achieved with and with-
out data augmentation on both the NIR datasets and the ECG-Fitness
dataset. We compare the results obtained with Physnet and RTrPPG.
Additionally, we compare the reference heart rate sampling from the
conventional uniform distribution to the proposed non-parametric dis-
tribution implemented using KDE.

Performance over NIR datasets. It is possible to draw some conclu-
sions from Table 1. First and foremost, we observed notable perfor-
mance variations across different datasets, models and data augmenta-
tion strategies. While the MERL and TokyoTech-NIR datasets initially
showed acceptable results, the performance on the IMVIA-NIR dataset
was notably poor, likely due to its relatively small size, highlighting the
importance of pre-training. Second, the application of data augmenta-
tion consistently improved the performance of the models, with only
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a few exceptions where the initial results were already excellent, such
as with the TokyoTech-NIR dataset and the Physnet model. In these
cases, the pre-training had a negligible effect. Nonetheless, for most
cases, the performance was consistently enhanced. For instance, the
IMVIA-NIR dataset saw a substantial improvement in mean absolute
error (MAE) from 25.92 bpm without data augmentation to 11.20 bpm
with uniform sampling and further to an impressive 3.25 bpm using
the proposed non-parametric distribution with KDE. Our experiments
clearly indicated that the KDE sampling method outperformed the
uniform distribution sampling. This difference was particularly notable
for the IMVIA-NIR dataset as noted previously. While the Physnet
model consistently outperformed the RTrPPG model, the overall trends
remained similar between the two models with respect to data augmen-
tation. Additionally, the RTrPPG model exhibited a notable advantage
in inference speed compared to Physnet, showing an approximately
90% improvement in inference speed according to Botina et al. [33]
with, as can be seen, very similar performance in most cases.

In summary, our findings highlight the significance of data aug-
mentation for improving performance, particularly in cases where the
initial results are poor. Moreover, the superiority of the KDE sampling
approach over uniform distribution sampling was evident, especially
on the IMVIA-NIR dataset. Although the RTrPPG model consistently
trailed behind Physnet, its advantage in terms of computational effi-
ciency makes it a favorable choice in certain scenarios, especially when
coupled with the pre-training strategy.

To give a better idea of the performance improvement with and
without data augmentation, we present in Figs. 7, 8, and 9, the correla-
tion plots obtained with RTrPPG, with and without data augmentation
(with KDE sampling) on the 3 NIR datasets. It is possible to observe that
the fitting line is consistently closer to the 45° line using the proposed
pre-training technique.

Performance over fitness database. ECG Fitness is a particularly diffi-
cult dataset, so it is interesting to observe in Table 2 that the data
augmentation strategy proposed in this paper increases performance
regarding heart rate estimation and signal quality. More specifically,
we can observe that the conclusions are the same as for NIR. However,
here the ECG Fitness database is quite large, so the improvement is
less marked than with IMVIA-NIR, for example. With RTrPPG, signal
quality metrics were improved with an increase from 0.56 to 0.76 for
TMC, and HR estimation metrics were also improved with a significant
decrease in MAE from 25.89 to 9.32 bpm. The trends are similar for
PhysNet.

5. Conclusion

Deep learning approaches have significantly enhanced the perfor-
mance of existing rPPG techniques, largely attributed to the availabil-
ity of extensive public datasets. Consequently, it becomes crucial to
explore methods for augmenting datasets rapidly and efficiently, tai-
lored to specific applications, in order to improve further the accuracy
of deep neural networks in rPPG. This research paper introduces a
novel methodology that generates synthetic videos to train deep neural
networks accurately in estimating heart rates from videos captured
under challenging conditions. Our method involves generating video
sequences that animate a person in a source image by leveraging
motion information extracted from a driving video. We integrate the
synthetic rPPG signal into the facial regions, considering key aspects
such as the temporal shape of the signal, its spatial and spectral
distribution, and the distribution of heart rates. This methodology
has been successfully evaluated to expand small databases for two
specific applications: training rPPG models to estimate heart rates
in NIR imaging and fitness activities. These scenarios are particu-
larly pertinent due to the limited availability of NIR datasets and the
repetitive nature of movements in fitness environments. To assess the
proposed approach, we utilized two publicly available near-infrared
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Fig. 6. Examples of synthetic videos. The top row illustrates frames from one driving video, while the subsequent rows (2 to 4) depict the synthetic videos created by the animation
method. The driving video is extracted from the speaking scenario of ECG-Fitness, where subjects are speaking in front of the camera, not engaging in physical activities. The first

image in each of rows 2—4 shows the original NIR image that was animated.

Table 1
Synthesis of results obtained on the NIR datasets.
Model Data MERL TokyoTech-NIR IMVIA-NIR
augmentation
MAE r SNR TMC MAE T SNR TMC MAE r SNR T™C
No DA 2.00 0.80 5.2 0.91 1.30 0.98 7.2 0.94 25.92 —-0.50 —4.6 0.75
Physnet DA w/ uniform 3.32 0.71 3.6 0.87 1.11 0.98 7.3 0.94 11.20 0.19 -1.7 0.80
DA w/ KDE 1.63 0.88 7.7 0.93 1.09 0.99 9.0 0.93 3.45 0.92 6.5 0.94
No DA 3.05 0.78 33 0.83 4.23 0.79 3.0 0.80 44.60 0.18 -10.9 0.52
RTrPPG DA w/ uniform 2.23 0.90 35 0.84 4.26 0.79 3.3 0.81 14.97 0.52 -5.1 0.64
DA w/ KDE 1.84 0.92 5.5 0.87 4.08 0.78 4.9 0.84 3.25 0.92 4.7 0.85
MAE:3.05 r:0.78 SNR:3.3344 TMC:0.83%0.1 MAE:1.84 r:0.92 SNR:5.5%3.6 TMC:0.87+0.1

o0 = 2684

50 60 70 80 90 100
EstimatedHR

50 60 70 80 90 100
EstimatedHR

Fig. 7. Correlation plots comparing results obtained without data augmentation (left) vs. using proposed data augmentation technique (right) on MERL-RICE dataset. (A few
outliers are ignored on the left plot to maintain the homogeneity of the X-axis in both plots).

datasets, namely MERL-RICE [36] and Tokyotech-NIR [48], along with
a challenging RGB fitness dataset called ECG-Fitness [22]. Additionally,
we collected and made publicly available a novel collection of near-
infrared videos named IMVIA-NIR. The experimental results demon-
strate significant improvements, particularly when the initial datasets
are relatively small. These findings suggest that our approach holds
great promise in enhancing the performance of deep neural networks
in rPPG under challenging conditions.

Looking ahead, it would be interesting to conduct a more systematic
and in-depth study of the various factors that contribute to the system’s

final performance. Furthermore, exploring the benefits of this strategy
in addressing the limitations of rPPG technology for individuals with
dark skin tones would be a valuable direction for future research. Ulti-
mately, we aimed for realism in generating synthetic videos by using an
analytical formula to create PPG signals, which incorporates multiple
factors such as respiration, heart rate variability, and also considering
the spatial and spectral distribution of signals on the skin. The primary
goal of these synthetic data is to aid in training deep learning models
by providing data tailored to specific applications. However, it would
be interesting to investigate in future work to what extent the realism
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r:0.78

SNR:4.9%4.8 TMC:0.84+0.1

70 80 90 100 110
EstimatedHR

Fig. 8. Correlation plots comparing results obtained without data augmentation (left) vs. using proposed data augmentation technique (right) on TokyoTech-NIR dataset. (A few
outliers are ignored on the left plot to maintain the homogeneity of the X-axis in both plots).
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Fig. 9. Correlation plots comparing results obtained without data augmentation (left) vs. using the proposed data augmentation technique (right) on IMVIA-NIR dataset. (A few
outliers are ignored on the left plot to maintain the homogeneity of the X-axis in both plots).

Table 2
Synthesis of results obtained on the RGB ECG-Fitness dataset.
Model Data ECG-Fitness
augmentation
MAE T SNR TMC
No DA 18.08 0.32 -1.0 0.75
Physnet DA w/ uniform 9.50 0.64 -0.0 0.73
DA w/ KDE 9.08 0.68 2.0 0.50
No DA 25.89 0.05 -6.0 0.56
RTRPPG DA w/ uniform 9.93 0.71 0.0 0.74
DA w/ KDE 9.32 0.72 0.1 0.76

of these data influences the performance improvements of the deep
learning models. This exploration could provide valuable insights into
the practical applications and efficacy of synthetic training datasets in
machine learning contexts.
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