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Habitat specificity modulates the bacterial biogeographic
patterns in the Southern Ocean
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Abstract

Conceptual biogeographic frameworks have proposed that the relative contribution of environmental and geographical factors on
microbial distribution depends on several characteristics of the habitat (e.g. environmental heterogeneity, species diversity, and pro-
portion of specialist/generalist taxa), all of them defining the degree of habitat specificity, but few experimental demonstrations exist.
Here, we aimed to determine the effect of habitat specificity on bacterial biogeographic patterns and assembly processes in benthic
coastal ecosystems of the Southern Ocean (Patagonia, Falkland/Malvinas, Kerguelen, South Georgia, and King George Islands), us-
ing 16S rRNA gene metabarcoding. The gradient of habitat specificity resulted from a ‘natural experimental design’ provided by the
Abatus sea urchin model, from the sediment (least specific habitat) to the intestinal tissue (most specific habitat). The phylogenetic
composition of the bacterial communities showed a clear differentiation by site, driven by a similar contribution of geographic and
environmental distances. However, the strength of this biogeographic pattern decreased with increasing habitat specificity: sediment
communities showed stronger geographic and environmental divergence compared to gut tissue. The proportion of stochastic and
deterministic processes contributing to bacterial assembly varied according to the geographic scale and the habitat specificity level.
For instance, an increased contribution of dispersal limitation was observed in gut tissue habitat. Our results underscore the impor-
tance of considering different habitats with contrasting levels of specificity to better understand bacterial biogeography and assembly
processes over oceanographic scales.

Keywords: microbial biogeography; habitat selectivity; ecological processes; host-associated microbiota; irregular sea urchins;

Antarctic

Introduction

Understanding how bacterial communities are distributed across
space and time, and which mechanisms are behind their distribu-
tion, is crucial for gaining deeper insights into marine ecosystem
biogeography. For a long time, it has been suggested that microor-
ganisms were broadly distributed, and that environmental selec-
tion (also known as species sorting) was the only process driv-
ing bacterial assemblages (Baas-Becking 1934). However, this hy-
pothesis has been challenged in the last decades with solid ev-
idence of bacterial biogeographic patterns driven by both local
environmental conditions and historical dispersal-related factors
(Martiny et al. 2006, Langenheder and Lindstrém 2019). Four pro-
cesses (selection, drift, dispersal, and mutation) have been pro-
posed to create and maintain bacterial biogeographic patterns at
both ecological and evolutionary levels (Vellend 2010, Hanson et
al. 2012, Nemergut et al. 2013). In addition to the description of

the mechanisms involved in the origin and maintenance of bac-
terial biodiversity patterns, it is important to determine the con-
ditions that cause a particular mechanism to dominate the as-
sembly processes of bacterial communities. In their conceptual
overview, Langenheder and Lindstrém (2019) established how dif-
ferent factors such as the environmental heterogeneity, the dis-
persal capacity, the spatial scale, and the considered taxonomic
and/or functional groups, could influence the relative contribu-
tion of different community assembly processes.

The degree of habitat specificity is also likely an important fac-
tor modulating bacterial biogeography, especially in determining
the relative contribution of environmental and geographic dis-
tances. Specific habitats are defined as habitats with low envi-
ronmental heterogeneity (i.e. with homogeneous abiotic proper-
ties) and are characterized by a low species richness (Wagner and
Edwards 2001, Schwob et al. 2020, Liu et al. 2022) and a high
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proportion of specialist taxa (Hattermann et al. 2019, Liu et al.
2022). Moreover, specific habitats can be considered as island-like
habitats, constraining the connectivity and dispersal capacity for
bacteria (Loudon et al. 2016, Itescu 2019). All the abovementioned
characteristics of habitat specificity might influence the bacte-
rial biogeographic patterns. For instance, habitat specialists taxa
(characteristic of homogeneous habitats) are less influenced by
species sorting than habitat generalists (Székely and Langenheder
2014). stronger geographic effects have been reported in habitats,
where microorganisms are less prone to dispersion compared to
more interconnected habitats (Seppey et al. 2023). Stochastic pro-
cesses (such as drift and dispersal limitation) are more important
when alpha diversity is low and/or in host-associated environ-
ments (Chase and Myers 2011, Lankau et al. 2012, Nemergut et al.
2013). It is also well recognized that a low habitat heterogeneity
limits the number and diversity of available niches for coloniza-
tion, generally leading to a lower effect of species selection pro-
cesses on bacterial assemblage in comparison to stochastic pro-
cesses (Ramette and Tiedje 2007, Ostman et al. 2010, Lindstrom
and Langenheder 2012, Langenheder and Lindstrém 2019). In ad-
dition, the capacity of an organism to successfully colonize and
establish in a habitat is related to its niche breadth. The niche
breadth represents how generalized or specialized an organism is
regarding its habitat requirements.

Assessing the influence of habitat specificity on microbial com-
munity assembly could be achieved in laboratory experiments by
artificially creating habitats with varying degrees of heterogeneity,
species richness (e.g. through sterilization), and connectivity. Lab-
oratory experiments enable to isolate the effect of a single factor
while controlling for all others. However, such experiments often
include environmental biases and do not realistically reflect the
complexity and variability of natural ecosystems (Diamond 1986).
In contrast, natural experiments offer a more realistic approach,
are not constrained by temporal and spatial scales, and provide
more generalizable insights into natural ecological processes (Di-
amond 1986). In this context, the habitats offered by hosts to
their associated microorganisms represent an attractive natural
experimental design (Diamond 1986) to compare different levels
of habitat specificity across different biogeographic provinces. In-
deed, when comparing different locations across a large spatial
scale, the habitats associated with phylogenetically and ecologi-
cally closely related hosts tend to exbibit more homogenous envi-
ronmental conditions than the surrounding open environments,
due to the selective pressures imposed by the hosts. Thus, the
importance of species sorting across different sites might be less
important in host-associated habitats (due to their higher homo-
geneity) compared to nonhost associated habitats (Langenheder
and Lindstrom 2019). The host filtering conditions tend to select
more phylogenetically related taxa, acquired either from the envi-
ronment or through vertical transmission from parent to offspring
(Carrier et al. 2024). Even if vertical transmission is an important
factor in structuring some host-associated microbiota (Sharp et
al. 2007, Baldassarre et al. 2021, Carrier et al. 2021), gut microbiota
are dynamics and expected to change throughout the individual’s
life, in close relation with environmental factors and diet (Carrier
etal. 2021, Masasa et al. 2021, Renelies-Hamilton et al. 2021, Kang
et al. 2022), especially in deposit-feeding hosts that are continu-
ously flushed by their feed matrix (e.g. soil or sediment, in a plug-
flow mode) and thus exposed to environmental microbial com-
munities. Moreover, host-resident bacteria would less easily dis-
perse and establish across large spatial scales compared to free-

living bacteria, because they are constrained by the biotic and abi-
otic conditions imposed by the host habitat. For instance, strictly
anaerobic microbes show high specificity for host environments
(Mazel et al. 2024). This should lead to a greater effect of spatial
distance on community assembly associated to hosts. Recently, in
different Australian estuaries, Suzzi et al. (2023) compared host-
associated and free-living microbiota. They showed that bacterial
communities from fish hindguts (here considered as a presum-
ably more homogeneous habitat) were less constrained by envi-
ronmental selection and geographic distance than bacterial com-
munities from seawater and sediments (considered here as more
heterogeneous habitats) (Suzzi et al. 2023). However, the influence
of habitat specificity level on ecological assembly processes (selec-
tion, drift and dispersal) remains to be investigated.

Theirregular deposit-feeding sea urchin genus Abatus (Troschel
1851) represents a suitable host model for bacterial biogeo-
graphic studies, as it is distributed across different biogeographic
provinces of the Southern Ocean. While some Abatus species are
separated by strong natural marine biogeographic barriers (e.g.
the Antarctic Polar Front; APF), others are distributed in distant
regions connected by the Antarctic Circumpolar Current (ACC).
These sea urchins are infaunal organisms living at shallow depths
buried in medium to very fine muddy sand sediments (David et al.
2005), feeding on the organic matter from the ingested sediment,
and they are considered important bioturbators of the ocean floor
(Lohrer et al. 2005). Sea urchins from the genus Abatus are gener-
ally easily accessible for sampling and are found in high-density
patchy populations (Poulin and Féral 1995, Gil et al. 2009). Thanks
to their feeding behaviour, Abatus sea urchins naturally provide a
gradient of habitat specificity, from most to least specific: (i) the
Abatus gut tissue habitat, (i) the ingested sediment in gut con-
tent, and (iii) the external sediment habitat, which constitutes the
sea urchins feeding source. Indeed, the microbial communities of
these three habitats have been previously shown to be drastically
different, with lower diversity and more specialist taxa in the gut
tissue, which is characteristic of specific habitats (Schwob et al.
2020, Ziegler et al. 2020). Thus, the Abatus sea urchin provides a
unique ‘natural experiment’ model to test how different levels of
habitat specificity can modulate the bacterial biogeographic pat-
terns across a large oceanographic scale.

In this study, we aim to determine the influence of habitat
specificity on the bacterial biogeographic patterns and assembly
processes in benthic ecosystems from five localities of the South-
ern Ocean, distributed across three biogeographic regions accord-
ing to the definition of Koubbi et al. (2014): Magellanic [(i)Patagonia
and (ii) Falkland/Malvinas Islands], Subantarctic [(iii) Kerguelen
Islands], and Antarctic [(iv) South Shetland Islands and (v) South
Georgia] provinces. We hypothesize that (i) within each habitat (i.e.
sediment, gut content, and gut tissue), the bacterial communities
structure will differ across regions due to the interplay between
geographical and environmental factors, and (ii) the strength of
these biogeographical patterns and their underlying ecological as-
sembly processes will be modulated by the level of habitat speci-
ficity, due to the distinct degree of dispersal capacity offered by
each habitat. In particular, as they are directly exposed to the en-
vironment, the sediment bacteria are expected to be more prone
to dispersal and environmental filtering than sea urchin gut tis-
sue bacteria. This suggests that microorganisms associated to the
sediment would show stronger biogeographic patterns than the
ones associated to the gut tissue, while those associated to the
gut contents would display an intermediate pattern.
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Materials and methods

Natural experimental design

The natural experimental design of this study consists of three
habitats naturally provided by Abatus sea urchin: (i) gut tissue
habitat (i.e. the whole intestinal membrane except the caecum),
(ii) the gut content habitat (i.e. the ingested sediment within the
digestive tract) (Schwob et al. 2020), and (iii) the external sedi-
ment habitat, which constitutes the sea urchin feeding source.
Abatus specimens of three different species (A. agassizii, A. cav-
ernosus, and A. cordatus) were collected from five localities of the
Southern Ocean. These species are the most ecologically and phy-
logenetically closely related among the eleven existing Abatus
species (David et al. 2005, Diaz et al. 2012). Thanks to their simi-
lar ecology and sediment-feeding behaviour, the different species
provide the same natural gradient of habitats in different bio-
geographic provinces of the Southern Ocean. The five studied
localities span over three biogeographic provinces according to
the definition of Koubbi et al. (2014): the Magellanic province
(Patagonia and Falkland/Malvinas Islands, where A. cavernosus
lives), Subantarctic islands province of the southern Indian Ocean
(Kerguelen Island, where A. cordatus occurs), and the Antarctic
province (South Shetland Islands and South Georgia, where A.
agassizii is found) (Table 1; Fig. 1A). A single Abatus species is found
in each site. Two sites accommodate the same Abatus species
(Table 1).

The five studied localities (Table 1, Fig. 1) exhibit varying en-
vironmental conditions and are positioned in different biogeo-
graphic provinces of the Southern Ocean as detailed in De Broyer
et al. (2014). In the maritime Antarctic, King George Island, lo-
cated north of the Shetland Islands, experiences cold tempera-
tures ranging from below 10°C to 0-2°C, with notable seasonal
ice changes affecting ecosystem dynamics (Ducklow et al. 2013).
South Georgia Island, situated north of the Scotia Arc and south
of the APF, is part of the Antarctic biogeographic province (Spald-
ing et al. 2007, Koubbi et al. 2014), its climate is polar, and the
weather is highly variable and harsh, with temperature ranging
from —10°C to 8°C. In Atlantic Patagonia, the Strait of Magellan
is characterized by strong tidal currents, winds, and low-salinity
waters (Medeiros and Kjerfve 1988, Brun et al. 2020). The Falk-
land Islands have a cool, temperate oceanic climate, character-
ized by mild summers and cold, windy winters, and are part of the
Magellan biogeographic province (Spalding et al. 2007, Koubbi et
al. 2014). Lastly, the Kerguelen Archipelago, particularly Port-aux-
Francais, features a cold oceanic climate typical of subAntarctic
islands.

Samples collection and treatment

Sampling was conducted across the five localities of the South-
ern Ocean between November 2017 and September 2022, during
the austral summer (Table 1). Sampled individuals were imme-
diately stored in a reservoir containing in situ seawater and sed-
iment at 4°C until dissection. Superficial coastal sediment from
the immediate surroundings of the sea urchins was also collected
and stored at 4°C until laboratory treatment. In the laboratory, be-
tween 2 and 12 h after sampling, the sea urchins (Nyn = 6, Nmax =
20; Table 1) were dissected under sterile conditions to collect sep-
arately the gut content and the gut tissue The gut tissue was gen-
tly rinsed in sterile ultrapure DNAse-free water (Winkler, Chile)
to remove all the ingested sediment. The external sediment was
homogenized and aliquoted in five to six replicates. All the sam-
ples were stored separately in 2 ml cryotubes at —20°C until DNA
extraction.

Delleuzeetal. | 3

Environmental and geographic distance data

For each sampling site, 13 environmental parameters obtained
through modelling were extracted from the Bio-ORACLE 2.2
dataset (Assis et al. 2018), including nutrient concentrations (iron,
phosphate, nitrate, and silicate), productivity measures (chloro-
phyll a concentration, mean net primary productivity of carbon,
and carbon phytoplankton biomass), and physical-chemical pa-
rameters of the seawater (temperature, salinity, pH, current ve-
locity, and light penetration). The mean environmental measures
were taken at the mean depth for each location and were centre-
reduced ((x; — x) / o). For highly correlated variables (Pearson cor-
relation coefficient >0.95), only one representative was kept for
further analysis.

The environmental distance matrix was calculated based on
Euclidean distance from the normalized uncorrelated environ-
mental variables (dist function, stats package 4.3.2) and used to
run a principal component analysis (PCA; prcomp function, stats
package). As a high percentage of variance were explained by the
first two components (91%; Fig. 1B), the sample scores on PC1 and
PC2 axis were converted in a new PCA-based environmental dis-
tance matrix based on Euclidean distance.

The geographic distance matrix was calculated from the Global
Positioning System (GPS) coordinates of each site determined on
an ellipsoid map (function distGeo, package geosphere version 1.5—
18). The spatial structure was represented by the three princi-
pal coordinates of a neighbourhood matrix (Borcard and Legen-
dre 2002) with a truncation distance threshold equal to the maxi-
mum geographical distance (PCNM1-3, function pcnm, vegan pack-
age; Oksanen et al. 2007). The principal coordinates (PCNM vari-
ables) derived from these eigenvalues were used as explanatory
geographic variables for further analysis.

DNA extraction, 16S rRNA gene amplification,
and sequencing

Defrosted samples of external sediment, gut content, and gut tis-
sue were homogenized, and DNA was extracted from a maximum
of 350 mg of sample using the DNeasy® PowerSoil® Pro Kit (Qia-
gen, Hilden, Germany) following the manufacturer’s indications,
except for gut tissue samples where the cell lysis was carried out
in the FastPrep-24® homogenizer (3 times 15 s at 4 m s~1) (MP
Biomedicals, USA). The extracted genomic DNA was quantified us-
ing the Qubit® 3.0. Fluorometer (ThermoFisher Scientific, Lithua-
nia).

The V4-V5 hypervariable region of the 16S rRNA gene was
amplified with the primers 515F (5'-GTGYCAGCMGCCGCGGTA-
3) and 928R (5'- CCCCGYCAATTCMTTTRAGT-3') (Wang and Qian
2009). The Polymerase Chain Reaction (PCR) mix contained 2-5
ul of undiluted template DNA (10-200 ng ul=?), 0.3 uM of each
primer, 25 ul of Phusion Hot Start II High-Fidelity PCR Master-
Mix (ThermoFisher Scientific), and nuclease-free water (g.s. 50 ul)
(ThermoFisher Scientific). The amplification conditions were an
initial denaturation at 98°C for 3 min, 35 two-step cycles of 10 s
at 98°C and 15 s at 72°C for annealing and elongation, and a fi-
nal extension step of 5 min at 72°C, as in Schwob et al. (2020). The
quantity and quality of the PCR products were checked on agarose
electrophoresis gels.

The amplicons were sequenced at the DNA sequencing facil-
ity of the University of Wisconsin-Madison Biotechnology Centre
(UWBC, USA) using the paired-end sequencing technology (2 x
300 bp) with the V2 chemistry on Illumina MiSeq.

The fastq files from Falkland/Malvinas Islands and South
Georgia (generated in this study) are available at the National
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(B) PCA of seawater physicochemical variables
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Figure 1. Sampling sites localities and environmental characterization across the Southern Ocean. (A) Map showing the sampling sites: Possession Bay
in Atlantic Patagonia, Canache Bay in Falkland/Malvinas Islands, Fildes Bay in King George Island, South Shetland Islands, Stromness Bay in South
Georgia, and Port-aux-Frangais in Kerguelen Islands. The different Abatus species are indicated by the symbol shapes. Some localities are connected by
the ACC characterized here by its north and south limits (black dashed lines): the Subantarctic Front (SAF) and the southern boundary of the ACC
(sbACC). Other localities are separated by the APF (continuous red line). The positions of the fronts were extracted from Orsi et al. (1995). (B) Principal
component analysis (PCA) of the seawater physicochemical variables from each sampling site. The arrows represent the environmental values and are
coloured according to their contribution to the PCA based on the cos?. Variables that were highly correlated (Pearson correlation coefficient >0.95)
were represented by the same arrow. Here, ‘Temperature/Chlorophyl a*’ represents four correlated variables (temperature, chlorophyll a
concentration, mean net primary productivity of carbon, and carbon phytoplankton biomass).

Center for Biotechnology Information (NCBI) under the project ac-
cession number PRJINA1065352. The fastq files from Antarctica,
Patagonia, and Kerguelen sites have been extracted from previ-
ously published works (Schwob et al. 2020, 2021), and are available
at the NCBI under the project accession numbers PRINA590493,
PRJNA658980, and PRJNA659050, respectively. For correspondence,
the list of samples from previous datasets used in the present
study is provided in Table S1. The data coming from different se-
quencing runs have been obtained and sequenced using the same
protocols, and further processed together within a unique bioin-
formatic batch run.

Metabarcoding data analysis

The 21134495 reads obtained from the 200 samples were pro-
cessed using the open-source mothur software (version 1.47.0)
(Schloss et al. 2009). Reverse and forward sequences were assem-
bled and trimmed to keep only sequences comprised between 385
and 396 nucleotides, containing less than eight homopolymers
and no ambiguous base. The sequences were aligned using the 16S
rRNA gene reading frame from SILVA 138.1 database (Quast et al.
2012). Chimeras were detected and removed with Uchime (Edgar
et al. 2011) implemented in mothur. Processed sequences were
clustered into operational taxonomic units (OTUs) with a simi-
larity threshold of 97%. The taxonomic affiliation was carried out
using the SILVA 138.1 database (Quast et al. 2012). Sequences affil-
iated to chloroplasts, mitochondria, or eukaryotes were removed
with the remove.lineage function in mothur. The singletons and
OTUs with a relative abundance <0.005% were removed as recom-
mended by Bokulich et al. (2013), leading to 1247 OTUs and 7274
315 sequences. Samples were rarefied to 6000 sequences with the
rarefy_even_depth function (phyloseq package, version 1.42.0) (Mc-
Murdie and Holmes 2013), leading to the removal of three samples

with lower sequence counts. This approach was used to normal-
ize the dataset to a similar sequencing depth per sample, even
though rarefying only once could lead to the misrepresentation
of rare taxa that could be avoided by permutational rarefaction
approaches (Schloss 2024).

A phylogenetic tree was built based on the aligned representa-
tive sequence of each OTU, using FastTree software with approx-
imately maximum-likelihood estimation method and a general-
ized time-reversible model of nucleotide evolution.

Bacterial community diversity and structure

The analyses were conducted from the rarefied OTU table in R
version 4.3.2. The Shannon alpha diversity index was calculated
using the estimate_richness function from the phyloseq package.
Faith'’s phylogenetic diversity (PD) index was calculated using es-
timate_pd function from btools package (version 0.0.1) for each
habitat. The proportion of generalist and specialist OTUs in each
habitat was assessed through the Levin’s niche breadth index (Bj)
(Levins 1968) calculated with levins.Bn function from MicroNiche
package (version 1.0.0) (Finn et al. 2020). A high Bj index indicates
that the OTU is evenly distributed across the samples, signifying a
generalist trait. Conversely, a low Bj index suggests that the OTU is
presentin a smaller proportion of the samples, indicative of a spe-
cialist trait. The community variability within each habitat was
evaluated by an analysis of multivariate homogeneity of groups’
dispersions (betadisper function, vegan package).

Statistical comparisons of the Bj indexes between habitats, of
the diversity indices among habitats and among sites (for a given
habitat), and of the community variability between habitats were
assessed using a nonparametric Kruskal-Wallis test (kruskal.test
function) followed by a post hoc Dunn test with Holm correction
(dunn.test function, dunn.test package version 1.3.5).
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The Bray-Curtis and Jaccard (presence-absence) dissimilarity
matrices were calculated from the rarefied OTU table, and the
unweighted UniFrac dissimilarity matrix was calculated from the
phylogenetic tree, using the distance function in the phyloseq pack-
age. To assess the effect of site, habitat, and host species on bac-
terial structure, a permutational multivariate analysis of variance
(PERMANOVA) was conducted on the three dissimilarity matri-
ces, using the adonis2 and pairwise.adonis functions with Holm'’s
P-value correction to account for multiple comparisons. The Bray—
Curtis dissimilarity matrix was used to perform principal coordi-
nates analyses (PCoA) with the ordinate and plot_ordination func-
tions from phyloseq package, either for all samples together or for
each habitat separately.

To identify the OTUs that are significantly enriched in each
habitat, a linear discriminant analysis effect size (LEFse, run_lefse
function, microbiomeMarker package version 1.8.0) was performed
with 100 bootstraps and the LDA score cut off by default (2). To
visualize the relative abundance (per sample) of the ten most dis-
criminant OTUs per habitat, a heatmap was plotted (pheatmap
function pheatmap package version 1.0.12).

Relationship between bacterial community,
environment, and geography

To assess the relative effect of geographic distance and environ-
mental differences on the community assemblages in each habi-
tat, a variation partitioning (varpart function, vegan package) was
performed with the Bray-Curtis dissimilarity matrix (bacterial
community), and the PCNM variables and the PCA-based environ-
mental variables as explanatory factors. The significance of each
explanatory factor was tested by a permutation test (anova.cca
function vegan package with 999 permutations).

Two distance-decay relationships (DDR) were calculated for
each habitat, either (i) between the Bray-Curtis dissimilarity and
the (log-transformed) pairwise geographic distance, or (ii) between
the Bray—Curtis dissimilarity and the (log-transformed) pairwise
environmental distance matrices. To statistically test the differ-
ence in DDR slope steepness among habitats, 1000 random re-
samplings of 21 samples for each habitat (which corresponds
to 75% of the samples in the smallest dataset) were performed
and DDR were computed for each bootstrap. The resulting linear
model slopes of the DDR were compared between habitats with a
Wilcoxon test.

Quantification of bacterial community ecological
assembly processes

The relative contribution of stochastic (i.e. ecological drift and dis-
persal limitation) and deterministic (i.e. homogeneous and vari-
able selection) assembly processes was estimated for each habi-
tat, within and among sites, using the analytical framework devel-
oped by Stegen et al. (2013). This method is based on the turnover
of the phylogenetic and OTU composition. First, for a given habi-
tat, the phylogenetic turnover of bacterial communities between
two samples (either within or among sites) is calculated, to get
the g mean nearest-taxon distance (BMNTD). The phylogenetic
turnover was compared to a random null model expectation, and
the difference between measured BMNTD and the mean of the
null BMNTD distribution is referred to as the g-nearest taxon in-
dex (BNTI). Absolute BNTI values superior to |2| indicates that the
observed turnover between a pair of communities is governed pri-
marily by selection (specifically, by variable selection for ANTI >
2, and by homogeneous selection for gNTI <-2). A NTI value
between —2 and 2 indicates that the community is governed by

stochastic processes (drift or dispersal). In such case, the turnover
in OTU composition is further estimated using the pairwise Bray—
Curtis based Raup-Crick dissimilarity index (RCpyay) between pairs
of samples of a given habitat, either within or among sites. RCpray
values inferior to —0.95 and superior to 0.95 correspond to com-
munities that have more or fewer taxa in common than expected
by chance, respectively, and therefore indicate that community
turnover is driven by homogenizing dispersal (RCpray < —0.95) or
dispersal limitation (RCpray > 0.95). On the contrary, RCpray val-
ues between —0.95 and 0.95 are indicative of ecological drift. The
calculation of the SNTI and RCpay matrices was performed using
an optimized version of the ses.comdistnt function, MicEvo package
(version 0.9.19) developed by Richter-Heitmann et al. (2020).

Results
Environmental characterization of each site

The PCA of the environmental variables revealed a clear latitu-
dinal separation along the first axis (explaining 74% of the ob-
served variance) between the Antarctic site (South Shetland Is-
lands), the Subantarctic islands, and Patagonia (Fig. 1B). South
Shetland and South Georgia sites were more correlated with the
oxygen and silicate concentrations, while the Patagonia site was
more correlated with iron concentration and light availability. The
Falkland/Malvinas site was correlated with pH, temperature, and
primary production indicators (such as chlorophyll a concentra-
tion, primary production, and carbon phytoplankton biomass),
whereas the Kerguelen site was more correlated with current ve-
locity (Fig. 1B).

The Abatus model provides a gradient of habitat
specificity for bacterial communities

A gradient of alpha diversity was observed across the three habi-
tats, with significantly higher values of Shannon index for the sed-
iment than for the gut tissue bacterial communities (P-value <
.001; Fig. 2A). The same pattern was observed for the PD index
(Fig. S1), suggesting that OTUs from the gut tissue are phyloge-
netically more related to each other than the ones from the sedi-
ment. The sediment OTUs had significantly higher niche breadth
index than the OTUs from gut tissue habitats (Fig. 2B), indicating
that sediment has more generalist OTUs while gut tissue OTUs
are more specialists. The gradients of alpha diversity and niche
breadth index were consistent and more pronounced within each
locality considered independently (Fig. S2).

The site differentiation decreases along the
gradient of increasing habitat specificity

For the three habitats, the sampling site was the strongest driver
of community variation (PERMANOVA, P-values < .001; Table S2).
However, the effect of the sampling sites was weaker for more spe-
cific habitats (gut tissue) than for external sediment. The magni-
tude of the site effect thus decreased along the gradient of in-
creasing habitat specificity. The highest divergence among sites
was observed for the sediment bacterial communities (R? = 0.85),
followed by the gut content bacterial communities (R? = 0.66) and
the gut tissue bacterial communities (R? = 0.31) (Fig. 3; Table S2).
For the sediment and gut content bacterial communities, each site
formed a separated cluster on the PCoA, and the first axis (ex-
plaining >30% of the variation) mainly separated the South Shet-
land site from the Subantarctic sites (Fig. 3). Contrary to what was
expected from the biogeographic provinces and host distribution,
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Figure 2. Characterization of the habitat specificity gradient. (A) Boxplot
of alpha diversity estimated by the Shannon index for each habitat
(sediment, n = 28; gut content, n = 110; and gut tissue, n = 59). (B)
Boxplot of Levins niche breadth index (Bj) for each habitat. Only
significant differences among habitats are shown by brackets
(Kruskal-Wallis, followed by post hoc Dunn test). The significance level of
P-values is indicated as follows: * < .05, ** < .01, ** < .001, and *** <
.0001.

the bacterial communities from South Georgia clustered closer to
the Subantarctic sites than to the Antarctic one.

By contrast, the gut tissue bacterial communities were not
clearly separated by sampling site in the PCoA ordination (Fig. 3).
This can be due to the variability of the gut tissue communi-
ties among replicates, which was significantly higher than for gut
content and sediment samples (as shown by betadisper analysis;
Fig. S3), independently of the distance matrix used (Table S3). The
decrease in the site differentiation along the gradient of habitat
specificity was consistent when analysing Bray-Curtis, Jaccard, or
unweighted UniFrac dissimilarity matrices. The magnitude of the
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site effect (indicated by the PERMANOVA R? value) was lower for
Jaccard and unweighted UniFrac distances than for Bray-Curtis
(Table S2). Pairwise differences between sites did not show a com-
mon pattern similar for the three habitats (Table S4). For exam-
ple, for the sediment, the most different bacterial communities
were observed between South Shetland and Kerguelen (R? = 0.90;
Table S4), while for the gut tissue the most different bacterial com-
munities were observed between Kerguelen and South Georgia (R?
= 0.28; Table S4).

The contributions of environmental and
geographic factors to bacterial community
variation decrease along the gradient of
increasing habitat specificity

The site effect is an integrative factor that combines the potential
effects of geographical distance and environmental differences
among sites. Variation partitioning analysis showed that geogra-
phy and environment explained similar amounts of variance in all
habitats (Fig. 4). The amount of variance explained by geography
and environment decreased along the gradient of habitat speci-
ficity, being two to three times lower in gut tissue bacterial com-
munities than in sediment bacterial communities (Fig. 4). When
normalized by the total amount of explained variation, the rel-
ative contribution of geography and environment remained sta-
ble (representing around 50% each) along the gradient of habitat
specificity.

DDR were established between community dissimilarity and
either the geographical (Fig. 5A) or environmental (Fig. 5B) dis-
tances for each habitat. The slopes of the geographical and en-
vironmental DDR were significantly higher for sediment (R = 0.12
and 0.49, respectively) than for gut tissue bacterial communities
(R = 0.05 and 0.19, respectively, Wilcoxon test, P-values < .001;
Fig. 5C and D), indicating that the strength of the geography and
environment effects decreased along the gradient of increasing
habitat specificity. This result suggests a stronger geographical
and environmental divergence for less selective habitats such as
sediment compared to gut tissue habitat.

Habitat-specific taxa are distributed along the
gradient of habitat specificity

Each habitat was characterized by specifically enriched OTUs.
Sediment bacterial communities were characterized by OTUs
mainly belonging to Proteobacteria and Acidobacteria phyla
(Fig. 6). Only 2.1% of the sediment OTUs were shared among
all samples, and 19% of the sediment OTUs were shared among
the five sites (but were not necessarily present in all sam-
ples of each site) (Fig. S4A). The main discriminant sediment-
enriched OTUs differed according to the site of provenance: Woe-
seia for South Shetland Islands, Cyclobacteriaceae for South Geor-
gia and Falkland/Malvinas Islands, Thermoanaerobaculaceae for Ker-
guelen Islands, Gammaproteobacteria BD7-8 for South Georgia,
and Latescibacterota for Patagonia (Fig. 6). Gut content bacterial
communities were characterized by OTUs belonging to Plancto-
mycetota and Proteobacteria phyla in particularly Blastopirellula
and Rubripirellula genera, Rhodobacteraceae family and Gammapro-
teobacteria class (Table S6). Gut tissue bacterial communities
were characterized by OTUs belonging to more diverse phyla
(Table S6 and Fig. 6). None of the gut tissue OTUs was shared
among all samples, and only 21% were shared among the three
Abatus species (Fig. S5A). Contrary to what was observed in sed-
iment, the gut tissue discriminant taxa did not show a site-
specific pattern. The gut tissue discriminant OTUs could be either
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Figure 3. Dissimilarity of bacterial communities along the gradient of habitat specificity. PCoA of bacterial community composition based on
Bray-Curtis distance from 16S rRNA gene sequences, for each habitat separately. Symbol colours represent sampling sites, and symbol shapes indicate
the host species. Ellipses represent the standard deviation of all points for a given site with a confidence interval at 0.95. The effect of the site on the
clustering was tested by PERMANOVA (adonis2 function vegan package, all P-values < .05).
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Figure 4. Variation partitioning analysis showing the amount of
variation explained by geography and environment on bacterial
community dissimilarity for each habitat. The bacterial dissimilarity
matrix was calculated with Bray-Curtis. The geographic distance matrix
was obtained from the three principal coordinates of a neighbourhood
matrix (PCNM1 and PCNM?2), and the environmental distance matrix
was obtained from the sample scores on the two first principal
components (PC1 and PC2) of the PCA of environmental variables. The
significance of each factor was tested by 999 permutations and for each
habitat separately (anova.cca function, vegan package) (Table S6).

significantly enriched in one of the sea urchin species, such as De-
thiosulfatarculus and Delftia (in A. cavernosus), Latescibacterota (in
A. agassizii), Clostridia (in A. cordatus), or in several host species
such as Lutibacter and Spirochaetaceae (Fig. 6). A more detailed list
of OTUs significantly enriched in the sediment and gut tissue is
provided in Figs S4 and S5.

Ecological processes governing bacterial
community assembly differ along the gradient of
habitat specificity

Within each site, stochastic processes were the dominant assem-
bly mechanisms in the three habitats. Their contribution signif-
icantly decreased along the gradient of habitat specificity repre-
senting 86.0%, 65.8%, and 63.0% for sediment, gut content, and
gut tissue, respectively (Fig. 7; Tables S7 and S8). The nature of
the stochastic processes also differed strikingly between sedi-
ment bacterial communities [dominated by homogenizing disper-
sal (76.7%)] and gut tissue bacterial communities [dominated by
ecological drift (38.9%) and dispersal limitation (18.8%)] (Fig. 7;
Table S7). These results suggest that the sediment bacterial com-
munities are more connected and can easily disperse at a small
space scale, allowing homogenization within the same site, while
gut tissue bacterial communities had lower dispersal ability and
were characterized by more variability and random colonization.
By contrast, the contribution of deterministic processes signifi-
cantly increased along the gradient of increasing habitat speci-
ficity from 14.0% to 24.1% and 36.8% for sediment, gut content,
and gut tissue, respectively (Fig. 7; Tables S7 and S8). Among these
deterministic processes, the contribution of variable selection did
not significantly differ between habitats (Table S8), while homoge-
nous selection only contributed to the community assembly of
gut-related habitats (8.5% and 13.4% for gut content and gut tis-
sue, respectively), suggesting that the intestinal conditions, likely
similar for individuals of the same species, might select similar
bacterial taxa, thus homogenizing part of the community.

When comparing different sites, the main process driving bac-
terial community assembly was variable selection for all habitats
(>64.8%; Fig. 7; Table S7) indicating that the differences of envi-
ronment among sites imposed differential species sorting, thus
driving differences in bacterial communities’ composition across
sites. The relative contribution of variable selection decreased
along the gradient of increasing habitat selectivity, from 91.3%
for sediment to 68.3% for gut tissue bacterial communities (Fig. 7;
Table S7), suggesting that the gut tissue bacterial communities
are constrained in a lesser extent by the external environmen-
tal conditions among sites than sediment bacterial communities.
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Stochastic processes, mainly dispersal limitation and, to a lesser
extent, ecological drift, contributed about 30% (Fig. 7; Table S7)
to the assembly of bacterial communities from gut content and
gut tissue, indicating that random processes are also important
in structuring gut bacterial communities between different sites.

Discussion

The Abatus gut acts as a ‘specific habitat’ for
bacterial communities

The difference between gut microbiota and the surrounding en-
vironment has been observed in various sea urchins (Hakim et
al. 2016, 2019, Rodriguez-Barreras et al. 2021). The reduction of
taxonomic and phylogenetic bacterial diversity along the gradi-
ent of habitat specificity imposed by Abatus gut, previously ob-
served for a single species and site (Schwob et al. 2020), was ex-
panded here to three species and five sampling sites across the
Southern Ocean. The microbiota of Abatus gut tissue harbours a
higher proportion of specialist taxa than in the surrounding sed-
iment. This result could be due to a shared evolutionary history
between the host and its bacterial symbionts (i.e. coevolution or
cophylogeny; Moran and Sloan 2015, Pankey et al. 2022, Schwob

et al. 2024) or may reflect a phylosymbiosis pattern, as evidenced
in other sea urchins (Carrier et al. 2024). Gut tissue microbiota
presented a high individual variability, as also evidenced in other
marine organisms such as sponges (Griffiths et al. 2019), fishes
(Stagaman et al. 2017), and copepods (Datta et al. 2018). Such vari-
ability could be due to host intrinsic related factors (immunology
and genetics), microbial interactions, and/or stochastic processes
that could vary between individuals (Adair and Douglas 2017). De-
spite the interindividual variability, OTUs from Lutibacter, Dethio-
sulfatarculus, Spirochaeta-2, Delftia, and Spirochaetaceae were signifi-
cantly enriched in the Abatus gut tissue from all species and sites.
Spirochaetaceae have already been identified as keystone in the core
gut microbiota of A. agassizil (Schwob et al. 2020) and other sea
urchins from the Schizasterid family (Ziegler et al. 2020), and dis-
play phylogeographic patterns at intra-OTU level (i.e. microdiver-
sity) (Schwob et al. 2021). A Lutibacter strain has been isolated from
the sea urchin Strongylocentrotus intermedius (Nedashkovskaya et
al. 2015). Bacterial taxa that are conserved over time and space
among our three ecologically and phylogenetically related sea
urchin species (Diaz et al. 2012) might be important for host func-
tioning (Murfin et al. 2015, Brooks et al. 2016). For instance, Dethio-
sulfatarculus and Delftia genera comprise, respectively, anaerobic
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sulphate reducers (Davidova et al. 2016) and aerobic, nonfermen-
tative, nitrate reducers (Wen et al. 1999), that might contribute to
host nutrition via nitrate and sulphate metabolisms. In Antarc-
tic organisms, such as sponges, exclusive bacterial symbionts dis-
play functions not only related to nutrient metabolism, but also
enabling their symbiotic lifestyle and adaptation to cold environ-
ments (Moreno-Pino et al. 2024).

Strong biogeographical pattern in sediment
bacterial communities across the Southern
Ocean

The sediment bacterial communities exhibited the strongest bio-
geographical clustering pattern across the five sites in the South-
ern Ocean, with a notable contrast between the Antarctic and

Subantarctic provinces. This contrast could be explained by the
APF that promotes physicochemical and biological dissimilarities
between Antarctic and Subantarctic regions and acts as a strong
biogeographic barrier, as mainly documented for free-living sur-
face seawater communities to date (Wilkins et al. 2013, Wang
et al. 2020, Maturana-Martinez et al. 2022, Sow et al. 2022), as
well as for Spirochaeta microdiversity (phylotypes) in Abatus gut
tissue (Schwob et al. 2021). Biogeographic studies of Antarctic
benthic environments are scarcer and focus on deep sea sed-
iment (Li et al. 2020), or intertidal sediments at a small geo-
graphical scale (Wang et al. 2017). Comparisons between Antarc-
tic and Subantarctic marine sediment bacterial communities do
not address biogeographic concerns (Espinola et al. 2018, Galvan
et al. 2023). The sediment-discriminating taxa are discussed in
Supplementary Material S1.
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The biogeographical classification of South Georgia biota
(Antarctic versus subAntarctic) is still debated and is taxa-
dependent (Supplementary Material S2). Here, contrary to the
host phylogeographic pattern, the sediment bacterial communi-
ties from South Georgia showed the highest dissimilarity with the
Antarctic ones and clustered more closely with the subAntarctic
communities (Patagonia and Falkland/Malvinas Islands). This re-
sult can be explained by the eastward dispersal of sediment bac-
teria promoted by the ACC, as previously suggested for other sites
of the Southern Ocean (Schwob et al. 2021), since the southern
boundary of the ACC is located south of South Georgia (Thorpe et
al. 2002).

The differentiation of sediment bacterial communities among
sites was explained by a similar level of contribution of geographic
and environmental distances, in contrast with most studies high-
lighting a predominant role of local factors (i.e. environmental se-
lection) in structuring sediment and soil bacterial communities
(Wang et al. 2017, Hoshino et al. 2020, Maturana-Martinez et al.
2022, Seppey et al. 2023). Our results are consistent with the pat-
terns observed for deep-sea sediment around Antarctica (Li et al.
2020) and in the South Atlantic Ocean (Schauer et al. 2010), as well
as for continuous, well-connected Southern Ocean surface water
(Wang et al. 2020), thus expanding these findings at larger scale
across different biogeographic provinces.

The strength of the biogeographical pattern is
modulated by the level of habitat specificity

The differentiation of bacterial communities between sites de-
creased along the increasing gradient of habitat specificity. The
effect of environmental and geographical distances on bacte-
rial community variation was stronger for sediment (less spe-
cific habitat) than for gut tissue (more specific habitat). Similarly,
steeper DDR based on geographic and environmental distances
have been previously evidenced in nonhost-associated marine
habitats characterized by a higher environmental heterogeneity
(Zinger et al. 2014, Zhao et al. 2022). Even if contrary results have
been reported at a smaller spatial scale in terrestrial ecosystem
(soil versus earthworm gut), the DDR strength decreased from the
earthworm foregut to the hindgut, suggesting that bacterial com-
munity became more similar during the passage of the gut, thus
reflecting a potential gradient of habitat specificity within the in-
testinal tract (Wu et al. 2023). Our results are consistent with the
conceptual framework proposed by (Langenheder and Lindstrom
2019), where more heterogenous habitats, represented by marine
sediment in our case, are expected to be more impacted by envi-
ronmental filtering. This can be attributed to the large differences
in environmental conditions of sediment among sites, whereas
the Abatus gut conditions might homogenize the local environ-
ment among sites and select specific bacterial taxa, thus reduc-
ing the influence of external factors and environmental hetero-
geneity to which sea urchins are exposed. When comparing free-
living and host-associated bacterial communities across six Aus-
tralian estuaries, the bacterial communities from less selective
and more heterogenous habitats (seawater and sediment) showed
a stronger correlation with geographic and environmental factors
compared to the fish-associated ones (Suzzi et al. 2023), similarly
to our conclusions. This suggests that other factors, likely related
to the host (e.g. physicochemical conditions of the gut, immunity,
genetics, physiology, diet, microbial interactions, among others—
not measured in this study), might play a crucial role in structur-
ing the gut microbiota (Adair and Douglas 2017, Xiao et al. 2021,
Kang et al. 2022, Pan et al. 2022), potentially overwhelming the ge-
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ographic and environmental effects and promoting the homoge-
nization of the gut bacterial communities. Host species or popula-
tion genetics have been demonstrated as significant factors struc-
turing bacterial community assembly (Pita et al. 2013, Easson et
al. 2020, Sacristan-Soriano et al. 2020). In addition to ecological
factors, the evolution of the holobiont can also be the result of
cophylogeny and codiversification processes, where both the host
and its associated microbiota coevolve over time alongside envi-
ronmental convergence (Pankey et al. 2022).

Here, the host- and site-effects could be partly confounded due
to the absence of different Abatus species coexisting in the same
sites. In other words, the fact that each site harbours only one Aba-
tus species make it challenging to confidently attribute commu-
nity variability to either a site or a host effect. However, our study
design includes two Abatus species that are present at different
sites: (i) A. cavernosus in Patagonia and Falkland,; (ii) A. agassizii in
South Shetland and South Georgia. Thus, the observed differences
of gut microbial communities between these sites (i.e. Patagonia
versus Falkland on the one hand; South Shetland versus South
Georgia on the other hand) are likely site-driven rather than host-
driven.

Apart from environmental and spatial factors, we cannot ex-
clude the role of vertical transmission (from parents to offsprings)
in structuring the gut microbiota of several invertebrates (Sharp
et al. 2007, Baldassarre et al. 2021), including sea urchins (Carrier
et al. 2021). However, in most cases microbiota acquisition is gov-
erned by a combination of vertical and horizontal transmission
(from the environment) (Sipkema et al. 2015, Morrow et al. 2018,
Bjork etal. 2019, de Oliveira et al. 2020, Giraud et al. 2022, Unzueta-
Martinez et al. 2022, Buschi et al. 2023). Horizontal transmission
from feeding has been recognized in echinoderms larvae (Carrier
and Reitzel 2020, Carrier et al. 2020). Regardless of the acquisition
route, the gut microbiota is expected to change throughout an in-
dividuals’ lifespan in tight relation with the environment and diet
(Carrier et al. 2021, Masasa et al. 2021, Renelies-Hamilton et al.
2021, Kang et al. 2022). In our study, several evidence challenge
the hypothesis of exclusive vertical transmission of Abatus gut mi-
crobiota. First, a large number of taxa were shared between the
Abatus gut tissue and the external sediment communities (1080
common OTUs out of 1172 OTUs in gut tissue; Fig. S7), accounting
for 90% of the abundance of the gut tissue community (Table S9).
Second, despite multiple attempts, we were unable to detect a mi-
crobial signal in Abatus eggs and gastrulas through PCR amplifi-
cation (see Supplementary methods, Fig. S8, Table S10). Third, the
assembly of the gut bacterial communities was primarily driven
by stochastic processes (Fig. 7A), whereas homogeneous selec-
tion would be expected to dominate if vertical transmission were
the sole mode of microbiota acquisition—implying the consistent
transmission of obligate symbionts across generations. Fourth, we
did not identify OTUs common to all Abatus gut samples, even
at the scale of one Abatus species nor of one site (Fig. 6; Fig. S5),
which is contradictory with the vertical transmission and mainte-
nance of important bacterial symbionts. Therefore, even if a frac-
tion of the gut microbiota is vertically transmitted, it might be
marginal compared to the community variability induced by geo-
graphic and environmental factors.

The contribution of ecological processes to the
bacterial assembly is modulated by the degree of
habitat specificity and the geographical scale

At a local scale (i.e. within each site), stochastic processes
dominated the assembly of bacterial communities in the three
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habitats. The relative contribution of stochastic processes de-
creased along the increasing gradient of habitat specificity from
sediment to gut tissue, consistently with Dickey et al. (2021). In
soils, the contribution of assembly stochastic processes varies ac-
cording to the habitat heterogeneity level, albeit in an opposite
way for specialist versus generalist taxa (Gao et al. 2023). In our
study, the main process governing the assembly of sediment bac-
terial communities was homogenizing dispersal, probably due to
the higher connection between sediment communities than be-
tween gut communities. Indeed, in our coastal sampling sites,
the semidiurnal tides, and the bioturbation activity of Abatus sea
urchins (Lohrer et al. 2005, Thompson and Riddle 2005) can gen-
erate sediment resuspension and mixing, facilitating the disper-
sion of bacteria within the same locality. On the other hand, the
gut of different Abatus individuals coming from the same site can
be considered as island-like habitats (Loudon et al. 2016, Itescu
2019), thus limiting the dispersion capacity of gut bacteria from
one host to another and explaining the contribution of disper-
sal limitation in this habitat. By contrast, the main assembly pro-
cess for gut tissue bacterial communities was ecological drift, as
also observed in zebrafish (Xiao et al. 2021). Bacterial coloniza-
tion of the gut could generate random assemblage due to the pri-
ority effect (Fukami 2015), since the initial colonizing bacterium
will influence, through biological interactions, the subsequent es-
tablishment and maintenance of bacteria. Regarding the (minor)
deterministic processes, homogenous selection was significantly
more important in the most specific habitat (gut tissue, contain-
ing the highest fraction of specialists) suggesting that the filter
imposed by hosts to their bacterial symbionts dictates some ho-
mogenizing patterns in gut community assembly common to all
hosts. This is consistent with the fact that specialist taxa, being
representative and well adapted to specific habitats, are gener-
ally more affected by deterministic factors than generalist taxa
(Székely and Langenheder 2014, Liao et al. 2016). For instance, ho-
mogeneous selection has been demonstrated to be an important
process in shaping fish gut tissue bacterial communities (Xiao
et al. 2021). In contrast with our study, homogenous selection
was the main process governing bacterial assembly in a highly
connected Antarctic freshwater systems, especially in mats and
slightly less in water, while dispersal limitation had little influ-
ence (Ramoneda et al. 2021) suggesting that the assembly mech-
anisms are dependent on the studied system and the geographical
scale.

At a regional scale (i.e. among sites), the bacterial assem-
blage was primarily driven by variable selection in all habitats,
with a significantly stronger contribution in sediment. The im-
portance of variable selection in sediments can be explained by
their higher environmental variability and heterogeneity among
sites, selecting for different bacterial communities, as previously
reported in other marine sediments (Petro et al. 2017). The pro-
portion of variable selection was lower in gut tissue due to the
homogenizing effect imposed by the specific gut conditions of
closely related hosts; however it remains an important driver of
community assembly, suggesting that the different host species
found in the different sites might impose different gut filter-
ing and select different communities. In parallel, the proportion
of ecological drift and dispersal limitation increased in more
specific habitats (gut tissue) among sites, probably due to less
connected and island-like ecosystems, as evidenced in inverte-
brate gut bacterial communities (Sieber et al. 2019, Ge et al.
2021).

Conclusion

Our results underscore the important role of habitat specificity
in shaping bacterial biogeographic patterns in Southern Ocean
benthic ecosystems. Locality, geography, and environmental fac-
tors exerted a greater influence on less specific habitats (i.e. sed-
iment) than on more specific habitats (i.e. sea urchin gut tissue).
Both stochastic and deterministic ecological processes played a
potential role in bacterial assembly, with different magnitude ac-
cording to the habitat specificity level and the geographical scale
(i.e. within or among sites). Our study highlights the importance
of considering diverse habitats when examining bacterial biogeo-
graphic patterns and their associated assembly processes. Under-
standing patterns of microbial diversity, which is fundamental,
for example, for studying ecosystem functioning or for develop-
ing conservation strategies, requires nowadays a more in-depth
evaluation of diverse habitats as they can behave very differently
depending on their level of specificity.
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