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Abstract

We know that the degeneracy of solutions to PDE’s given in terms of
theta functions on Riemann surfaces gives important results about par-
ticular solutions as in the case of the NLS equation.

Here we degenerate the so called finite gap solutions of the Toda lattice
equation from the general formulation in terms of abelian functions when
the gaps tends to points.

This degeneracy allows to recover the Sato formulas, without using inverse
scattering theory or geometric or representation theoretic methods.

MSC2020 numbers:
35— X X,35Czxx,35Qxx

1 Introduction

Different formulations can be chosen to represent the Toda equation. In original
work of 1967 [93], the vibration of a uniform chain of particles with nonlinear
interaction was studied, and Toda considered the following equation for thr n-th
particle in the chain

m@%(un) = —0r(¢)(un — un—1) + 9 (¢)(Unt1 — un), (1)

where m stands for the mass of the particles, ¢(r) the interaction energy between
adjacent particles. Some solutions were constructed for particular interactions
0.

The same equation was considered with m = 1 by Date and Tanaka in 1976 [3]
and they constructed some general solutions but in terms of integrals difficult
to use.

In the appendix of the paper of Dubrovin [6] published in 1981, Krichever con-
sidered the non abelian version of this equation and gave solutions in terms of
theta function on Riemann surfaces.



Matveev and Stahlhoffen [91] considered in 1995 the following version of the
Toda equation

0 (un) = exp(un—1 — un) — exp(Uup — Unt1)- (2)

They used the Darboux transformation to contruct solutions of this equation in
terms of Casoratis.

In 2014, Zhang and Zhou [95] used the following representation of the Toda
equation

9,0, (un) = (9 (un) + (b)) (un—1 = 2un + tni1). (3)

They used the generalization of the exp-function to contruct multiwaves solu-
tions of this equation.

More recently, Sun, Ma and Yu [95] were interessed in 2020 in the following
representation of the Toda equation

A(un) = 4(exp(un—1 — un) — exp(tn — Unt1))- (4)

They used a logaritmic transformation to get some particular solutions in terms
of logarithms.
Duarte [4] considered in 2020 the following representation of the Toda equation

ad?(u(z,y,n)) + ﬁ@;(u(x, y,m))
=exp(u(z,y,n — 1) — u(z,y,n)) — exp(u(z,y,n) — u(z,y,n + 1)).

He used a particular ansatz combined with the properties of Laplace’s equation
to contruct some solutions in terms of trigonometric functions.

Schiebold and Nilson [88] studied in 2020 another version of the Toda equation
in the form

8§U(1Og(1 + un)) = Unp+1 — 2un + Unp+1- (5)

They constructed solutions in the frame of linear algebra by means of determi-
nants.

Here, we consider the Toda equation in the following representation [1, 5,
81, 90]

Tn Tn
Toal \/ad}nJrl + vntn + - \/Cnfﬂ/}nfl = \n
n+ n— (6)
Tn Tn
atwn = B) \/anﬂ + at(ln Tn)wn 5V Cn—1¥n—1.
Tn+1 27”7171
with
B 202tV +nD + Z) )
YAV + (n+ D + Z2)0(V" + (n— 1)D + Z)
(tV" + (n—1)D + Z)

v, = —Rg+ 0;1n

OtV" +nD+2)



where 6 is the classical Riemann theta function.

We know that the degeneracy of solutions of PDE’s given in terms of Riemann
theta functions gives some important particular solutions. In the case of the
NLS equation, we have managed to construct quasi rational solution involving
determinant of order IV for each positive integer N depending on 2N — 2 real
parameters [13]. In the case of the KdV equation we constructed from Baker
Akhiezer functions, solutions in terms of Fredholm determinants and wronskians
[54].

In this study, we want to recover Sato formulas for the Toda equation using this
method.

From finite gap solutions given in terms of Riemann theta functions, we want to
construct by degeneracy, as given in the frame of the NLS equation [79], some
quasi-rational solutions and recover the Sato formulas.

Precisely, we derive multisoliton solutions from finite gap solutions by a limit
transition, i.e. by making gaps tend toward points in a certain Riemann sur-
face. This will be done in the spirit of the article [79] or more recently [54]. One
strength of this approach is that it does not rely on inverse scattering theory or
geometric and representation theoretic methods, which offers a fresh perspective
on the problem.

We consider the Riemann surface I' represented by U‘Z:lakbka;lb;l of the al-
gebraic curve defined by [1, 5]

2g+2

w? = H (Z_Ej)’

j=1
with E; # By, j # k.

Let us consider Qf and €, [90] abelian integrals verifying

/dQ’l’(P):/ dY(P) =0  k=1,....g )

(23

with the following asymptotic behavior for P = (w, z) € T" [90],

Q/(P) = :I:%(z—l—Ro—l-O(z_l)), P P (10)
Qy(P)=+(nz— I +0(z 1)), P — PZ, (11)
w=+(z9" + 0(2)), P — P (12)

The vectors V", D, X and Z are defined by

1
V/=_— ds/ 13
J oI b, 1> ( )



D =U(PS) - U(P), (14)

X:K+iU(Pj), Z=U(P%) - X, (15)

Jj=1

where K is the vector of Riemann constants.
U(P) is the classical abelian integral f;; au.
The solutions of the system (6) can be written [81, 90],

O(U(P) +tV" +nD — X)

a(P) = Fa (OO EE T =S o)
with

o 0(2)0(Z — D) H

Pn(t) = (?) (9(tV” +nD+ Z)0(tV" + (n— 1)D + Z)> ’ (17)

2 Degeneracy of solutions

Let us suppose that E; are real, F, < E; if m < j and try to evaluate the
limits of all objects in formula (16) when Ea,,, Eap, 1 tends to —auy,, au, = K2,
Km >0, for 1 <m <g.

Like in the previous section, # is constructed from the matrix of the B-periods
of the surface I', the coeflicients ¢, being relating with abelian differentials dU;
by

g . ~9—k
Zk:l Cjk? d

au; = —
kg:JE (z — Ey)

2, (18)

and coefficients c;;, can be obtained by solving the system of linear equations

/dezéjk, 1<j<g 1<k<g
ak

In the following, we will use the notations:

Kmj = \/(@m + Bagy1)() + FBagra),  Kjm = /() + Eagy1)(m + Ezgi2),
Ci(2) = /(2 = Bagr1)(o — Eagy2), Di(z) = /(2 — Eggy2)(ar — Eagi1),
Ly = /o + Eagi1, My = /ay+ Eagio,
F(Z):\/Z—Egg_kl, G(Z):\/Z_EQQJ,_Q.

(19)

2.1 Limit of P(2) = [[27*(z — E))

j=1
We study in this paragraph, the limit of P(z) = Hffﬁ (z — Ej).

The limit of P(z) = Hffﬁ(z — Ej) is obviously equal to



P(2) = TT9_y (2 + j)%(2 = Bagi1)(2 — Ezgya),
or with (19)

P(z) = H((Z +0a;)F(2)G(2))*. (20)

Zi:l kazg_k dZ
VIE (2 — B

In this paragraph, we study the limit of dU,, =

2.2 Limit of dU,, =

EZ:I kazg—k d
ig:ﬁz(z — Ey)
The limit of dU,, is equal to dU, = #m(2) dz

[T (2 + a))\/(z = Bag11)(2 — Bagy2)
where ¢, (2) = >7_; Emiz9~ %, The normalization condition takes the form in

the limit

zZ.

3

/ dU; — 2mip;i(—ax)
ax L zn(m — ar)y/(an + Eagi1)(ay, + Eagi)

= Oy, (21)

which proves that the numbers —a,,, m # k are the zeros of the polynomials
¢r(2), and so @i (2) can be written as ¢k (2) = éx1 [, (2 + ).
By (21), we get in the limit

. V(g + Eagi1)(ak + Eagia)
Ck1 = :

2mi
So
(o + Eogi1) (o + Eagi2)
or(2) = v g+27Ti = H (2 + ).
m#k
Moreover
dUk(Z) = Ll (Z)dz

\/(Z - E2g+1)(z - E29+2) anzl(z + am)

in other words

0 (2) = — V(o + Eygi1) (o + Bayi2) i
2min/(z — Eag11)(z — Eagi2)(z + i)

and with (19)
Ly, My,

dUk(2) = 2miF(2)G(2)(z + ax)

dz, (22)



2.3 Limit of B,
The subject of this subsection is the study of the limit of B,,.

We have
Eagyo 1 -
I = / dUk — EBmk-

The integral I can be easily evaluate along the real axis on the upper sheet of
surface I' and we get

V{(@m + Eag1)(ag + Eagia) + /(o + Eagy1)(am + Eagio)
V{(@m + Eagi1)(ar + Eagra) — /(o + Ezgy1)(am + Eagio)

Bmk = 1 In
™

or with the previous notations (19)

(23)

So 1By, tends to —oo.
Moreover, we have :

LU -
/ dUx = 5—In

Eagi2

V(2 = Eag1)(ar + Eagy2) + /(2 — Eagya)(ar + Eggi1)
V(2 = Eagr1)(an + Eagi2) — /(2 — Eagya)(ar + Eggi1)

or with the previous notations (19)

P
/ dU; = o In

E2gt2

Ck(z) + Dk(z)
Cr(z) = Di(2)|”

(24)

2.4 Limit of Q]

In this subsection, we study the limit of Qlll
Q, is an abelian integral of the second kind satisfying the conditions

/ Q) (P)=0, 1<k<g.
ap
and such that
1
A (P) = +5(2+ Ro+ O(z7")), P— P

$(2)

The limit of d¥//(P) is equal to dQ/ (P) =

321 (z+ O‘j)\/(z - E29+1)(Z — E2g+2)

where ¢(2) = 32950 G291k,

QY (P) satisfying the condition QY (P) = £3z + O(1) when z — %00, we have
C~0 = %

Moreover, the conditions

/ dQf(P)=0, 1<k<y,
ag

dz,



proves that —a;,..., —ay are the zeros of ¢;

thus ¢(2) = 5 [17_1 (2 + am)(z = B).

We have, P(z) = \/T[;%2(z — Ex) tends to

P(2) = \/(z = E2g1)(z = Ezgy2) [19,-1 (2 + ), we get

z

A (z) = dz,
S 2= Bag) G — Bagr)
and QY (P) tends to
Q/(P) = / Y du.
' Bagra 2¢/ (4 — Engy1)(u — Eagi2)

It can be evaluated and it gives

\/Z - E2g+l + \/Z - E2g+2
7z = Eag1 — /2 — Eagra

With the notations defined in (19), it can be rewritten as

_ Bagi + Bygiz } F(z) + G(2)
4 F(z) — G(z)

1

E E.
_ Bogi1 + Fagyo +§ \/(z — Eagi1)(2 — Eogi2).

1 In

Q/(P)

Q(P)

4 %F(z)G(z). (25)

2.5 Limit of

We consider €, and we study its limit.
Q;J is an abelian integral of the third kind satisfying the conditions

/ d0y(P) =0, 1<k<g.
ag

and such that
Q)(P)=+(Inz—Ip +0(z 1)), P — PE,
The limit of d€2(P) is equal to

~ g9 ~ g9—k
dSYo(P) = — 2o 2 dz.
I_1(z+ aj)\/(2 = B2g1)(2 — Eogs2)
Qf(P) satisfying the condition 4(P) = +1n(z) + O(1) when z — 00, we have
G = 1.
Moreover, the conditions

/ dQy(P)=0, 1<k<y,
ag

prove that —aj,..., —ay are the zeros of ¢;
thus ¢(z) defined by ¢(z) = >7_, é297* can be written as



¢(2) = IIn1(z + o).
As P(2) = 29122 — Ey) tends to
P(z) = V(= Eagi1)(z — Bagi2) 17,21 (2 + am), we get
~ 1
dVo(z) = dz
o) V(& = Eagi1)(z — Engia)

1

u— Eagi1)(u— Eagyo)

du.

and Q) (P) tends to Q'; (P

)= fE2g+2 \/(

It can be calculate and it gives

\/Z - E29+1 + \/Z — E29+2
V2= Ezgy1 — /2 — Eagr0

Q,(P) =1n

It can be written with (19)

Q4(P) =1In

(26)

2.6 Limit of X

We deduce the limit of X.
From the previous sections

Bmk = l In 7"4’771]6 * Fkm ' y
7T Rmk — Kkm
~ ) Ck(Z) + Dk(z))
Up(P) = — — .
KP) =5 Cr(z) — Di(z)

As K is defined by K,,, = 25:1 Bjm — %, and X = K + 25:1 U(P;), we can

write

. g g
- i Kmj + Kjm| m @ Cim(%j) + Dim(z5) | .
Xy Xp== > In #’__JF_ZIH j )| 4.
T, |fm T Kym 2 27 = Cri(25) — Din(25)
(27)
2.7 Limit of U(PL), U(Py), D and Z
In this subsection, we study the limit of U(PJ), U(Py), D and Z.
From the previous sections, it is easy to get the limits of Uy
. i Y Bogr2+Ju + B
lim Ug(P) = ' Vo 202 + V0 20 )
P—PY 2w | \Jon + Eagro — /o + By
or ML
. - —1 k + L
| Ug(P)= —In|——|. 28
Pinzi; K(P) 27Tan+Lk (28)




Dy, = Up(PE) — Up(P) — Dy = — = et il 29
k= Ur(P%) = Ur(Py) = Dy or M Ly (29)
Thus
~ —i +FE + +E
lim Uy(P) = —In Vart Bagpat or £ Pagia — Dy
P—Px 21 | \ak + Eagyo — \Jak + Eagia
o M+ L M L
. ~ —1 k + L i k+ 1Ly
1 Uy(P)=—Ihn|—— |+ —In|————|. 30
Pm UP) = oo n =+ o I i, (30)
Therefore the limit of Z = U(PL) — X is given by
. g . g
5 7 Kkj + Rk | kot Ch (ZJ) + Dk(zj) . 7 My, + Ly,
Zy— Ty = -~ In [ 2R TRk R YN g\ RE) TR
kT k T Z . Kkj — Kijk +2 2 Z . Cr(z;) — Dr(z5) 100 27 | My — Ly
J=1,3#k i=1 (31)
31

2.8 Limit of V"

In this paragraph, the limit of V" is studied.
Vi = 55 J,, dQ is defined in (13).

We have I = ["2+2dQ) — L [ dQ).

As in the determination of the limit of ), we have

/E2g+2 dQN(P) _ E29+1 + E29+2 In \/ak + E29+1 + \/ak + E2g+2
o ! 4 Vak + Eagi1 — /o + Eagia
Lt B
- g £ ?
5\/ Qg 29+1)(ar + E2g42)
So
v L[ gar g = Brerit g | Vo & Bagni & v+ By
21 bi 47 \/Oék + Eagy1 — \/Ozk + Eagyo
1
g (o + Ezgi1) (g + Ezgi2),
~ Eogi1 + Eagio . | Ly — My 1
V! = g I — — L M. 32
K 4mi M T M| 2w R (32)

2.9 Limit of (p)

We determine the limit of (p).
Let us denote A the argument of 0(p) = 3", ., exp{wi(Bkl|k) + 27mi(k|p)}.
A can be rewritten in the form

g g
A= Wiz Bjjkj (kJ - 1) + 273 Z ijkmkj + ZT(’L'(ij + Bjj)kj.

Jj=1 ji>m j=1



Using the inequality k;(k; — 1) > 0 for all k € Z9 and the fact that iByy tends
to —oo, we can reduce the limit 6 of 6(p) to a finite sum taken over vectors
k € Z9 such that each k; must be equal to 0 or 1.

In this section, we compute the limit of all the terms entering in the expression
of the solution (P, t) in §. We will denote p; the arguments of these different
expressions.

We first study the terms of 7, corresponding to the arguments p; = Z =
UPL)—X,ppo=Z—-D,p3=tV"+nD —Z,p,=tV"+(n—-1)D — Z.
Then we will study the remaining terms of 1),, corresponding to the arguments
ps =U(P)—X,ps =U(P)+tV" +nD — X.

With these notations, the solution ¥ (n,,t, z) can be written as

1

0(?1)9(172))5 9(p6)ensz(,(P)+tQ’1’(P)
0(p3)0(ps)/) O(ps) '

5n(P2) = 1af0)

2.10 Limit of 6(p;)

We denote p; the term Z = U(PF) — X.
We stufy its limit.
Then 6(p1) — 61 :

6, = Z exp 22111

M; +L;
kiki + Zk ( +
keZE k;=00r1 >l j

L

Iilg+/€z

]l+ lj
Iijl — IilJ

—|—jm+Zln g
=1

+> 2

I#35

2.11 Limit of 6(ps)

We consider po = Z — D.We study its limit.
Then 6(p2) — 62 : As D; — Dj, it is easy to see that

_]l

kkl—i—Zk ( M+ L

0y = Z exp 22111

k€ZE, k;=0or1 j>1 H“ / L
Kji + Kij Ci(z1) + g M —HL

+) 2In g +imi+ ) In In
5ot S0 i+ S D] S

1#] =1

10



2.12 Limit of 6(ps)

Let p3 be tV" +nD + Z. We study its limit.
Then 6(p3) — 05 :

03 = Z exp 22111 Jl kj kl—l—Zk (ln #
kcZe&,kj=0o0r1 j>1 .
Byor + Bagia\ . | L; — M; M, +iL;
¢ Y 9%2 ) n | =2 I\ _ L. M. In |2 T
i (( 2 )D‘LJ’"’MJ (VD VAT
Kji + Kij i(z1) + Dj(=1)

—I—jm—i—Zln g—

=1

+> 2In

I#35

Kji — Kij

2.13 Limit of 6(p,)
We consider py = tV" + (n — 1)D + Z; 0(ps) — 0,. We determine its limit.
As D; — Dj, it is easy to verify that

Lj +Mj
Lj —Mj

]l

kkl—i—Zk (m

04 = Z exp 22111

kcZe,kj=0o0r1 j>1

Eyp1+ Eogyo L;,— M; M; 4+ iL;
t g+ g 1 J J LM, — 11 J J
+(( 2 M| T +(n )nMj—z'Lj
+ Kij Ci(z1) + Dj(z1)
+ 21n | HL T + jmi + In | L= — 72
; Kji — ki ; Cj(z) = Dj(z)
2.14 Limit of 6(ps)
The term ps = U(P) — X tends to 5 = U(P) — X.
We determine its limit.
Then 6(ps) — 05 :
3 “la Kjl Ci(z) — Dj(2)
05 = exp 21n kik, + k; (ln B
A LR > (m[ G
+ Kij Ci(z1+ Dj(~
21n Kji T Kij 1 J J
+Z ffgl —Iilj +j7”+; " Cj(zl —Dj(zl

I#j

11



2.15 Limit of 6(ps)

The term pg = U(P) +tV" +nD — X tends to pg = U(P) +tV" — X + nD.
Then we determine its limit. 6(ps) — 05 :

J L;+ M;
k€Zs, kj=0o0r1 G>1 g —

By + Bagia\ . | L — M; M; +iL;

t g g 1 J J — L. M: 1 J J

i (( 2 )D‘LJ’"’MJ s )T L

g

Kjl + Ki _ Ci(z1) + Dj(z1) C;(z) — Dj(z)
+ 21n |2 L\ i — In | -2 / +In | L1072
Z Py Z Cj(z) — Dj(z1) Cj(2) + D;j(2)

2.16 Limit of solutions ¥

From the previous section, we can give the limit 15 of ¥. It takes the following
form

ra(0) (02)" el FEER e (et i 2B e rco) )

z/;(z,n,t)) = -

X 1
; (50

In the previous expression, 9~1, 92, 05 are independent of n, t.
Only 93, 9~4, 06 depend on n and t.

We choose the particular case in which ¢t = 0.

We replace n by =x.

We denote ¢ the coefficient defined by

c= =
05
We denote H the function defined by
F(z) - G(2)
HE) =
(2) +G(2)

In the different sums involving 0, only terms with k; = 1 remain. So the sums
can be reduced only on the subsets J of [1;g] of integer N. We denote a; the

M;+iL; 5 .
term a; = —% % . Then the term g can be written as
- j—iL;
1|2 | Ly + M
éﬁ _ } : ] [ Kjl J J
K + K L:— M;
Jc{1,...,g} 4,l€J, i<l ly gt g J

12



2

[

jeJ

Ci(z1) + D;(z)
Cj(z) + Dj(z1)

Kjl + Kij

Kjl = Kij

Hln

leJi#j
We denote 7 the function defined by

7(x) = ég(d?) = Z H In

JCA{1,...,g} Jiled, i<l
2

[I

jeJ

2

II

jeJ

Rij — K1
Kij + Kl

Lj—l—Mj
I, — MM,

Ci(z1) + Dj(z)
Cj(z1) — Dj(21)

ki + Kij
Kji = Kij

H In eszJ Jmi =2 e

lEJI£]

Thus, the solution ¥ can be written

(5, ) = PEHEX(@, 2)
’ @@ 1)

(33)

Here we get back tothe Sato formulation of the solution, as given in [94].
This expression is very similar to the solution expressed on page 5830, the
expression of the solution is given by

= exp(zz)x(z, 2)

U(x,z) = m (34)

The difference between these two statements come from the fact that these two
equations are treated differently:
Van Diejen considers the equation

a(z)f(z+1) +b(@)fz) + ale = 1) f(z = 1) = \f(2);
here, we consider (?7)

T'n T'n

vV Cnd)nJrl + 'Unwn +

Tn+1 Tn—1

\V Cnfldjnfl = )\U)n

2.17 Limit of associated potentials

In this subsection, we determine the limit of associated potentials.
The potentials u,, = /¢, and v, are described in (6) and (7)

e20@2(tV" + nD + Z)
OV"+ (n+ 1)D+ Z2)0(tV" +(n—1)D + Z)

Cp =

O(tV"+(n—1)D+ Z2)
OtV" +nD + Z)

v, = —Rog + 0 In

So the limit of u,, is equal to

Up, = k1




which is the same as in [94], (p. 5830) up to the constant ;.
Denoting o(z) = 0:0(tV" + 2D + Z)i—o, the limit of v, is equal to
Uy = ko + oz 1) _ @,
T

(z—-1) 7(z)

which is similar as the one written in [94], (p. 5830) up to the constant ks.

3 Conclusion

We have used the degeneracy of solutions of some PDEs given in terms of Rie-
mann theta functions to get some important solutions. In particular, in the
case of the NLS equation, we have managed to construct quasi rational solution
involving determinant of order N for each positive integer N depending on 2N2
real parameters [13]. In the case of the KdV equation, from abekian functions,
we constructed solutions in terms of Fredholm determinants and wronskians
[54].

In this study, we have managed to recover Sato formulas using this method for
the Toda equation. From solutions given in terms of Baker-Akiezer functions,
we succeeded to construct by degeneracy, as given in the frame of the NLS
equation [79], some quasi-rational solutions and recover the Sato formulas for
the Toda equation.

Precisely, we derived multisoliton solutions from finite gap solutions by a limit
transition, i.e. by making gaps tend toward points in a certain Riemann sur-
face. One strength of this approach is that it does not rely on inverse scattering
theory or geometric and representation theoretic methods, which offers another
perspective on the problem.

The degeneracy of the solutions of the NLS equation has allowed to build new
quasi-rational solutions of order N depending on 2N — 2 real parameters and
their construction up to order 23, previously unknown. In the case of the KAV
equation, the degeneracy of the solutions made it possible to find the solutions
given by the Darboux method and thus constituted a bridge between the geo-
metric algebra approach and the Darboux transformations framework. In this
article, this is somewhat the same situation as that of the KdV equation, where
we linked the algebro-geometric approach to the framework of the inverse scat-
tering method.

Data Availability
The data that supports the findings of this study are available within the article.
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