
HAL Id: hal-04797679
https://u-bourgogne.hal.science/hal-04797679v1

Submitted on 22 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Railway systems’ ontologies: A literature review and an
alignment proposal

David Camarazo, Ana Roxin, Mohammed Lalou

To cite this version:
David Camarazo, Ana Roxin, Mohammed Lalou. Railway systems’ ontologies: A literature review and
an alignment proposal. 26th International Conference on Information Integration and Web Intelligence
(iiWAS2024), Dec 2024, Bratislava, Slovakia. �hal-04797679�

https://u-bourgogne.hal.science/hal-04797679v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


July 2024

Railway systems’ ontologies: A literature
review and an alignment proposal

David CAMARAZO a,b, Ana ROXIN a and Mohammed LALOU a

a Laboratoire d’Informatique de Bourgogne (LIB EA 7534), University of Burgundy,
Dijon, France

b Railenium Technological and Research Institute Railenium, Valenciennes, France

Abstract. Railway systems are complex systems whose design and construction re-
quire many cooperating actors. Multiple models have been produced to reduce se-
mantic heterogeneity and enable cooperation across many companies and persons.
However, each model created has its point of view regarding the railway domain
and uses its vocabulary. Therefore, it is necessary to investigate ways to align those
models and to ease cooperation between actors. This paper first identifies the main
ontologies proposed in the last two decades. Then, we study and compare those
models and analyse the difficulties when aligning them. The results regarding our
attempts to align identified railway ontologies are thus discussed.

Keywords. railway systems, railway ontologies, alignment framework, semantic
heterogeneity, semantic interoperability

Introduction

A railway is defined in [17] as an aggregation of three components: rolling stock, in-
frastructure, and environment. Rolling stock refers to any vehicle that operates on rails.
Infrastructure refers to four systems: power supply, telecommunication, signalling, and
rail. It comprises elements that allow rolling stock to work correctly and transport people
from point A to point B. Finally, environment refers to anything that existed before the
development of the railway system (e.g., mountains, tunnels, bridges, rivers, etc.).

According to the definition above, a railway system is a system of systems, as seen
from the definition in [5]. Furthermore, regarding security requirements, a railway system
is considered crucial [8]. Therefore, it is essential to consider security constraints in the
early phase of designing railway systems.

Multiple projects have been initiated to develop semantic models to assist the com-
plex conception of such a system (we detail existing models in section 4). Those mod-
els aim to give a common vocabulary with an unequivocal interpretation for every actor
implied in the design of railway systems. Since no model has taken hold, model hetero-
geneity and unclear interpretations of railway terminology exist (e.g. does ”train” refer
to a disjoint union of ”freight train” and ”passenger train” or can there be other kind of
train ?). Aligning the different models is essential to ease cooperation across companies
working on railway systems.



July 2024

In this paper, we present three contributions. First, we evaluate the different rail-
way ontologies that have been proposed. Second, we evaluate available tools to align on-
tologies automatically. Third, we propose a set of alignments between railway ontology
models.

The rest of the paper is organised as follows: Section 1 details our motivation for
the presented work, section 2 presents the fundamental notions about ontology and on-
tology alignment, railway domain ontologies, as well as an evaluation of the presented
ones, is covered in section 3. Section 4 shows our alignment results with different tools.
Section 5 evaluates the obtained alignments. Section 6 discusses our conclusion from our
experiments. The last section concludes the paper and provides several future research
directions.

1. Motivation

Railway systems’ conception involves a complete modelling process [7].
The modelling process has four phases: requirement analysis, conceptualisation, ar-

chitecture design and implementation. It aims to move from an abstract informal repre-
sentation of the system to a more formal and concrete representation. To do so, different
models are generated at each phase of the modelling process, depending on the point of
view studied at the relevant phase. As shown in [15], many points of view about a system
are represented during a modelling process. As it is difficult to find a person with all the
skills required to model each system’s point of view, we need different actors with dif-
ferent skills and vocabularies in each phase of the modelling process. This implies many
actors have to cooperate during the modelling process.

According to feedback from Railenium engineers, it is challenging to reach a com-
mon understanding among the various actors involved [7]. Indeed, each actor has its
specific vocabulary, tools, and languages, so implementing a coherent interpretation of
these elements and contexts to control and verify the overall process is not trivial. Our
goal is to conceive an automated approach for verifying the modelling process. This ap-
proach uses railway domain knowledge to check the consistency between models pro-
duced during the railway modelling process. As explained in our previous paper [6], we
need an explicit and formal model of railway knowledge, i.e. an ontology. For that, we
first analyse all existing ontologies in the field, each with its scope, point of view, and
language. Then, to build a complete domain ontology, we need to establish equivalencies
between different ontologies’ concepts. We considered manual and automatic alignment
approaches to match the meaning of related elements and tried to reach semantic inter-
operability among them. This paper evaluates railway ontologies, discusses alignment
methods, presents the established alignments and evaluates them through reasoning.

Given the large number of classes and properties in the models, we look for an au-
tomated solution that motivates the need for an automated alignment method between
ontologies of the railway domain. Still, those alignments require defining semantic rela-
tions among various ontologies’ elements (classes and properties). This paper presents
our defined alignments.



July 2024

2. Background definitions - Ontologies and alignments

We define an ontology as a ”formal, explicit specification of a shared conceptualisation”
according to the definition [18]. From [11], conceptualisation refers to ”an intentional
semantic structure which encodes the implicit rules constraining the structure of a piece
of reality”. We say an ontology is formal, meaning it is written with a syntax that defines a
domain’s semantics and prevents ambiguous interpretation. Also, an ontology is explicit
as it states explicitly the different relations and classes of a shared conceptualisation.
Furthermore, it explains implicit knowledge shared in a general agreement.

An ontology is built using logical formula [3] with a vocabulary divided into two
sets: classes C and properties P. An ontology has a terminological scheme, a TBox, and
a set of assertions called ABox. The TBox specifies a hierarchy of classes, properties,
and restrictions over elements from C and P. The ABox contains the ontology instances
with their specific values according to the axioms specified in TBox.

We follow the definition provided by [20] regarding ontology alignments. An on-
tology alignment is the output of an ontology matching process. An ontology matching
can be seen as a function matching(O1,O2,A′, p,r). Where O1 and O2 are the ontologies
we are trying to align, A′ is a set of already existing alignments, p is a set of parame-
ters (e.g. threshold, metric, filter) for ontology matching, and r is a set of external re-
sources that can be required for ontology matching (e.g. dictionaries or other ontologies).
An ontology matching process produces an ontology alignment, i.e. a set of relations
(e.g., equivalence, specification, generalisation, parthood) between classes or properties
from O1 and O2. The matching process relies on various methods and resources; it can
use existing alignment A′ to compute new ones or a dictionary to compute equivalences
between synonyms.

3. Ontologies for railway systems’ modelling - Identification and evaluation

As mentioned in section 1, the modelling process requires many actors with different
points of view over the domain they are working on. This heterogeneity leads to differ-
ent interpretations regarding the models produced and the terms used during the mod-
elling process. This heterogeneity of interpretations can cause errors in the prototype
produced. To detect those errors in the modelling process, we propose to build an on-
tology that represents railway domain knowledge to check the consistency between rail-
way domain knowledge and the models produced as intermediate results during the mod-
elling process. Model is seen here as an abstraction of the system and can have differ-
ent formalism level, going from unstructured text to Unified Modeling Language (UML)
https://www.omg.org/spec/UML/2.5.1/PDF models. The following subsection presents
the ontologies proposed to specify railway domain knowledge. In this section, we de-
scribe the different ontologies considered and evaluate them using quantitative and qual-
itative indicators.

3.1. Presentation of the models

The following paragraphs present the existing ontologies for specifying railway domain
knowledge. We have selected ontologies listed during the Linx4Rail European project,

https://www.omg.org/spec/UML/2.5.1/PDF


July 2024

as, to the best of our knowledge, it is the only European project that has addressed the
issue of building a global railway domain ontology. Given our scope to align existing
railway ontologies, we aim to build upon the ontologies already considered for align-
ment in the context of the Linx4Rail project. Our ontology selection is further completed
with ontologies found through keyword searches on Google Scholar and Linked Open
Vocabularies https://lov.linkeddata.es/dataset/lov/about/. We used the keywords ”railway
domain ontology” and ”railway ontology”. Our efforts allowed us to find, in addition to
the ontologies proposed in Linx4Rail, the ontology RaCoOn [19].

ERA. It is an ontology created by the European Union Agency for Railways and models
knowledge about the legal sector and railway-related use cases. ERA is about vehicles
and three infrastructure modules: infrastructure sub-system, alimentation sub-system,
signalling and rail command. Compared with the other ontologies considered, this one
is the smallest regarding classes and properties. It holds only tens of classes, while the
other ontologies have hundreds of classes. It also contains around one hundred and fifty
properties, unlike other ontologies considered in this study that can have more than three
thousand properties (like TransModel). It is worth noting that the ontologies containing
thousands of properties also contain redundant properties. Moreover, while other ontolo-
gies have primarily object properties, ERA contains mainly hundreds of data proper-
ties, while the other ontologies contain between 0 and 21 data properties. Additionally,
ERA proposes an important hierarchy between classes, and it is freely available in Turtle
format here1.

IFC Rail. It is a subpart of the IFC (Industry Foundation Classes) model, which is an
open schema developed and promoted by bSI (buildingSmart International). The IFC
schema and its various subparts are also provided as an ISO standard, i.e. ISO 16739-
1:2018. The model is presented in UML and considers the geometrical aspects of the
railway domain, power supply, signalling, telecommunication, and rails. IFC Rail is an
important model, one of the most complete we found. It covers all of the aspects of
the infrastructure. We consider the ontology implemented during the OntoRail project;
it can be downloaded here2. The associated ontology contains thousands of classes and
properties with many redundancies. Moreover, the hierarchy between classes is more
horizontal than the hierarchy we have found in the other ontologies.

Rail System Model. It is the rebranded version of the Rail Topology Model (RTM), which
has become the Rail System Model (RSM). More complete than RTM, RSM models
infrastructure and rolling stock elements, represented in UML format. RSM contains el-
ements from every part of the infrastructure (power supply, signalling, telecommunica-
tion, rail). The associated ontology is reasonably large for humans, containing around
one hundred classes and properties. However, it does not cover essential parts of infras-
tructure and has redundant properties. We note that RSM proposes a well-organised hi-
erarchy between classes. While the model is promising, the implemented ontology has
a narrow scope that needs more relevant classes in signalling, telecommunication, and
power supply. It is available at OntoRail portal2.

1https://data-interop.era.europa.eu/era-vocabulary/
2https://app.ontorail.org/download

https://lov.linkeddata.es/dataset/lov/about/
https://data-interop.era.europa.eu/era-vocabulary/
https://app.ontorail.org/download
https://app.ontorail.org/download


July 2024

Eulynx. It is a model created by the EuLynx consortium. It reuses pieces of RSM. Eulynx
models signalling classes and traffic control are written using different graphical (UML-
like) languages. The implemented version of the ontology is relatively large, with more
than one thousand classes and more than two thousand properties. It covers an essential
part of infrastructure but still lacks more specific classes about rail classes. The proposed
hierarchy is rich, giving relations between classes and has a depth of six levels. The
implemented ontology is available at OntoRail portal2.

TransModel. It is a model sponsored by the European Comity of Normalisation and has
been approved as a European standard. A European team has developed a model de-
scribing trains, geographic infrastructure, topologic information and some infrastructure
information (e.g. accessibility, vehicle equipment, line equipment). The model can be
visualised in UML. The implemented ontology associated with TransModel is the largest
regarding the number of classes and properties. Then again, the ontology contains a lot
of redundant properties. Additionally, some classes do not represent railway infrastruc-
ture concepts. The underlying hierarchy is considerable, presenting rich taxonomy for
the various classes. The implemented ontology is available at OntoRail portal2.

X2Rail-4. It is a project for studying various railway themes. The model is grounded in
European Railway Traffic Management System (ERTMS) standards. X2Rail-4 manages
railway traffic and captures knowledge about signalling and autonomous train control.
On the one hand, the number of classes is reasonable (around one hundred). On the other,
we note many redundant properties. The model covers many important infrastructure
classes but lacks classes related to telecommunications. We also note that the hierarchy
presented by the model is ”weak” and does not establish many relations between classes.
There are only 52 rdfs:subClassOf relations for 551 classes. Moreover, the model does
not include other properties or relations to add relevant semantics to the classes. The
implemented ontology is available at OntoRail portal3.

RailML. It is a RailML.org project that developed the markup language RailML in 2002.
It specifies knowledge about the railway domain reusing the RailTop Model (RTM). It
proposes a set of XML schemas to model the control system, infrastructure, rolling stock
and traffic timetable. The models have been created from talks with various partners
from different European countries (the list of partners is available here4). RailML aims
to propose a standard interface to exchange railway data. We have examined the current
version, the version 3.2. The model proposes a complete overview of the railway domain
but it is not implemented as an ontology at the time of writing. We noted that works are
in progress to align ontologies [13], but the results of those works are not yet published.

RaCoOn. It is an ontology developed by the University of Birmingham following the
Neon method [10]. Its creation has been guided by three use cases that illustrate its
scope: maintenance application, signalling conception, and infrastructure visualisation.
The vocabulary uses elements from RailML. The ontology size is reasonable for humans
based on the number of classes (hundreds). There are fewer properties than in the other
ontologies, but it is important to note that there are almost no redundant properties. The
hierarchy is rich, reaching six levels and introducing important class relations. However,

3https://app.ontorail.org/dow load
4https://www.railml.org/en/introduction/partners.html

https://app.ontorail.org/download
https://app.ontorail.org/download
https://app.ontorail.org/download
https://www.railml.org/en/introduction/partners.html


July 2024

the scope of the ontology lacks classes about telecommunications and power supply. The
ontology is available at GitHub5.

OntoRail. It is a federation of railway ontologies for different projects (ERA, Eulynx,
IFC Rail, RSM, TransModel, X2Rail-4). It uses Simple Knowledge Organisation Sys-
tem (SKOS) vocabulary to express class relationships. At the time of writing, Ontorail
is an ongoing project. It aims to propose alignment between ontologies, federate railway
models, and archive different railway ontologies. Since OntoRail is a federation of on-
tologies and not a simple ontology, we will go into further detail about its structure in the
next section, which will assess the various ontologies and evaluate them. It is possible to
download the vocabularies and the relations between them here3.

3.2. Evaluation of the related ontologies

After introducing the main ontologies, it is time to evaluate those implemented and avail-
able for free download.

First, considering OntoRail as a federation of railway ontologies, it is a direct an-
swer to our problem as an attempt to align various railway vocabularies. However, it
presents severe limitations to achieve our goal of creating an automated method to ver-
ify the modelling process. The SKOS relations do not formally specify semantic rela-
tions between terms. For the relation ”related match”, classes linked with this relation
do not inherit properties from their equivalent classes, contrary to owl:equivalentClass
that creates a formal equivalency. Therefore, a reasoner cannot use alignments in On-
toRail to infer knowledge or check consistency. Moreover, in the case of OntoRail, we
can not directly map SKOS relations with formal relations. In fact, in OntoRail, ”re-
lated match” serves as a way to describe an equivalence relation (e.g. era262:Signal
skos:related match rsm12:Signal) or a synonym relation (e.g rsm12beta:VehicleStop
skos:related match fcr:Bumper). Finally, OntoRail does not specify a term to refer to
a class, and there is no hierarchy between terms that could help actors in the railway
domain to agree on the vocabulary that must be used.

For RailML, we decided to exclude it from our work for the following reasons. This
is because RailML is intended as an exchange format in XML for railway data, and its is
more about the use of trains rather than their construction. Moreover, it is a proprietary
format that actors can not always use in practice. For example, the RailML team refused
to participate in Linx4Rail, a European project initiated in 2019 that addresses alignment
problems and knowledge exchange in the railway domain.

Considering the discussion above, we now have seven free models implemented
as ontologies: ERA, Eulynx, IFC Rail, RaCoOn, RSM, TransModel, and X2Rail-4. We
have considered the various criteria provided by Noy et al. [12] for their evaluation.

The table in 1 recaps different measures studied on previously mentioned ontologies.
To ease the reading, we use the abbreviations below:

• The reasoning result section sums up the result obtained when we reason over
the ontology (more details below). The ”OK” mention indicates the reasoner has
successfully ended its inference task and the ontology is consistent. The ”OOM”
mention stands for ”Out Of Memory” and means the reasoner could not infer all

5https://github.com/UoB-BCRRE/Racoon

https://github.com/UoB-BCRRE/Racoon
https://app.ontorail.org/download


July 2024

implicit knowledge successfully. Finally, ”inconsistent” means the reasoner found
the ontology inconsistent.

• OP for Object Property.
• DP for Data Property.
• Ratio(%) I/CA: per cent ratio between the number of instances and the number

of class assertions. It allows us to measure the extent to which ontology instances
belong to ontology classes, thus identifying if there are orphan instances. This
ratio is lower for manually constructed ontologies (i.e. eRA and RaCoOn) and
higher for the automatically generated ontologies (i.e. 211 for TransModel). A
higher value for this ratio should be interpreted as an insufficient number of class
axioms to allow for a satisfying classification of instances.

• Ratio(%) SBO/C: per cent ratio between the number of rdfs:subClassOf relations
and the number of classes. It gives a hint about the richness of the taxonomy.

• Ratio(%) OtherP/P: per cent ratio between the number of various properties and
the number of domain/range properties. This allows us to see if the ontologies con-
tain axioms a reasoner can exploit or if the ontology relies only on domain/range
axioms

We use three symbols to evaluate the corresponding criteria for qualitative criteria:
check, tilde, and cross. For the quality section in Table 1, a check means that the cri-
terion is overall respected with few (between 1 and 3) or no counterexamples; a tilde
implies that the criterion is overall respected but has many counter-examples (more than
3 counterexamples but the criterion is still respected by the large majority of classes).
The cross means too many counterexamples exist to consider the criterion respected. For
the ”Scope” section, the check indicates that more than three terms are related to the
corresponding infrastructure component. The tilde means at least one term related to the
element but less or equal to three. Finally, the cross means that no terms about the cor-
responding component exist. We now describe the various quality criteria we considered
for our evaluation:

• Readable URIs: check if an entity’s URI is readable [2] by a human being.
• Acyclic classes: check no class is a subclass of another class that represents the

same concept.
• Unique classes: Check that a label corresponds to exactly one class (there are no

classes with the same label; the contrary would introduce confusion)
• Unique properties: Check that a label corresponds to exactly one property (there

are no properties with the same label)
• Relevant label: check labels are readable by a human being and refer to a railway

class.
• Naming convention: check a naming convention is respected.

To reason over every ontology, we used Protégé in version 5.6.1 https://protege.stanford.edu/.
We chose Protégé as it proposes a readable interface to explore the inferred hierarchy and
explanations for every inferred knowledge. We chose the Pellet reasoner with its default
configuration based on the survey [1]. We justify this choice because Pellet is usable,
still maintained, follows OWL2 standards, and checks ABox’s and TBox’s consistency
with explanations for every inferred knowledge. This allowed us to discover that Trans-
Model was inconsistent (e.g. the property transmodel : minCardinality whose range is
a negative integer has positive integers as objects). We found dozens of inconsistencies

https://protege.stanford.edu/


July 2024

Table 1. Table summarising the above ontologies’ evaluation

in TransModel, making it too hard to fix for us. Unfortunately, we could not reason with
Pellet over Eulynx and X2Rail-4. While other reasoners, such as Hermit or ELK, could
end the reasoning task properly on those ontologies, we found they could not detect the
inconsistency in TransModel contrary to Pellet. Therefore, we could not conclude about
the consistency of Eulynx and X2Rail-4.

Table 1 summarises our evaluation of the examined ontologies.
Six of them, namely ERA, Eulynx, IFC Rail, RSM, TransModel, and X2Rail-4,

have been implemented for the project OntoRail. Therefore, they contain cycles, i.e.
classes that are subclasses of another classe that represents the same concept (e.g on-
torail:AnnotationProperty is subclass of owl:AnnotationProperty). This is due to meta-
classes (e.g. Data Property, Annotation Property, Class, Object) defined in the OntoRail
vocabulary and redefined in OWL. Five have been automatically extracted from graphic
models: Eulynx, IFC Rail, RSM, TransModel, and X2Rail-4. Those ontologies contain



July 2024

a lot of duplicates. without names, with unreadable names, or with names that do not
refer clearly to railway classes (which is the case for X2Rail-4). Moreover, their URIs
are unreadable for human beings because they are too long and need to expose precise
semantics. Except for X2Rail-4, many ontological class names do not refer to railway
classes (e.g. rsm:Enumeration). Finally, we see that manually built ontologies, ERA and
RaCoOn, have the highest expressivity and specify more properties other than domain
and range properties. This fact suggests that the knowledge from these ontologies can be
exploited by a reasoner for automated tasks such as verification.

To have a complete overview of the railway domain, our work must also consider
the scope of the evaluated ontologies. Table 1 clearly illustrates that finding a complete
and well-structured ontology is hard. While an automatically generated ontology can be
interesting regarding its scope, which is the case for Eulynx, IFC Rail, and X2Rail-4, the
underlying TBox model presents design and structural issues and does not expose rich
semantics. Moreover, no properties are defined other than domain and range properties
except in TransModel. We noted this issue for all three ontologies generated automati-
cally from XMI or UML models i.e. Eulynx, IFC Rail and X2Rail-4.

4. Railway Systems’ ontologies Alignemnts

We aim to align the seven implemented ontologies we obtained and presented in the
previous section: ERA, Eulynx, IFC Rail, RaCoOn, RSM, TransmMdel, and X2Rail-4.
For that, we consider both manual and automatic methods. In the following, we show
each methodology and the related results.

4.1. Manual alignments

Manual alignments were defined between RaCoOn and ERA ontologies because they are
the only ontologies correctly conceived, with precise semantics and human-readable.

We first identified alignments between classes. Fifteen relations between classes
were identified. Some of them are listed in Table 26. Some relations can be trivially found
by comparing the class labels. We can create an equivalent relation between classes if
the labels are identical, except for their naming convention. We found relations such
as era:Signal owl:equivalentClass racoon:Signal. However, this basic approach does not
suffice for a thorough alignment. When labels contain similar words or classes with
similar ancestors, we must look at the classes’ comments, if any, to establish equiva-
lency or hyperonymy relations. This allows us to find relations such as racoon:Train
rdfs:subClassOf era:Vehicle. In this example, we have established the equivalency rela-
tion due to matching definitions between those classes. RaCoOn defines a train as a ”ve-
hicle or formation of vehicles that provides a service”, which is close to the definition of a
Vehicle in ERA, which is ”A specific vehicle or wagon able to operate on railway lines”.
Finally to express a parthood relation between classes (e.g an era:Signal is a part of
racoon:SignalGroup) we use the object properties ”b f o : part o f ” and ”b f o : has part”
from the Basic Formal Ontology (BFO).

We then investigated the different properties of the two considered ontologies. They
are listed in Table 3 (using the same prefixes as in Table 2). Given the differences in de-

6Table uses the prefixes racoon for http://purl.org/rail/core/, era for http://ontorail.org/src/ERA/era300/

http://purl.org/rail/core/
http://ontorail.org/src/ERA/era300/


July 2024

racoon:RailwayTrain rdfs:subClassOf era:Vehicle

racoon:InfrastructureConcept owl:equivalentClass era:InfrastructureObject

racoon:Platform owl:equivalentClass era:Platform

era:Signal bfo:part of racoon:SignalGroup

racoon:OCP rdfs:subClassOf era:OperationalPoint

racoon:SidingTrack rdfs:subClassOf era:Siding
Table 2. Manual class alignments’ between ERA and RaCoOn ontologies

Object properties’ alignements

era:manufacturer rdfs:subPropertyOf racoon:manufacturer

racoon:mainDirection rdfs:subPropertyOf era:trackDirection

Datatype properties’ alignements
era:vehicleNumber rdfs:subPropertyOf racoon:id

era:signalOrientation rdfs:subPropertyOf racoon:orientation
Table 3. Some manual property alignments’ between ERA and RaCoOn ontologies

sign, fewer alignments were defined, and only one owl:equivalentProperty relation was
identified between racoon:trackDirection and era:trackDirection. The main difficulties
come from the fact that different design choices were made in each ontology. For exam-
ple, on the one hand, RaCoOn defines racoon:axleWeight as an owl:ObjectProperty and
as ”the maximum load per axle in tons for a track element”. On the other hand, ERA only
considers era:minAxleLoad as an owl:DatatypeProperty and defines it as ”Minimum per-
mitted axle load, given in tons”. Additionally, some elements are modelled as proper-
ties in one ontology and as classes in the other i.e. rac:vehicle is an owl:ObjectProperty,
while ERA considers it as a class. The different alignments are presented in Table 3,
differentiating object and datatype properties.

4.2. Automatic alignments

Let us first present existing alignment tools from the literature we evaluated, and then we
will discuss each in detail.

4.2.1. Existing alignment tools

We want to align ontologies using automated tools to save costly expert consultations,
which can be laborious. In this work, and to compile a list of automated alignment tools,
we have examined two critical sources[4], and [16]. We have identified three tools that
are available for free download and may be customised to use with different datasets,
namely, Limes, LogMap, and OnAGUI7.

Limes (for LInk discovery framework for MEtric Spaces) is ”a framework for dis-
covering links between entities contained in Linked Data sources” as described in the
user manual8. The tool reads from two Linked Data sources, such as RDF graphs, and
computes a mapping from instances of one source to instances of the other. To map

7Respectively https://dice-research.org/LIMES, https://www.cs.ox.ac.uk/isg/tools/LogMap/ and
https://github.com/lmazuel/onagui?tab=readme-ov-file

8https://dice-group.github.io/LIMES/#/user manual/index

https://dice-group.github.io/LIMES/#/user_manual/index
https://dice-research.org/LIMES
https://www.cs.ox.ac.uk/isg/tools/LogMap/
https://github.com/lmazuel/onagui?tab=readme-ov-file
https://dice-group.github.io/LIMES/#/user_manual/index


July 2024

an instance to another, Limes computes a similarity score between instances based on
a method elected by the user among various methods. The methods are classified de-
pending on the type of instances they are comparing (strings, point sets, vectors, time
measures, etc.).

LogMap is an ontology-matching tool that uses various methods to compute mappings
between instances from two ontologies. Mainly, it computes similarities between in-
stances using String comparison methods and filters results using the knowledge speci-
fied by the ontologies.

OnAGUI is a tool that computes string similarities between instances from two onto-
logical sources. It presents a simple user interface allowing users to edit and export the
computed mapping. Similarities can be calculated using the I-sub distance or the Leven-
shtein distance measure.

4.2.2. Alignment tool chosen and results analysis

In the previous section, we introduced selected alignment tools for evaluation. In this
section, we discuss each tool.

We begin with Limes, which is highly configurable. First, we can align ontologies
using string similarity or semantic proximity following wordnet hierarchy [14]. Once
this choice is made, we have different computing methods (mathematical operations)
to compute the similarity between terms. When the computing method has been se-
lected, we must specify a threshold between 0 and 1 to filter out results with a simi-
larity score too low to be relevant. From what we observed, we obtained interesting re-
sults with a threshold of around 0.7. A threshold less than 0.5 outputs too many irrel-
evant results (e.g. racoon:ETCS Level 2 Standard and eulynx:limitedBySignal), while
a threshold higher than 0.85 provides mappings only when terms are almost identi-
cal (transmodel:id and x2rail4:id). Similarity computing method also has a significant
impact on results. We have retained four measures with many pertaining scores with-
out too many errors. The cosine and the Ratcliff methods are best for string measures.
The Li, Leacock and Chodorow measures are the best semantic measures. However,
even with those parameters, we observe many issues in the results. First, Limes does
not provide the nature, i.e. the type of mapping relation. This requires extra manual
labour to sort the mappings between equivalences, ”is a” or ”subclass of” relation (e.g.
racoon:Tunnel and eulynx:Tunnel are equivalent, while racoon:Signal group and eul-
ynx:Signal is linked through a parthood relation). We also observe duplicate results that
modelling particularities in our ontologies can explain. Moreover, since the ontologies
may contain irrelevant labels, we can find absurd output mappings such as the one be-
tween lynx:appliesToTrDrBus and transmodel:0..* with a trust score of 0.7. Therefore,
asserting reliable and definitive rules regarding correct methods and thresholds is chal-
lenging. What we have for now are only heuristics.

Considering LogMap, it is straightforward to use and compute many pertaining
mappings. Its internal optimisation to automatically filter irrelevant results decreases the
manual labour required to establish proper alignments. Moreover, the framework can
compute three types of relations: ”equivalent”, ”more specific than”, and ”more general
than”, which helps to understand the calculated mapping. We found 56 relations between
classes from RaCoOn and four other ontologies: Eulynx, IFC Rail, RSM, TransModel,
and X2Rail-4. Most of the provided alignments are correct; some of those correct align-



July 2024

class1 Alignment class2 Trust degree

racoon:Freight Train owl:equivalentClass eulynx:FreightTrain 75.4%

racoon:Balise owl:equivalentClass ifcrail:Balise 50%

racoon:Crossing(Track Infrastructure) owl:equivalentClass rsm:Crossing 73.6%

racoon:Route owl:equivalentClass x2rail4:Route 70.3%

Table 4. Table presenting some of the correct alignments computed by LogMap between RaCoOn and other
railway ontologies (To ease the reading, we used labels in table instead of actual iris)

ments are presented in Table 49. In this case, we only find equivalent relations. The align-
ments are between classes with the same labels (e.g racoon:Balise and ifcrail:Balise).

Other alignments have labels with some words in common; in that case, we checked
the definition (the comment associated with the class) to decide whether the alignment
was correct. With LogMap, we note that if the trust degree is below 0.2 for a given
alignment, the output seems incorrect, linking classes with no semantic relations (e.g.
racoon:SafetySystem owl:equivalentClass ifcrail:MonitoringSystem). We also observe
that the relation type can be incorrect if the trust degree is below 0.6. Table 510 lists our
modified alignments, changing equivalent relation into parthood relation.

class1 Alignment class2

racoon:SignalGroup bfo: era:Signal

racoon:Signal with function bfo:has part eulynx:SignalFunction

racoon:SetOfPoints bfo:has part eulynx:Point

racoon:Signalwithfunction bfo:has part x2rail4:SignalFunction

Table 5. Table presenting the modified alignments between RaCoOn and other railway ontologies(To ease the
reading, we used labels in table instead of actual iris)

For OnAGUI, thanks to its user interface, domain experts familiar with computer sci-
ence find it straightforward to use. This makes it easy to import source ontologies, export
results or manually edit mappings. However, it does not provide the nature of the relation-
ships in the computed mappings, and the user must select a threshold to filter the results.
The tool indicates by a colour code which mappings are most relevant, and accordingly,
the best threshold value is 0.75. We have found out that the tool is helpful to establish
obvious relations between classes that have similar labels automatically: racoon:Border
:match era:Border, racoon:ExitSignal :match era:Signal, racoon:HomeSignal :match
era:Signal, racoon:Platfrom :match era:Platform. However, we can already see that the
tool mixes equivalent relations (e.g. racoon:Border and era:Border) with hyperonymy re-
lations (e.g. racoon:ExitSignal and era:Signal). Moreover, some relations seem wrong re-
garding the classes definition: racoon:SpeedCapability :match era:loadCapabilitySpeed,
racoon:Status :match era:State.

Unsurprisingly, and regarding the Ontology Alignment Evaluation Initiative (OAEI)
results [16], LogMap is the more mature tool. We can select data sources to align, and it
returns relevant results while filtering many irrelevant mappings. It is also important to
note that since our ontologies present several issues and limitations regarding their de-

9The prefixes used are eulynx http://ontorail.org/src/Eulynx/eul230309/, ifcrail
http://standards.buildingsmart.org/IfcRailBusinessConcepts#, rsm http://ontorail.org/src/RSM/rsm12/, x2rail4
http://ontorail.org/src/X2Rail-4/x2r4 25b/

10Uses the additional prefix of bfo http://purl.obolibrary.org/obo/bfo.owl

http://ontorail.org/src/Eulynx/eul230309/
http://standards.buildingsmart.org/IfcRailBusinessConcepts
http://ontorail.org/src/RSM/rsm12/
http://ontorail.org/src/X2Rail-4/x2r4_25b/
http://purl.obolibrary.org/obo/bfo.owl


July 2024

sign, other tools may have trouble loading them or computing readable mappings. For ex-
ample, OnAGUI only works with RaCoOn, ERA and X2Rail-4. We faced a similar prob-
lem with Agreement Maker Light, a tool we could not evaluate because it could not give a
single human-readable mapping. With Limes, we observed a lot of duplicates in the map-
pings or mappings with empty terms. While those problems also exist with LogMap (for
example, we could not load either ERA or TransModel ontologies), there are fewer occur-
rences, and again, most of the mappings are relevant. We have stored the results of our ex-
perimentations with the different tools in a GitLab https://gitlab.com/c4m4r4z0/railway-
ontologies-alignment/-/tree/main.

5. Evaluation of our alignments

As previously done in (3), we use Protégé 5.6.111 to check the consistency of our pro-
posed alignments. We aimed to check the inferred hierarchy. Therefore, we needed a tool
that allows a proper examination of the inferred class relations and not only examining
instance knowledge inference. To ensure a complete check, we used the reasoner Pellet.
As stated in 3, other reasoners might leave some inconsistencies undetected. However,
our previous experiment also showed that using Pellet with Eulynx or X2Rail-4 returns
an ”Out of memory” error. In this experiment, though, we were only interested in check-
ing the impact of our alignments, i.e. the inferences produces by our alignments in the
aligned ontologies. We decided to consider Eulynx and X2Rail-4 classes only if they are
part of one of our alignments. To do so, we manually extracted the classes of Eulynx and
X2Rail-4 that appear in an alignment, keeping the class hierarchy between them if there
are any to build a new ontology we called eulynx2rail −4.

Then we imported in Protégé five ontologies: ERA, eulynx2rail-4, IFCRail, RSM,
RaCoOn. We excluded TransModel due to its inconsistencies. Once the ontologies were
imported, we added in Protégé the alignments previously defined. We excluded the align-
ments between parthood alignments as they cannot be expressed in Protégé. Finally, we
launched the Pellet reasoner over the ontologies.

First of all, no inconsistent inferences were produced. Moreover, we found new taxo-
nomic relations. For example, we inferred that the concepts i f crail : TrainDetector,racoon :
TrainDetector,x2rail4 : TrainDetector, classes from IFCRail, RaCoOn and X2Rail-
4 are subclasses of the era : TrainDetectionSystem class in ERA. Similarly, the era :
Tunnel,racoon : Tunnel,x2rail4 : Tunnel classes from ERA, RaCoOn and X2Rail-4 are
subclasses of the eulynx : LineSideLinearConstruction class in Eulynx. Besides rela-
tions between ontologies, one relation among RaCoOn’s object properties was inferred;
namely, the property racoon : mainDirection in RaCoOn was inferred as a subclass of
the property racoon : trackDirection. Regarding this case, one could argue that adding
relations between concepts or properties inside an ontology can falsify its knowledge
representation. However, we argue that completing one ontology with knowledge from
other ontologies is an important benefit of the alignment task and the alignment itself.

11https://protege.stanford.edu/software.php

https://gitlab.com/c4m4r4z0/railway-ontologies-alignment/-/tree/main
https://gitlab.com/c4m4r4z0/railway-ontologies-alignment/-/tree/main


July 2024

6. Discussion

This section presents the conclusions we have subsequently drawn from our experimen-
tations. First, we have identified some derelictions in existing railway ontologies. In the
complex railway domain, it is hard to conceive a complete domain ontology that effi-
ciently captures all relevant domain classes. We also noted that those derelictions com-
plexify alignment tasks. We could only manually align two ontologies, namely ERA and
RaCoOn. However, even in this case, we needed hours to analyse them and provide align-
ments. With automated tools, once we have chosen and set up the tool, we quickly obtain
and evaluate relevant results (in a few minutes). Also, it is important to note that a man-
ual review is required to specify the nature of the computed relations. Without railway
experts, evaluating the output relations and asserting correct relations between classes is
difficult. Overall, we observe that for a domain as complex as the railway domain, with
ontologies that present design errors, the ontology alignment task is difficult and tedious,
and it seems difficult to have a fully automated method that does not require domain
expert intervention.

Conclusion and Future work

During the modelling process of railway systems, one must establish a shared vocab-
ulary for the railway domain to reach semantic interoperability between considered
models. Several vocabularies already exist for this domain but are not semantically
aligned. Our paper presented these vocabularies, evaluated them according to several
well-established criteria, and then described our methodology for aligning them. While
this also falls under the scope of the OntoRail project, we go beyond the non-formal
alignments provided by OntoRail and present 62 formal alignments: 24 computed man-
ually and 38 automatically. Indeed, the alignments developed under OntoRail mainly
rely on properties from the SKOS vocabulary and thus cannot be exploited by a rea-
soner. For example, OntoRail alignments cannot be used in an automated inference pro-
cess for verification purposes. Given our goal, we have established our need to estab-
lish a set of alignments between railway vocabularies that are semantically aligned; our
contribution lies in the 62 alignments provided. They are available for download in
https://gitlab.com/c4m4r4z0/railway-ontologies-alignment/-/tree/main.

Our methodology first considered defining such alignments manually, namely be-
tween RaCoOn and ERA ontologies. Given the complexity of the considered ontologies,
this task took a lot of work. We then turned to automatic alignment tools, namely Limes,
LogMap and OnAGUI. Here, the design issues noted in our evaluation of the different
ontologies hindered the outputs. Indeed, given that all ontologies, except ERA, were au-
tomatically created from UML-like models and schemas, they did not respect ontology
modelling or Linked Data principles. Following our evaluation, LogMap was the best
performer, identifying many proper alignments without too many mistakes. It still re-
quires extra manual tuning to precisely determine the kind of relation expressed by the
alignment computed. In our previous work [6], we have further specified our research
issues related to the general goal defined in this paper (i.e. verifying railway systems’
modelling processes). We also presented some alignments we could use to federate the
different ontologies considered.

https://gitlab.com/c4m4r4z0/railway-ontologies-alignment/-/tree/main


July 2024

Our future work will consider further pushing these results to the railway commu-
nity, i.e. by adding them to the OntoRail platform. Additionally, we aim to pay specific
attention to the ongoing work regarding the railML ontology development and its map-
pings with ERA and IFC-Rail ontologies [13]. Building upon these alignments, we aim
to define and implement a federation among railway ontologies by reusing existing archi-
tectures such as FOWLA [9]. Coupled with a semantic enrichment module, such federa-
tion can serve as a basis for an automated approach to verify railway systems’ modelling
processes through the different phases. To do so, our work will consider the definition of
a top-level domain ontology for Model-Driven Approaches (MDA).

References

[1] Konrad Abicht. Owl reasoners still useable in 2023. arXiv preprint arXiv:2309.06888, 2023.
[2] Danny Ayers and Max Völkel. Cool uris for the semantic web. Woking Draft. W3C, 2008.
[3] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics. Springer, 2004.
[4] Mike Bergman. 30 active ontology alignment tools, 2018.
[5] Mario Bunge. Treatise on basic philosophy: Ontology II: A world of systems, volume 4. Springer

Science & Business Media, 2012.
[6] David Camarazo, Sana Debbech, Ana Roxin, and Annabelle Gillet. Modélisation des systèmes

ferroviaires-objectifs, approches et problématiques. In eduBIM 2023-9e édition des Journées de
l’enseignement et de la recherche autour du BIM et de la maquette numérique, 2023.

[7] Nadia Chouchani, Sana Debbech, and Matthieu Perin. Model-based safety engineering for autonomous
train map. Journal of Systems and Software, 183:111082, 2022.

[8] Sana Debbech, Philippe Bon, and Simon Collart-Dutilleul. Improving safety by integrating dysfunc-
tional analysis into the design of railway systems. WIT Transactions on The Built Environment, 181:399–
411, 2018.

[9] Tarcisio M Farias, Ana Roxin, and Christophe Nicolle. Fowla, a federated architecture for ontologies. In
Rule Technologies: Foundations, Tools, and Applications: 9th International Symposium, RuleML 2015,
Berlin, Germany, August 2-5, 2015, Proceedings 9, pages 97–111. Springer, 2015.

[10] Asunción Gómez-Pérez and Mari Carmen Suárez-Figueroa. Neon methodology for building ontology
networks: a scenario-based methodology. 2009.

[11] Nicola Guarino and Pierdaniele Giaretta. Ontologies and knowledge bases. Towards very large knowl-
edge bases, pages 1–2, 1995.

[12] Natalya F Noy, Deborah L McGuinness, et al. Ontology development 101: A guide to creating your first
ontology, 2001.

[13] Linnea Cathrina Olsen. Ontology in norwegian digital infrastructure model (dim) project. In 45th
RailML Conference, 2024.

[14] Ted Pedersen, Siddharth Patwardhan, Jason Michelizzi, et al. Wordnet:: Similarity-measuring the relat-
edness of concepts. In AAAI, volume 4, pages 25–29, 2004.

[15] Klaus Pohl, Harald Hönninger, Reinhold Achatz, and Manfred Broy. Model-based engineering of em-
bedded systems: The SPES 2020 methodology. Springer, 2012.

[16] Mina Abd Nikooie Pour, Alsayed Algergawy, Patrice Buche, Leyla Jael Castro, Jiaoyan Chen, Hang
Dong, Omaima Fallatah, Daniel Faria, Irini Fundulaki, Sven Hertling, et al. Results of the ontology
alignment evaluation initiative 2022. In 17th International Workshop on Ontology Matching, 2022.

[17] Walter Schön, Guy Larraufie, Gilbert Moëns, and Jacques Poré. Signalisation et automatismes ferrovi-
aires. Ouvrage en trois tomes. La Vie du Rail, 2013.

[18] Rudi Studer, V Richard Benjamins, and Dieter Fensel. Knowledge engineering: Principles and methods.
Data & knowledge engineering, 25(1-2):161–197, 1998.

[19] Jonathan Tutcher, John M Easton, and Clive Roberts. Enabling data integration in the rail industry
using rdf and owl: The racoon ontology. ASCE-ASME Journal of Risk and Uncertainty in Engineering
Systems, Part A: Civil Engineering, 3(2):F4015001, 2017.

[20] Xingsi Xue, Chaofan Yang, Chao Jiang, Pei-Wei Tsai, Guojun Mao, and Hai Zhu. Optimizing ontology
alignment through linkage learning on entity correspondences. Complexity, 2021:1–12, 2021.


