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Abstract

The aim of this thesis is to study the following three problems:

1) We are concerned with the behavior of normal cones and subdifferentials
with respect to two types of convergence of sets and functions: Mosco and
Attouch-Wets convergences. Our analysis is devoted to proximal, Fréchet,
and Mordukhovich limiting normal cones and subdifferentials. The results
obtained can be seen as extensions of Attouch theorem to the context of
non-convex functions on locally uniformly convex Banach space.

2) For a given bornology /5 on a Banach space X we are interested in the
validity of the following “liminf” formula

liminf T3(C; ") C T.(C; ).
C

'Sz

Here T3(C; x) and T,(C; x) denote the S-tangent cone and the Clarke tangent
cone to C' at x. We proved that it holds true for every closed set C' C X and
any x € C, provided that the space X x X is 0g-trusted. The trustworthiness
includes spaces with an equivalent [-differentiable norm or more generally
with a Lipschitz S-differentiable bump function. As a consequence, we show
that for the Fréchet bornology, this “liminf” formula characterizes in fact
the Asplund property of X.

3) We investigate the convexity of Chebyshev sets. It is well known that in
a smooth reflexive Banach space with the Kadec-Klee property every weakly
closed Chebyshev subset is convex. We prove that the condition of the weak
closedness can be replaced by the local weak closedness, that is, for any z € C
there is € > 0 such that C NB(x, ¢) is weakly closed. We also prove that the
Kadec-Klee property is not required when the Chebyshev set is represented
by a finite union of closed convex sets.

Keywords: Mosco (Attouch-Wets) convergence, proximal normal cone, Fréchet
(Mordukhovich limiting) subdifferential, subsmooth sets (functions), Clarke
tangent (normal) cone, contingent cone, bornology, Asplund space, trustwor-
thiness, Chebyshev set, metric projection, minimizing sequence.






Résumé

Le but de cette these est d’étudier les trois problemes suivantes :

1) On s’intéresse a la stabilité des cones normaux et des sous-différentiels
via deux types de convergence d’ensembles et de fonctions : La convergence
au sens de Mosco et celle d’Attouch-Wets. Les résultats obtenus peuvent
étre vus comme une extension du théoreme d’Attouch aux fonctions non
nécessairement convexes sur des espaces de Banach localement uniformément
convexes.

2) Pour une bornologie § donnée sur un espace de Banach X, on étudie la
validité de la formule suivante

liminf T3(C; ") C T.(C; ).
C

'Sz

Ici T(C;z) et T.(C;x) désignent le S-cone tangent et le cone tangent de
Clarke a C' en . On montre que si, X X X est - “trusted” alors cette formule
est valable pour tout ensemble fermé non vide C' C X et € C. Cette classe
d’espaces contient les espaces ayant une norme équivalent S-différentiable, et
plus généralement les espaces possédant une fonction “bosse” lipschitzienne
et [-différentiable). Comme conséquence, on obtient que pour la bornologie
de Fréchet, cette formule caractérise les espaces d’Asplund.

3) On examine la convexité des ensembles de Chebyshev. Il est bien connu
que, dans un espace normé réflexif ayant la propriété Kadec-Klee, tout en-
semble de Chebyshev faiblement fermé est convexe. On démontre que la
condition de faible fermeture peut étre remplacée par la fermeture faible
locale, c’est-a-dire pour tout x € C' il existe € > 0 tel que C'NB(z, €) est fai-
blement fermé. On montre aussi que la propriété Kadec-Klee n’est plus exigée
lorsque ’ensemble de Chebyshev est représenté comme une union d’ensembles
convexes fermés.

Mots-clés : Convergence au sens de Mosco (d’Attouch-Wets), cone normal
proximal, sous-différentiel de Fréchet (de Mordukhovich), ensembles sous-
réguliers, fonctions sous-régulieres cone normal (tangent) de Clarke, cone
tangent de Bouligand, bornologie, espace d’Asplund, ensemble de Chebyshev,
projection metrique, suite minimisante.
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Chapitre 1

Présentation générale

Ce travail est composé de trois parties indépendantes. Dans la premiere
nous présentons l'article “Convergence of subdifferentials and normal cones
in locally uniformly convex Banach space” écrit en collaboration avec Lionel
Thibault. Dans la deuxiéme partie nous présentons 'article “The validity of
the “liminf” formula and a characterization of Asplund spaces” écrit en colla-
boration avec Abderrahim Jourani. Et dans la derniéere partie nous présentons
I’article “New conditions ensuring the convexity of Chebyshev sets”.

1.1 Présentation des outils d’analyse non lisse

Soient X un espace de Banach et X* son dual topologique avec un crochet
de dualité (-, -). Une bornologie § sur X est une famille d’ensembles bornés
et centralement symétriques de X dont I'union est X, et telle que 1'union
de deux éléments de 5 est un élément de 3. Les bornologies les plus impor-
tantes sont la bornologie de Gateaux qui consiste en tous les ensembles finis
symétriques de X, la bornologie de Hadamard qui consiste en tous les en-
sembles compacts symétriques, la bornologie faible de Hadamard qui consiste
en tous les ensembles faiblement compacts symétriques et enfin la bornologie
de Fréchet qui consiste en tous les ensembles bornés et symétriques.

Chaque bornologie [ génere un (-sous-différentiel qui est a son tour en-
gendre un -cone normal, et en polarisant on obtient aussi le S-cone tangent.

Definition 1.1.1 Soient f : X — RU {00} une fonction finie en x et
une bornologie sur X.



(a) f est B-différentiable en x s’il existe x* € X* tel que pour tout ensemble
Sep
lim ¢~ 'sup |f(x +th) — f(x) — (a*,th) | = 0,

t—0t heS

(b) x* € X* est appelé 3-sous-gradient de f en x, si pour tout € > 0 et tout
ensemble S € [ il existe § > 0 tel que pour tout 0 <t < ¢ et tout h € S

7 (flz+th) — f(z)) — (2*,h) > —e.

On note ds f(x) l'ensemble de tous -sous-gradients de f en x.

En appliquant la définition 1.1.1(a) a la bornologie de Fréchet et a la Gateaux
bornologie, on obtient les définitions classiques suivantes :

e Fréchet-différentiabilité : il existe z* € X™* tel que

lim ([P 7 (f (2 + h) = f () = (@7, b)) = 0.

o Gateaux-différentiabilité : il existe x* € X* tel que

Vhe X, limt '(f(x+th)— f(x)) = (a*, h).
t—0t
De la méme maniere la définition 1.1.1(b) aboutit dans le cas de la bornologie
de Fréchet (c.-a-d. § = F') ala définition classique du sous-différentiel Fréchet
de fen x :

Orf(z) = {:c e X* iming LW =S =@y o) 0}.

y—a ly — ||
Nous allons noter par Ng(C;z) le f-cone normal de C' en x :
N5(Ciz) = Ogtbe(x)
ou Y¢ est la fonction indicatrice de C, c’est a dire

0 if r € C,
wc(m)—{ +00 ifx ¢ C

et par T3(C; x) le B-cone tangent qui est défini comme le cone polaire négatif
du [-cone normal intersecté avec X, c’est a dire

T4(C, z) = (N5(C,z))° N X.



Definition 1.1.2 Soit X un espace de Banach et 5 une bornologie sur X.
On dit que X est Og- “trusted”, si la regle flove souivante de minimisation
est verifiée : soit f une fonction sur X finie en & € X, et soit g une fonction
lipschitzienne sur X. Supposons que f + g atteint un minimum local en T.
Alors pour tout € > 0 ils existent x,u € X et x* € 0gf(x), u* € Opg(u) tels
que

lo =zl <&, Jlu=zl <e [flx) = f(@)] <&, et |27 +u"] <e

Le cone tangent de Bouligand K(C;x) de C en x est défini par :
K(C,x)={h e X :3t, — 0", 3h, — h, tel que x +t,h, € C Vn € N}
Le cone tangent de Clarke T.(C;x) de C en x est défini par :

T.(C;z) = {h € X : V2, Sz, V, — 07, 3h, — htel que 2+t h, € C Vn € N}

Soient (C,,), une suite d’ensembles d’un espace normé X. Notons

Liminf C,, := {x € X : J une suite (z,), convergeant vers x
n—oo

avec x, € C, pour tout entier n suffisamment grand},

Limsup C,, := {z € X : 3 une suite (k(n)), dans N et

n—oo

() convergeant vers x avec x,, € Cy(n) pour tout n € N}7

Y Limsup Cy, := {z € X : 3 une suite (k(n)), dans N et (z,),

n—oo

convergeant faiblement vers z avec z,, € Cy(,) pour tout n € N }

Definition 1.1.3 On dit que la suite (Cy,), converge au sens de Painlevé-
Kuratowski vers l’ensemble C' de X si

C = Liminf C,, = Limsup C,,.

n—oo n—oo



Definition 1.1.4 On dit la suite (C,,),, converge au sens de Mosco vers l'en-
semble C' de X si

C = Liminf C, = Limsup C,,.

n—oo n—o0

L’exces de 'ensemble A sur I'ensemble A’ et Hausdorff p-semi-distance entre
A et A’ sont définis de la maniere suivante

e(A, A") := supdist(a, A'),

acA
Haus,(A, A") := max {e(AN pBx, A'),e(A' N pBy, A)}.

Definition 1.1.5 On dit que la suite (C,,),, converge au sens d’Attouch- Wets
vers l’ensemble C' de X, si pour tout p > 0 suffisamment grand

Haus,(C,,C) —— 0.

n—o0

1.2 Convergence des sous-différentiels et des
cones normaux dans un espace de Banach
localement uniformément convexe

Dans cette partie nous étudions les questions suivantes : supposons que
la suite (C,,), des ensembles fermés dans un espace de Banach converge au
sens de Mosco ou d’Attouch-Wets vers un ensemble C, que peut-on dire sur
la convergence de la suite des graphes des cones normaux ? Nous allons nous
concentrer sur les cones normaux proximaux, Fréchet et de Mordukhovich.
Et le méme type de questions se pose en remplacant les ensembles par des
fonctions et les cones normaux par des sous-différentiels.

H. Attouch [3] était le premier a s’intéresser a des questions de ce type. 11
a établi qu'une suite de fonctions a valeurs réelles étendues, semi-continues
inférieurement, convexes et propres sur un espace normé réflexif converge au
sens de Mosco si et seulement si la suite des graphes des sous-différentiels
converge au sens de Painlevé-Kuratowski vers le graphe du sous-différentiel
de la fonction limite a une constante additive pres. Concernant la convergence
a la Attouch-Wets, H. Attouch, J.L. Ndoutoume et M. Théra [4] ont montré
qu’une famille de fonctions convexes propres semi-continues inférieurement



(définies sur un espace normé super-réflexif) converge au sens d’Attouch-
Wets si et seulement si la suite des graphes des sous-différentiels converge au
sens d’Attouch-Wets a une constante additive pres.

R.A. Poliquin [20] a étendu le théoreme d’Attouch aux fonctions non-
convexes dites“primal lower nice” (pln) dans un espace de dimension fi-
nie. A. Levy, R.A. Poliquin et L. Thibault [18] ont prouvé que dans un
espace d’Hilbert, si (f,,)n est une suite de fonctions minorées par la méme
constante autour de z, avec ( fn(x))n bornées, et “equi-primal-lower-nice”
en x, alors la convergence au sens de Mosco vers f entraine que la suite
des graphes des sous-différentiels converge au sens de Painlevé-Kuratowski
vers le graphe du sous-diffrentiel de f. Ils ont aussi montré que la conver-
gence au sens d’Attouch-Wets des (f,,), implique la convergence au sens de
Painlevé-Kuratowski des graphes des sous-différentiel aussi bien que la quasi
Attouch-Wets convergence des sous-gradients dans le méme sens. A. Jourani
[16] a montré que le sous-différentiel approché de Ioffe d’une fonction semi-
continue inférieurement sur un espace de Banach est contenu dans la limite
supérieur des sous-différentiels approchés de Ioffe d’une famille de fonctions
semi-continues infé-rieurement convergeant uniformément vers cette fonction.

Récemment X.Y. Zheng and Z. Wei [25] ont considéré la convergence
des cones normaux pour une suite d’ensembles sous-réguliers sur un es-
pace d’Hilbert. Comme conséquence, ils ont obtenu une généralisation de
[18] : Si la suite (fy,), de fonctions a valeurs réelles propres semi-continues
inférieurement sur un espace d’Hilbert H converge au sens de Mosco vers
une fonction propre f et (f,,), est uniformément sous-réguliers en z, alors un
élément ( € H appartient au sous-différentiel de Mordukhovich de la fonc-
tion f en T si et seulement si il existe une suite ((xn, Cn))n dans H x H et

une suite strictement décroissante (k(n)) dans N telles que

Cn € ank(n)(xn) et (Ina fk(n)(xn)) — (;E, f(a_:))

et (¢u)n converge faiblement vers €. Ici on désigne par Op fi(n) le sous-différentiel
proximal de fi). On dit que (f,), est uniformément sous-réguliere en 7 si
pour tous € > 0 et M > 0 il existe 6 > 0 tel que

(G, 7" = x) < fula!) = ful) +ella” — 2

pour tous n € N, 2/, € B(7,0) (la boule ouverte de centre T et de rayon 0)
et G, € Opfu(z) avec ||(,]| < M.



Dans ce travail nous avons étendu le résultat ci-dessus a un espace normé
réflexif locallement uniformément convexe avec une norme Fréchet différentiable
(sauf en zéro). Nous établissons aussi un résultat similaire pour la conver-
gence au sens d’Attouch-Wets : Si une suite de fonctions semi-continues
inférieurement propres a valeurs réelles étendues converge au sens d’Attouch-
Wets vers une fonction propre f et la suite (f,), est sous-réguliere en T €
dom f avec une indéxation compatible, alors un élément z* de X* appartient
au sous-différentiel de Mordukhovich de f au point T si et seulement si il
existe une suite ((mn, m*))n dans X x X* et une suite strictement croissante

n

(k(n)), dans N telles que

:r;; € ank(n) (xn> et (1'7” fk(n) (xn>) - (E, f(f))

et (x), converge faiblement vers z*. Notre définition de l'indéxation com-
patible est la suivante : pour chaque ¢ > 0 il existe § > 0 et N € N tels
que

(@, " —x) < fu(@) = fulz) + (1 + [l27[)]]2" — 2|

pour tous n > N, 2/ € B(%Z,6), x € B(Z,0) Ndomdpf, et x* € Opf,(z).
Lorsque la suite (f,), est sous-réguliere en tout point de dom f avec une
indéxation compatible, nous obtenons que le graphe du sous-différentiel de
Mordukhovich de f est une limite supérieur des graphes des sous-différentiels
proximaux des fonctions f,,.

Les applications de nos resultats sont nombreuses, on peut citer, par exemple,
les processus de Rafle de Moreau qui jouent un role important en mécanique
du contact, la stabilité des solutions de viscosités, 'existence de la proto-
dérivée au sens de Poliquin-Rockafellar. En effet, pour cette derniere le théoreme
d’Attouch avait été utilisé pour relier diverses dérivées généralisées. On rap-
pelle la définition de la proto-dérivée et 1’épi-dérivée. Supposons que f est
une fonction a valeur réelle définie sur un espace de Banach X et 0f son
sous-différentiel de Fréchet. On considere la multiaplication suivante

AJOf](T|z") : 2’ é[@f(f—i— ex') — x*] avec z* € 0f(T).

Lorsque ces multiapplications convergent graphiquement, alors la multiap-
plication limite est la proto-dérivée de df en T pour x*,

Dof|(z, %) : X = X™.



Maintenant on considere le quotient d’ordre deux de f
1
A2 f(T|z*) a2 = f(@+ex)— f(@) —e(a*, 2"y | avec z* € Of(T).

Si ces fonctions épi-convergent lorsque € — 0, alors la fonction limite notée
par d? f(T|z*), est appelée épi-dérivée d’ordre deux de f en T pour x*.
Supposons que X = R" et f est de classe C?. Alors on obtient que

D[of)(z,v) = d*f(@[v) = V* f(T)2’

olt V2f(T) est le hessien et v = V f(T).

Ceci nous suggere la possibilité d'une certaine relation entre ces deux ap-
proches différentes de la différentiation d’ordre deux. De plus par des outils
du calcul sous-différentiel on obtient que

O[A2f(z|2)])(2)) = 2A[[0f)(F, z*)](2") pourtout z’ € X.

Est-ce que 1'égalité est préservée a la limite lorsque ¢ — 07 Grace aux
Théoremes mentionnés ci-dessus nous pouvons avoir ’égalité sous certaines
hypotheses sur f.

1.3 La validité de la formule de “liminf” et

une caractérisation des espaces d’Asplund

Dans cette partie nous nous sommes intéressés aux conditions suffisantes
sur l'espace de Banach X assurant la formule suivante

liminf T5(C; 2") C T.(C; ) (1.3.1)
'Sz
pour tout ensemble fermé C' C X et x € C. Ici T3(C; x) et T.(C; ) désignent
le B-cone tangent et le cone tangent de Clarke de C' en = et pour une mul-
tiapplication F' : C' = X, h € liminf F(u) ssi pour toute suite xnim il
C

U—rx
existe h,, — h, telle que pour tout n suffisamment grand, h,, € F(x,).

Plusieurs auteurs se sont intéressés a ce type de questions. En particulier
Cornet [14] a démontré que si C' C R", alors

T.(C;z) = liminf K(C; '),
oSz

7



ou K(C,x) désigne le cone tangent de Bouligand ou le cone contingent a C'
en z. Treiman [22, 23] a démontré que sur un espace de Banach on a

liminf K(C;2') C T.(C; z),

, C
T —x

et de plus I'inclusion devient égalité si C' est épi-Lipschitzien en x au sens de
Rockafellar [21].

Borwein et Ioffe [7] ont démontré la validité de la formule (1.3.1) dans le
cas o X admet un norme équivalente -différentiable.

Dans ce travail nous prouvons que pour un espace X tel que X x X soit Js-
“trusted” ou autrement dit vérifiant ce qu’on appelle “basic fuzzy principle”
est satisfait sur X x X (ceci inclut les espaces avec une norme équivalente (-
différentiable, et plus généralement les espaces possédant une fonction “bos-
se” lipschitzienne et S-différentiable) alors la formule “lim inf” a lieu. Comme
conséquence, nous avons montré que pour la bornologie de Fréchet, la formule
(1.3.1) caractérise les espaces d’Asplund.

Ce sujet a de diverses applications (voir [9]) dans divers domaines en
mathématiques appliquées. En particulier il intervient dans les problemes
de viabilité.

Supposons que X est un espace de Banach et C' un ensemble fermé de X
et F': X = X. On considere la probleme de wviabilité suivant

x(t) € F(z(t)), x(0)==x9, z(t)€ C forall te[0,T), (1.3.2)

qui consiste a trouver une fonction absolument continue x : [0,7) — X avec
x(0) =z, z(t) € C et &(t) € F(x(t)) presque partout sur I'intervalle [0, 7).
Ce type de problemes a été étudié par divers auteurs (voir en particulier
[11, 12, 13, 15]), nous considérons le resultat classique suivant :

Theorem 1.3.1 (A. Bressan [11]) Supposons que C' est compact et F' : X =
X une multiapplication semi-continue inférieurement tel que F(x) C K(C;x)
pour tout x € X. Alors pour tout xo € C, le probléme (1.3.2) a une solution
x definie sur [0, 400).

La condition F(z) C K(C;z) s’appelle la condition de tangence. Comme un
corollaire (voir (3.4.5)) nous avons obtenu que K (C;x) peut étre remplacé
par d’autres cones :



Theorem 1.3.2 Supposons que X est un espace de Banach et 3 une bor-
nologie sur X contenant la bornologie d’Hadamard tels que X x X soit
Op- “trusted” et C' un ensemble fermé de X. Supposons que F' : C = X
est semi-continue inférieurement sur C. Alors les assertions suivantes sont
équivalentes.

(1) F(x) C T.(C;z), pour tout x € C,
(i1) F(x) C K(C;z), pour tout x € C,

(13i) F(x) C T(C;x), pour tout x € C.

1.4 Nouvelles conditions assurant la convexité
des ensembles de Chebyshev

Soit C' un ensemble non-vide d’'un espace de Banach (X, || ||). La projection
métrique de x sur C est définie par

Fo(r) ={y € C: [l —y| = do(z)},

ou dg(x) est la fonction distance, i.e., do(x) = inf{||z — y|| : y € C}. On dit
que C est de Chebyshev si Po(z) est un singleton pour tout z € X. C’est
facile de voir que les ensembles de Chebyshev sont fermés. Le premier resultat
positif sur la convexité des ensembles de Chebyshev dans les espaces Euclidien
de dimension finie, est di indépendamment & Bunt [10] et Motzkin [19]. Plus
tard, dans [17, 24] il a été démontré que chaque ensemble de Chebyshev d’un
espace normé, lisse, de dimension finie est convexe. L’une des conjectures la
plus célebre en théorie d’approximation est la suivante : dans un espace normé
lisse réflexif (ou méme dans un espace d’Hilbert) un ensemble de Chebyshev
est-il nécessairement convexe ? Bien que le probléme reste ouvert (voir [2, 6]),
plusieurs conditions suffisantes ont été données, jusqu’a maintenant. Voici le
premier résultat important :

Theorem 1.4.1 (Viasov [15]) Soit X wun espace de Banach dont [’espace
dual est strictement conveze. Alors tout sous-ensemble de Chebyshev de X
dont la projection métrique est continue, est conveze.

Ce théoreme était précédemment obtenu par Asplund [1] dans un espace

d’Hilbert.



Supposons maintenant que C' est un ensemble faiblement fermé d’un espace
normé réflexif X. Considérons un point x € X et une suite (z,), dans X
convergeant vers x et notons que

[z — Po(en)| = do(zn) = de(x) = ||z = Po()]. (1.4.1)

Ceci nous montre que la suite (Po(x,,)), est borné, donc il admet une sous-
suite convergeant faiblement vers y € X en tenant compte de la réflexivité de
X et de la faible fermeture de C'. Utilisant (1.4.1) et la faible semi-continuité
inférieure de le norme on voit que ||z — y|| < de(x) et par conséquent y =
Pc(x). Cela donne le résultat suivant (voir aussi [8, p. 193]) :

Theorem 1.4.2 Soit X un espace normé réflexif avec la propriété Kadec-
Klee. Alors tout ensemble de Chebyshev faiblement fermé a une projection
continue.

Dans ce travail nous considérons deux conditions suffisantes afin que 1’en-
semble de Chebyshev soit convexe. Premierement nous allons regarder la fer-
meture faible locale au sens suivant : pour tout z € C il existe € > 0 tel que
CNB(x, ) est faiblement fermé. Nous prouvons que tout ensemble de Cheby-
shev localement faiblement fermé d’un espace normé réflexif avec la propriété
Kadec-Klee a une projection continue. Comme corollaire, on obtient que tout
ensemble de Chebyshev localement faiblement fermé d’un espace normé lisse
réflexif avec la propriété Kadec-Klee est convexe. Deuxiement nous allons re-
garder les ensembles de Chebyshev qui peuvent étre représentés comme une
union d’ensembles convexes fermés. Nous prouvons que ces ensembles sont
convexes dans un espace normé réflexif lisse. L’intérét de ce résultat est que
la propriété Kadec-Klee n’est plus nécessaire.
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Chapitre 2

Convergence of subdifferentials
and normal cones in locally
uniformly convex Banach space

L. THIBAULT AND T. ZAKARYAN

Abstract. In this paper we study the behaviour of normal cones and sub-
differentials with respect to two types of convergence of sets and functions :
Mosco and Attouch-Wets convergences. Our analysis is devoted to proxi-
mal, Fréchet, and Mordukhovich limiting normal cones and subdifferentials.
The results obtained can be seen as extensions of Attouch to the context of
non-convex functions on locally uniformly convex Banach space. They also
generalize, to sequences of subsmooth sets or functions, various results in the
literature.

2.1 Introduction

This paper is concerned with the behaviour of normal cones and subdifferen-
tials with respect to two types of convergence of sets and functions : Mosco
and Attouch-Wets convergences. More precisely, given a sequence {C, }en of
closed sets of a Banach space converging to a set C' of this space in the sense
of Mosco or Attouch-Wets, we study how the graphs of the normal cones of
C,, converge to the graph of the normal cone of C'. We focus the analysis
to proximal, Fréchet, and Mordukhovich limiting normal cones. The study
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for subdifferentials of extended real-valued lower semicontinuous functions is
then derived through the epigraphs of the functions.

Such a study of convergence of subdifferentials began in the 70s when H.
Attouch (see [1]) established that a sequence of extended real-valued lower se-
micontinuous proper convex functions on a reflexive Banach space, converges
in the sense of Mosco if and only if the graphs of the subdifferentials Painleve-
Kuratowski converge to the graph of the subdifferential of the limit function
and a condition which fixes the constant of integration holds; we also re-
fer to [3], [6], [16], [37] and [38] for other results in this line under Mosco
convergence of convex functions. Concerning the Attouch-Wets convergence,
H. Attouch, J.L Ndoutoume and M. Théra in [2] showed that a family of
lower semicontinuous proper convex functions (defined on a super reflexive
Banach space) Attouch-Wets converges if and only if the graphs of the sub-
differentials Attouch-Wets converge plus a condition fixing the constant.

Poliquin [31] extended Attouch’s Theorem to possibly nonconvex primal-
lower-nice functions in a finite-dimensional setting. A. Levy, R.A. Poliquin
and L. Thibault [26] proved, in the Hilbert space setting, that if {f,, }nen is a
sequence of equi-primal-lower-nice functions at x (see the definition in Section
5), equibounded below near x with {f,(z)} bounded, then the convergence
in the sense of Mosco to f entails that the graphs of the subdifferentials
Painlevé-Kuratowski converge to the graph of the subdifferential of f. They
also showed, in the same Hilbert space setting, that the convergence in the
sense of Attouch-Wets of {f,},en implies the Painlevé-Kuratowski conver-
gence of the graphs of the subdifferentials, as well as almost Attouch-Wets
convergence of the subgradients in some sense. A. Jourani [15] showed that
the Toffe (geometric) approximate subdifferential of a lower semicontinuous
function on a Banach space is contained in the limit superior of the Ioffe
approximate subdifferential of lower semicontinuous uniformly convergent
family to this function. Through the latter result, the approximate subdif-
ferential of a lower semicontinuous function f (bounded from below on the
Banach space by a quadratic function) is described in [15] in terms of the
subdifferentials of the Moreau envelopes ; see also [24] where the Mordukho-
vich limiting subdifferential of f is obtained, in the Asplund space setting,
as some limit superior of the Fréchet subdifferentials of Moreau envelopes.

Recently X.Y. Zheng and Z. Wei [39] considered the convergence of normal
cones for sequences of subsmooth sets of a Hilbert space. As a consequence,
for sequences of extended real-valued functions, they obtained the following
generalization of [26] : If a sequence {f, }nen of extended real-valued proper
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lower semicontinuous functions on a Hilbert space H Mosco converges to a
proper function f and { f,, }ney is uniformly subsmooth at z, then an element
¢ € H belongs to the Mordukhovich limiting subdifferential of the function
f at z if and only if there exist a sequence {(Z,, Cuen)}n in H X H and a
strictly increasing sequence {k(n)}nen in N such that

Cn € ank(n)(xn) and (l‘n, fk(n)(xn)) - (j7 f(f))

and such that {(,}nen weakly converges to (. Above Op fi(,) denotes the
proximal subdifferential of fi(,), and the uniform subsmoothness of { f, }nen
at T means that for any reals € > 0 and M > 0 there exists § > 0 such that

(G, 2" = @) < ful2') = ful2) + ella” — 2

whenever n € N, 2/, x € B(Z,J) (the open ball around Z) and (, € Op f,(x)
with [|Ga]] < M.

In the present paper, we extend the latter result to a reflexive locally
uniformly convex Banach space X with a norm Fréchet differentiable off
zero. We also establish a similar result for the Attouch-Wets convergence :
If a sequence of extended real-valued proper lower semicontinuous functions
{fn}nen converges in the sense of Attouch-Wets to a proper function f and
the sequence is subsmooth at € dom f with a compatible indexation, then
a continuous linear functional x* € X* belongs to the Mordukhovich limiting
subdifferential of the function f at z if and only if there exist a sequence
{(zn,22) }neny in X x X* and a strictly increasing sequence {k(n)},eny in N
such that

7y, € Op frmy(n) and  (n, fom)(zn)) — (T, f(T))

and such that {z},cny converges weakly to z*. Our definition of subsmooth-
ness with a compatible indexation is the following : for any € > 0 there exist
some real § > 0 and some N € N satisfying for each integer n > N

(@2 — ) < fu(2) = folz) + (1 + [J2"]) |2 — =]

for all 2’ € B(z,0), x € B(z,9) N Domdpf, and z* € Opf,(x). When the
sequence { f,}nen is subsmooth at every point of dom f with a compatible
indexation, we obtain that the graph of the Mordukhovich limiting subdiffe-
rential of f is a certain limit superior of the graphs of the proximal subdiffe-
rentials of the functions f,,.
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The paper is organized as follows. In Section 2 we recall some properties
of uniformly convex/smooth norm and some concepts of subgradients and
normals; we also establish a result of approximation of horizontal proximal
normals to the epigraph of a function by nonhorizontal ones in the context
of a reflexive locally uniformly convex Banach space with a norm Fréchet
differentiable off zero. The latter result is involved in several places of the
paper. Section 3 studies the convergence of the graphs of normal cones of
Mosco convergent sequences of sets and Section 4 deals with Attouch-Wets
convergence of sequences of sets. The results in both sections are obtained for
(non-Hilbert) reflexive locally uniformly convex Banach space with a norm
Fréchet differentiable off zero ; a particular attention is paid to the case when
the sequence of sets is subsmooth with compatible indexation. Section 5
provides the aforementioned extensions of [31, 26, 39] to subdifferentials of
Mosco and Attouch-Wets convergent sequences of subsmooth functions with
compatible indexation in the setting of reflexive locally uniformly convex
Banach space with a norm Fréchet differentiable off zero.

2.2 Notation and Preliminaries

Recall that a norm || -|| on a vector space X is strictly convex whenever for
all z,y € X with « # y and [|z| = [|y|| = 1 one has [|%3%| < 1. One is often
interested in the case when the latter inequality holds in a uniform way.

The norm || - || of X is locally uniformly convex at x € X with ||z|| =1 if
for every € > 0 there exists § > 0 (depending on both = and ¢) such that, for
every y € X with [|ly|| =1 and ||y —z|| > €, the inequality ||3(z+y)|| <1-¢
is fulfilled. When the norm || - || is locally uniformly convex at any point of
the unit sphere, one says that it is locally uniformly convex. Obviously, the
norm || - || is stricly convex whenever it is locally uniformly convex.

Another important concept is that of uniform convexity. The norm || - || on
X is uniformly conver when the real § above depends merely on ¢, that is,
when for every € > 0 there is some § > 0 so that for any two vectors x,y € X
with ||z|| = ||y|| = 1 and ||z — y|| > € one has

1
I3+l <16

Sometimes, instead of saying that the norm || - || is uniformly convex (resp.
locally uniformly convex), it will be convenient as usual to say that the
normed space (X, || - ||) is uniformly convex (resp. locally uniformly convex).
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Considering the modulus of uniform convexity d. of the norm || - || defined
for e € [0, 2] by

. rT+y
o (e) = inf{l — ||~ 2,y € Xl = lyll = 1 lz = y[| = <},
we see that the norm || - || is uniformly convex if and only if ) |(g) > 0 for
all € €]0, 2.

Any uniformly convex normed space is obviously locally uniformly convex,
and any uniformly convex Banach space is known to be reflexive (see, e.g.,

[27]). In [36] one can find an example of a norm || - || on the space ¢*(N),
equivalent to the usual Hilbertian norm of ¢?(N), which is locally uniformly
convex but is not uniformly convex. So, (¢*(N), || - ||z) is an example of a

reflexive Banach space which is not uniformly convex but is locally uniformly
convex.
The norm || - || on X is uniformly smooth if its modulus of smoothness,

1 1
py(T) = sup §||x + 7yl + §||Jf =7yl =1zl =1, ly]l =1 for >0

1
satisfies hﬂ)l —py 1(7) = 0. A normed space (X, || - ||) whose norm || - || is
o T

uniformly smooth is called a uniformly smooth space.

When the dual norm || - ||, in X* is uniformly smooth (resp. uniformly
convex), the norm || - || itself (of the space X) is uniformly convex (resp.
uniformly smooth) (see [18, p. 35], [19, p. 38]).

It is possible to renorm any uniformly convex Banach space with an equi-
valent norm which is both uniformly convex and uniformly smooth. Then,
the corresponding dual norm in X* is both uniformly convex and uniformly
smooth too.

When the dual norm || - ||, of the norm || - || of a vector space X is lo-
cally uniformly convex (resp. stricly convex), the norm || - || is Fréchet (resp.
Gateaux) differentiable off zero, see, for example, [18, p. 37|, [19, p. 32].

The above properties of uniformly (resp. locally uniformly) convex spaces
can be found in detail in [18; 19, 20, 27]. Let us recall some other properties.

It is well known (see, for example,[27]) that all Hilbert spaces H and the
Banach spaces P, LP, and WP (1 < p < oo) are all (for their usual norms)
uniformly convex and uniformly smooth.
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Consider, for a normed space (X, ||||), the set-valued mapping J : X =% X*
defined by

J(@) ={a" e X7 (@ o) = [l2*| - llll, (™) = [l]l}-

It is not difficult to see that the norm || - || is stricly convex if and only if
J(x1) N J(x9) = O for all z1, 29 € X with 21 # 25. It is generally called the
normalized duality mapping associated with the norm || -||. If X is reflexive,
we have that J is surjective. The set-valued mapping .J is the subdifferential
of the convex function 3 |-[|2, i.e., J = d(5||-||*). If (X, ||-||) is reflexive and the
norm ||| is Fréchet differentiable off zero and stricly convex, then J is single-
valued, norm-to-norm continuous and bijective. The inverse mapping J ! (of
J) will be denoted by J*; it is the normalized duality mapping for the dual
norm on X*. So, according to what has been recalled above concerning locally
uniformly convex norm and concerning differentiable norm, whenever (X, ||-||)
is a reflexive Banach space whose norm || - || is both locally uniformly convex
and Fréchet differentiable off zero, then both duality mappings J and J* are
single-valued, bijective and norm-to norm continuous. It is worth mentioning
(see, e.g., Corollary 3, page 167 in [19]) that every reflexive Banach space X
can be given an equivalent norm || - || such that both || - || and the dual norm
| - |l« are simultaneously locally uniformly convex and Fréchet différentiable
off zero.

The space X xR will be endowed with the norm ||| ||| given by |||(z,7)||| =
V||z||? + 2. So, for the normalized duality mapping Jxyg : X xR — X* xR
associated with the norm ||| - |||, one has the equality

Ixxr(z,r) = J(x) X {r}. (2.2.1)

When there is no risk of confusion, Jxyr will be simply denoted by J.

We will denote by B or Bx (resp. B* or Bx+) the closed unit ball of X
(resp. X*) and by B(x, ) (resp. Blz, a]) the open (resp. closed) ball centred
at x with radius o > 0.

For a closed set C' of the normed space (X, || - ||), a nonzero vector p € X
is said to be a primal proximal normal vector to C at x € C (see [12]) if
there are v ¢ C and r > 0 such that p = r~}(u — z) and ||u — z|| = dc(u).
(Here d¢(u) denotes the distance from u to the set C'; sometimes it will be
convenient to put d(u, C) instead of de(u)). It is known, according to Lau’s
theorem [25] recalled below, that in any reflexive Banach space endowed
with a stricly convex Kadec-Klee norm, the set of those points which have
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a nearest point in any fixed closed subset is a dense set. The norm || - || of
a vector space has the (sequential) Kadec-Klee property provided the weak
convergence of a sequence of the unit sphere of the space is equivalent to the
norm convergence of this sequence. Hence, the Kadec-Klee property holds
true whenever the norm is locally uniformly convex, as easily seen.

Equivalently, a nonzero p € X is a primal proximal normal vector to C' at
x € C if there exists r > 0 such that x € Po(z + rp), where Po denotes the
metric projection on C, that is, for any v € X,

Fo(u) :={y € C: lu—y| = de(u)}.

Note that the inclusion x € Po(x + rp) is equivalent to Po(z + r'p) = {z}
for all 0 < r" < r whenever the norm || - || is stricly convex (as easily seen).
We also take by convention the origin of X as a primal normal vector to C
at x. The sets of all primal proximal normal vectors to C' at = is obviously a
cone. It will be denoted by PN¢(z). The concept is local in the sense of the
following proposition established in [8, p. 530].

Proposition 2.2.1 (/8]) Let (X,|| - ||) be a normed space and C be a no-
nempty closed set of X. For any uw ¢ C and any closed ball V' := Blz,r]
centred at x € C' and such that |ju — z|| = d(u, CN'V), one has

u—1x € PNg(x).
O

A continuous linear functional p* € X* is said to be a prozimal normal
functional to C' at x € C if there exists p € PN¢(z) such that p* € J(p).
This means for p* # 0 (see [12]) that there is 7 > 0 such that x € Po(x +rp)
and p* € J(p). The sets of all proximal normal functionals to C' at z is a
cone which will be denoted by NE (z) or N¥(C;x). Of course J(p) C N& ()
whenever p € PN¢(x), and if in addition X is reflexive and the norm || - || of
X is Fréchet differentiable outside zero (so J is bijective) one easily verifies
that J*(p*) € PNc(x) whenever p* € NE () (keep in mind that J* = J~1 is
the normalized duality mapping for X* endowed with the dual norm of || -||).
Hence, under the assumption that (X, || - ||) is reflexive and the norm || - ||
is Fréchet differentiable off zero, PNo(x) and N} (z) completely determine
each other.

We will also need in our development the concept of the Fréchet normal
cone N} (z) or N¥(C;z) of a set C of the normed space X. A continuous
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linear functional z* € X* is said to be a Fréchet normal functional (see,e.g.,
28, 16]) to C' at x € C' if for any ¢ > 0 there exists a neighbourhood U of z
such that the inequality (z*, 2’ —z) < ¢||2’ — z|| holds for all 2’ € CNU. We
denote by N}(x) or NY(C;z) the Mordukhovich limiting normal cone of C
at x € C, that is,

w* .
C3u—w xf — x* with zf € NE(z,,).

Né(x) s LimsupNg(u) _ { x* € X*: dsequences C' > x, — x, }
More will be recalled in the next section concerning the concepts of limits
superior and inferior of sets and set-valued mappings. By convention one
defines PNg(z), N&E(z), N (z) and Nf(x) as the empty set whenever z & C.
The above notation and concepts can be translated into the context of
functions. Let f : X — RU{—o00,+0o0} be an extended real-valued function
on the normed space X. By definition, the effective domain of f is the set
dom f := {x € X : f(x) < 400} and the epigraph of f is the set epi f :=
{(z,r) € X xR : f(x) <r};the function f is proper when it does not take on
the value —oo and dom f # (). For a lower semicontinuous function f which is
finite at x, we say that p* € X* is a prozimal subgradient of f at x if (p*, —1) is
a proximal normal functional to the epigraph of f at (x, f(x)). The proximal
subdifferential of f at x, denoted by Jp f(x), consists of all such functionals.
Thus we have p* € dpf(z) if and only if (p*, =1) € N, ;(z, f(x)). Similarly,
for a function f which is finite at x, the Fréchet subdifferential of f at x,
denoted by Op f(x), consists of all functionals z* € X* such that (z*,—1) €
Nel; s(@, f(z)). If © ¢ domf then all subdifferentials of f at z are empty,
by convention. It is known that, for an extended real-valued proper lower
semicontinuous function f on a reflexive Banach space endowed with a Kadec-
Klee and Fréchet differentiable norm, the (effective) domain of the set-valued

mapping dpf : X = X*
Dom Opf :={r € X : dpf(x) # 0}

is dense in dom f (see [10, Theorem 7.1]). The Fréchet subgradients are known
(see [28]) to have an analytical characterization in the sense the x € O f(2)

if and only if
fy) = flz) =@ty —a)

lim inf 0.

y=a lz =yl
When Orf(x) # (), one says that f is Fréchet subdifferentiable at the point
x. Similarly to the above definitions, the Mordukhovich limiting subdifferen-

tial of f at x, denoted by O f(x), consists of all functionals z* € X* such
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that (z*,—1) € N*(epif; (z, f(z))). It is known that z* € 9, f(z) if and
only if there exists a sequence {(z,, f(x,)) }nen converging to (z, f(x)) and a
sequence {x}},en converging weakly star to x* such that =¥ € O f(x,) (see
28]). That is,
Opf(z) = =9 Limsup 0" f(u).
u—>f.'13

The last concepts that we need is the Clarke tangent and normal cones.
For a subset C' of X and a point x € (', a vector h € X belongs to the Clarke
tangent cone T (C; z) of C' at z provided that for any real e > 0 there exists
a real 6 > 0 such that (u + tB(h,e)) N C # 0 for all u € C N B(x,6) and
t €]0,6[, where we recall that B(z, ) denotes the open ball centred at = and
of radius 4. It is known that h € T (C;z) if and only if for any sequences
{Zn}nen in C converging to x and {t, }nen in |0, +o00[ tending to 0 there is
a sequence {hp}neny in X converging to h such that z, + t,h, € C for all
n € N. The Clarke normal cone is defined as the negative polar cone of the
Clarke tangent cone, that is,

NC;x) = {z* € X" : (z*,h) <0 for all h € TY(C;x)};
the Clarke subdifferential of the function f at x € dom f is the set
Jaf(x) ={z" € X*: (2",—1) € NCl(epif; (:v,f(m)))}

As above TC(C;x) and NY(C;z) (resp. Ocif(x)) are defined to be empty
whenever x ¢ C' (resp. f is not finite at z).
If X is an Asplund space, we have (see [28])

N (C;x) =" (N (C; 1)) (2.2.2)

where ¢0* denotes the weak star closed convex hull. Recall that a Banach
space X is an Asplund space provided the toplogical dual of any separable
subspace of X is separable.

We will use the result below concerning the proximal and Fréchet normal
cones (see [10]). For the convenience of the reader, we sketch a proof.

Lemma 2.2.2 ([10]) Let (X, ||-||) be a Banach space whose norm is Fréchet
differentiable (off zero) and C be a closed subset of X. The following holds :
(a) For all x € C, we have N (z) C NE(x).

(b) The inclusion Op f(x) C Op(x) holds for all z € X.

21



Proof. (a) We take any v € PN(C; x), so there is ¢ > 0 such that
lz— (z+ov)|? < |lz+o0v—y|> forall yeC,

hence
o?[lo]* < [lz + ov —y]?,

1 _ 1
0< (5l +07 = yIP = 5 lolP).

For each y € C, this yields, according to the equality J(v) = D(5]| - [|*)(v)
(the Frechet differential of 5| [|?), a mapping € : X — R with e(u) — 0 when
u — 0 and such that

0<o*((J(v),0  (z —y) + o |z —ylely — 2))

(J(v),y —2) < [ly = zlle(y — ).

Thus J(v) € N(C; ), which implies that N¥(C;z) € NF'(C;x).
(b) The assertion (b) follows directly from (a). OJ

We recall now the famous Lau theorem concerning the metric projection
on closed sets which has been involved above. It easily ensures that the points
of the set where the proximal normal cone is not reduced to zero are dense
in the set.

Theorem 2.2.3 (Lau [25]) Let X be a reflexive Banach space endowed with
a stricly convex norm ||-|| satisfying the (sequential) Kadec-Klee property and
let C' be a nonempty (strongly) closed set of X. Then there exists a dense G
set of X\C with unique nearest points in C.

We recall that any locally uniformly convex norm (in particular, any uni-
formly convex norm) fulfills the Kadec-Klee property.

The next proposition provides an approximation result of Fréchet normals
by proximal normals. It appears in the paper [9] by F. Bernard, L. Thibault
and N. Zlateva as an adaptation of the proof a similar result of A.D. Ioffe

13].

Proposition 2.2.4 (/9, 13]) Assume that (X, | -|) is a reflexive locally uni-
formly conver Banach space and that the norm || - || is Fréchet differentiable
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off zero. Let C be a closed subset of X with x € C and let x* € NE(x). Then
for any e > 0 there exist u: € NE (u.) such that

u. — || <e and ||lul —x*|| <e.
€

In fact the result uses only the Fréchet differentiability outside of zero of the
norm || - || and of its dual norm.

Through the latter proposition we can approximate horizontal proximal
normals to the epigraph of a function by nonhorizontal ones. Before proving
that approximation property let us establish the following lemma which has
its own interest.

Lemma 2.2.5 Let (X,|-||) be a normed space and f : X — RU {+o0} be
an extended real-valued proper lower semicontinuous function. The following
hold :
(a) For any (p,—r) € PN(epif; (x, s)) one has r > 0; further, if the norm
| - || is stricly convex and if r > 0, then s = f(x).
(b) If || - || s stricly convez, then, for any (p,0) € PN(epif; (x, s)), one also
has (p,0) € PN (epi f; (z, f(z))).

Similarly :
(¢) For any (z*,—r) € N¥(epi f; (z,s)) one has r > 0; further, if the norm
| - || is in addition stricly convex and if r > 0, then s = f(z).
(d) If || -|| is stricly conves, then, for any (z*,0) € N (epi f; (z,s)), one also
has (z*,0) € N (epi f; (z, f(2))).

Proof. (a) Suppose that (z,s) € epif and (p,—r) € PNepis(z,s). Then
there is some o > 0 such that

(2, 5) € Pepif((z,5) +o(p,—1)), (2.2.3)

degs (. 5) + o (p, =) = /2 [p[? + 0?r2. (2:2.0)

We want to show that > 0. Suppose on the contrary r < 0 and fix a €]o, 20].
Then s — ar > s, so (z,s — ar) is also included in epi f, and

I(@.5) +o(p. =) = (w5 =an)| = V[P + (@ = o)
< Voo

depif(($v S) + 0(p7 _T))'

hence
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This contradiction ensures r» > 0 as desired.

Now we suppose that » > 0 and the norm || - || of X is stricly convex. The
norm || - || on X x R, given by |[(u,t)| := \/||u||? + 2, is also stricly convex.
Consequently, the real ¢ > 0 in (2.2.3) can be taken such that

Pepif((x, s) + o(p, —7“)) ={(z,s)}

(it is enough take as o a positive real less than the one involved in (2.2.3)).
Note that f(x) is finite since f(z) < s. Let 0 < t = min{or, s — f(z)}.
Therefore

0<or—t<or and f(x)<s-—t.

So we have that (x,s—t) € epi f. We consider the distance between the pairs
((x,8) + o(p,—r)) and (z,s —t), and we write
1((z,5) +o(p, =) = (2,5 =) = o |p|l* + (o —1)?
< Vol o

depi (2, 8) + o (p, —7)),

where the last equality is due to (2.2.4). By the uniqueness of (z,s) as the
nearest point in epi f of (z, s) + o (p, —r) we deduce that ¢ = 0 and we obtain
that s = f(x).

(b) Assume now that (p,0) € PN (epi f; (z, s)) and the norm of X is stricly
convex. Consider the norm || - || on X x R defined as above. Taking ¢ as in
(2.2.3) we have, for all (2/,5") € epi f,

Iz, 5) +a(p,0) — (¢, s) | = olpl
and since (2',s" +s — f(z)) € epi f (because s — f(z) > 0) we also have
(2, 5) + o(p,0) — (¢, 8" + s — f(2))l| = ollpll;
which yields, for all (2/,s") € epi f,
Iz, f(x)) + o (p,0) = (', )| = ollpll.

The latter inequality means (z, f(z)) € Pepif((, f(z)) +o(p,0)). So (p,0) €
PNeyi 1 ((, f(z))) as required in (b).

Finally, the assertions (c) and (d) follow directly from (a) and (b) respectively.
0J
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Proposition 2.2.6 Assume that (X, | - ||) is a reflezive locally uniformly
conver Banach space and that the norm || - || is Fréchet differentiable off
zero. Let f : X — R U {400} be a lower semicontinuous function and x €
dom f, and let z* € X* with (z*,0) € N, (((z, f(x))), where the prozimal
normal cone in X X R is taken with respect to the product norm ||(u,r)| =
(|[w||? + [7[*)/2. Then for any € > 0 there exist v. € dom f and (x},—r.) €
Ngj};f((xg,f(azg))) with re > 0 such that (z%, —r.) € NE; (22, f(22))) along
wit

[ =2l +[f(ze) = f@)| <& and |[(27, —r) = (27, 0)[| <e.

Proof. We first observe that the norm ||(u,7)|| = (||ul/* + |r|*)"/? on X x R
is locally uniformly convex and Fréchet differentiable off zero. Fix (z*,0) €
Né;if((x,f(x))). Then (z*,0) € NI f((x,f(x))) by Lemma 2.2.2 above, so

epi
(see [28, Lemma 2.37]) we know that there is some y. € dom f with ||y. —

ol 1 (0) — ()] < /2 and (52, —52) € NEs (4 S (02)) with 32, —s.) —
(x*,0)]| < £/2 and s. > 0. Considering the positive real 7(¢) := min{s.,/2},
Proposition 2.2.4 furnishes (z., p.) € epi f with ||z —y.||+|p- — f(ye)| < n(e)
and (27, —r.) € N ((zc,pc)) with [|(z2, —r) — (yZ, —se)|| < n(e). Since
|se — re| < se, we have r. > 0 hence p. = f(z.) according to Lemma 2.2.5.
Consequently,

|lze — || + | f(xe) — f(x)| <e and ||(zf, —r:) — (2%,0)| <e,

r. >0 and (zf,—r.) € N

&5 p((2<, f(2))), and this finishes the proof. [J

2.3 Normal cones of Mosco convergent se-
quences of sets

Let {Cy}nen be a sequence of subsets of the normed space X. Prior to
introduce the Mosco convergence, we will recall the Painlevé-Kuratowski
convergence (see, e.g., [6, 34]). Given a topology 7 on X, one defines the

sequential limit inferior ” Lim inf C,, of the sequence {C), },en with respect to
n—oo

the topology 7 as the set of all 7-limits of sequences {z,}, with z,, € C,, for

all n € N large enough. The sequential limit superior ™ Lim sup C,, with res-
n—o0

pect to 7 is defined as the set of all 7-limits of sequences {z, }, with z,, € C,
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for infinitely many n € N. Equivalently, € " Lim sup C,, provided there are

n—oo
an increasing sequence {k(n)},eny in N and a sequence {z, }nen converging

to x with x,, € Cj,) for all n € N. Clearly,

"Liminf C,, C " Limsup C,,.
n—oo n—o0

One then says that the sequence {C,, },,en T-sequentially Painlevé-Kuratowski
converges to a subset C' of X whenever

C =" Liminf C,, =" Lim sup C,,.
n—0o0 N—00
When 7 is the topology associated with the norm of X, one just says that
the sequence Painlevé-Kuratowski converges to €', and in that case, one can
verify that

ML im inf C,, = {z € X :limsupd(z,C,) = 0},

n—00 n—00

M Limsup C,, = {z € X : liminf d(z, C,) = 0}.

n—00 n—00
For C' ¢ Il Liminf C, (resp. C' C 'l Limsup C,,) it is known for any z € X
n—o0 n—00
that

limsupde, () < de(z) (resp. liminfde, () < de(x)). (2.3.1)

n—oo n—o0

When the sequence {C),}nen (sequentially) Painlevé-Kuratowski converges
to C' with respect to both the norm convergence and the weak convergence,
one says that it converges in the sense of Mosco to C'. It is easily seen that
this is equivalent to

C = I Lim inf C,, =" Limsup C,,
n—00 n—00
where w stands here for the weak topology w(X, X*) of X. Note that, in
this case, the subset C' is weakly sequentially closed in the sense that the
limit of any weakly convergent sequence of C' belongs to C'. Indeed, suppose
without loss of generality that every C), is nonempty, and take any sequence
{2 }men of C converging weakly to x € X. For each m € N, from the equality

C = I'Liminf C, there is a sequence {Zm.n}nen converging strongly to z,,
n—ro0
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with z,,, € C, for all n € N. We can then choose an increasing sequence
{k(m)}men in N such that ||z, ko) — 2m|| < 1/m. So, for @, := ., k(m), the
sequence {z], }men converges weakly to x as m — oo and 2, € Cyy for all
m € N. This and the equality C' =" Lim sup C,, justify the inclusion = € C.

m—r0o0

Let | I Lim inf gph N denote the limit inferior (with respect to the norm
n—00 "

topology in X x X*) of the sequence {gph N} }.en of the graphs of the
functional proximal normal cones, that is, the set of all (z,z*) in X x X* for
which there exists a sequence {(z,,x})},en in X X X* such that

z, € C, and z; € Ngn (x,) forn € N large enough,

and such that {x,}neny and {2} }neny converge to x and z* with respect
to the norm topology of X and X* respectively. Similarly, we denote by
1% Lim sup gph Ngn the sequential limit superior of {gph Ngn }nen with res-

n—oo
pect to the || || x w(X*, X) topology of X x X* that is, the set of all (x, z*)
in X x X* for which there exist a sequence {(x,,z})},en in X x X* and an
increasing sequence {k(n)}nen in N such that

Tp € Oy and ), € Ngk(n) (x,) foralln e N,

and such that {z,}n,en and {x}},en converge to x and z* with respect to
the norm topology of X and the weak star topology of X* respectively. It is
evident that

Il Lim inf gph Ngn c M Lim sup gph Ngn.

n—oo n—o00

If they are equal we denote it by Lim gph Ng ., then,
n—ro0

Lim gph Ngn := 'l Lim inf gph Ngn = I* Lim sup gph Ngn.

n—oo n—oo n—oo

In the definition above, gph M denotes the graph of a set-valued mapping
M U =V, that is,

gph M :={(u,v) e U xV : ve M(u)}.

We can now start with the lemma below. It has been proved by X.Y. Zheng
and Z. Wei [39] for Hilbert spaces. Here with different techniques we establish
the lemma in the context of reflexive Banach spaces.
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Lemma 2.3.1 Assume that (X, | - ||) is a reflexive Banach space and that
the norm || - || is strictly convex and has the Kadec-Klee property. Let {C,, }nen
be a sequence of closed subsets of X Mosco convergent to a closed subset C
of X. Suppose that x € X and y € C satisfy Po(x) = {y}. Then there exists
a sequence {(xy, Yn) fnen in X X X such that

lim ([lzn — 2|l + [lyn — yll) =0 and Pc,(z,) = {ya} for largen € N.

Proof. The set C' being nonempty, the convergence assumption of {C, },en
entails that C,, # () for large n, so without loss of generality we may assume
that all the sets C, are nonempty. By Theorem 2.2.3, for any n € N there
exists @, € B(z, 1) and y,, € C, such that Po, () = {yn}. Thus {2 }nen
converges to x. Further, it is not difficult to see that the sequence {y, }nen is
bounded. Indeed, since C' C Ligoi?f C.,, we have (see (2.3.1)) that

limsup dc, (z) < do(),

n—oo

from which we deduce that

limsup [ly,| < limsup [ly, — 2| + lim [lz,]]
n—00 n— oo n—00

= limsupdg, (x,) + ||z|

n—oo

do (@) + [,

IA

and so the sequence {y,}nen is bounded. Consequently there exists a sub-
sequence {Yi(m) tnen Of {Yn}nen converging weakly to some z € X and z €
Y Limsup C,, C C. Further, one has

n—oo
dofw) > Tmsupde, (z) = limsup(de, () + 2 — 2]

n—oo n—00

> limsupdg, (z,) = limsup ||z, — ya||
n—00 n—00

> limsup [|Zxm) — Yk || = imsup ||z — yre ||
n—o0 n—oo

>

liminf [l — g | > [l — ],
n—oo

the latter inequality being due to the weak lower semicontinuity of the norm
| - ||. Therefore z € Po(x), which entails z = y according to the assumption
Pe(x) = {y}. On the other hand, since

. B e B T
i inf {24 ) = Yo || = lminf [z =yl > 2 = yl,
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according again to the weak lower semicontinuity of the norm || - ||, and since

limsup || Txm) — el = limsup Ay, (Tk(n))
n—oo n—oo
< thUp(dck(n)(x) + Hl’ - xk(”)”) < dc(l’) = HQ? - y”?
n—oo
we see that klim | Zkn) — Yk || = ||z — y||. We have also that
—00

Tk(n) — Yk(n) = x— Y.

From the Kadec-Klee property of the norm || - || we obtain that

We deduce that {yim)}nen converges strongly to y, or equivalently, any
weakly convergent subsequence of {y,}n,en converges strongly to y. From
this and the boundedness of {y, },en it is easily seen (through the reflexivity
of X) that the whole sequence converges strongly to y. [J

The second lemma relax the equality assumption Po(x) = {y} in the
lemma above into the inclusion y € Po(x).

Lemma 2.3.2 Assume that (X, || -||) is a reflexive Banach space and that
the norm ||-|| is strictly convex and has the Kadec-Klee property. Let {C,, }nen
be a sequence of closed subsets of X Mosco convergent to a closed subset C
of X. Suppose that x € X and y € C satisfy y € Po(x). Then there exist an
increasing sequence {k(n)}n,en in N and a sequence {(xn, yn) tneny in X x X
such that

711;1{)10 (lzn — 2| + lyn —yl) =0 and Py (@n) ={yn}  for alln € N.

Proof. For each n € N put 2, := (1 — 1)z + 1y. Then Pc(z),) = {y}
for all n € N. Choose by Lemma 2.3.1 some integer k(1) and x; € X with
|21 =] < 1 such that Pe, ., (z1) = {y1} with [ly1 —y|| < ;. We can produce
by induction an increasing sequence {k(n)}, in N and two sequences {z,},
and {yn}, in X such that ||z, — 2| < <, |ly,—y| < % and Py (@n) = {yn}-
Those sequences fulfill the desired properties. [

The next lemma is concerned with the assumption of the equality Pg, (z,) =
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Lemma 2.3.3 Let {C,}, be a sequence of closed subsets of X and let C' =
Limsup C,,. Suppose that {(zn, Yn) tnen is a sequence in X x X such that

n—oo

tim ([lza — 2] + [y — ) = 0 and Pe, (2,) = {9} for largen € N.

Then one has y € Po(x).

Proof. Since {y, }nen converges to y and Limsup C,, C C, we have y € C.
n—oo
Further, since C' C Limsup C,,, for any u € C, there exists an increasing
n—o0

sequence {k(n)}neny in N and a sequence {uy, }nen converging to u with u,, €
Clny for all n € N. We then have

lz =yl =" lim [loxm = yeell = m dey, (2am)
< liminf [[2gm) — un|| = [Jz — ul.
n—oo

This translates the desired inclusion y € Po(z). O

Now we give the main results of this section. They establish connections
between diverse limits of {gph N }.en and the sets gph N& and gph N
when the sequence of sets {C), },en Mosco converges to the set C'.

Theorem 2.3.4 Assume that (X, ||-|) is a reflexive locally uniformly convex
Banach space and that the norm || - || is Fréchet differentiable off zero. Let
{C} }nen be a sequence of closed subsets of X Mosco converging to a nonempty
closed subset C' of X. Then the following assertions are equivalent :

(a) one has x* € NE(x) ;

(b) there exist r > 0, ng € N and {x,}, strongly converging to x, {x} }nen
strongly converging to x* such that

Pe, (xy +rJ*(z))) ={zn} for alln > ny.

(Note that for such x} one has xi € N& (x,)).

Proof. Assume that, for z*, the assertion (b) is satisfied, that is, there are
r > 0, ng € N and {z,}nen strongly converging to z, {x},en strongly
converging to z* such that

Pe, (xy, +rJ*(z))) ={z,} for all n > ny.
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The continuity of J* (see the previous section) entails

lim (z,, + rJ*(z})) = x +rJ*(z"),
n—oo
and by Lemma 2.3.3
x € Po(z +rJ*(z")),

which guarantees the inclusion z* € NZ (z).
Now we assume that x* € NZ(x). By definition there is ¢ > 0 such that

Po(z +oJ*(z%)) = {z}.

By Lemma 2.3.1 there is a sequence {x,},en converging strongly to x and
a sequence {z, fnen converging strongly to z + o J*(z*) such that Pg,(2,) =
{xn}, for large n, say n > N. For each such n > N, putting 2} = J(Z(z, —
x,)) ensures ), € N (x,) (since z,—x, € PN¢, (2,)), and by the continuity
of J we also have

2 = T o — 20)) — T+ 0T (@) — 2)) = J(J*(2")) = o

o n—oo g

Further, since z,, — x, = 0J*(x}) we see that

{z,} = Pe,(2) = Po, (2, + 0 J"(27,)),
so the sequences {z, }neny and {z*},cn fulfill the properties of the assertion
(b) with r =0¢. 0O

Now we denote by Ay, : X == X* the set-valued mapping whose graph is
given by

gph AL = {(z,2") € X x X" : Po(x +rJ*(z")) = {x}}
= {(x,:r;*) € gph Nb : Po(x +rJ*(2%)) = {x}} ,

and we obtain the following corollary. The assertion (b) of the corollary is a
generalization of Theorem 3.1 of X.Y. Zheng and Z. Wei [39] to uniformly
smooth and uniformy convex Banach spaces which are not necessarily Hilbert
spaces. The corollary is even obtained for some locally uniformly convex
Banach spaces.
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Corollary 2.3.5 Assume that (X, ||-]|) is a reflexive locally uniformly convex

Banach space and that the norm || - || is Fréchet differentiable off zero. Let

{Ch }nen be a sequence of closed subsets of X which converges in the sense

of Mosco to a nonempty closed subset C' of X. Then,

(a) gph NE = ! 'Liminfgph A, ; (b) gph NZ < I Liminf gph N, ;
r>0

(¢) gph N c 'l Lim sup gph NE .

n—oo

Proof. The first assertion is a direct consequence of Theorem 2.3.4. The
second assertion obviously follows from the first since A,.(C,) is a subset
of gph Ngn. For the third assertion, note that by Proposition 2.2.4 for each
(z,2*) € gph NE there is a sequence {(zy, })}ren in gph N& such that

1
1, — x|l < = and ||z} — 2| < —.
e —all < 7 and [lap "] < 7
From the second assertion, for each integer k, there is a sequence {(Tx,n, T, ,,) fnen
with (2, 2},) in gph N such that
Tpn —— o and xp, — Tp.
n—00 ’

n—oo

Therefore there is a strictly increasing sequence {v(k)} in N such that

1
k0 — il < 7 and |z ) — 23l <

k k

Thus we obtain that

* *
Trah) 3o @ and T o

The proof is completed since (2 (), xzy(k)) € gph Ngy(k). O

Now, through Theorem 2.3.4 again, we reformulate the result above in a
local way in the next corollary. In the statement of the corollary we denote by
M Lim inf AY, (2') the set of all z* € X* such that for any sequence {z,}, in

Cpoz'—zx,
n—00

X converging strongly to x with z,, € C), for large n there exists a sequence
{z}}, in X* converging strongly to 2* with z € A}, (z,,) for n large enough.

n

We define similarly the set | | Liminf N (2’) and I'l Lim sup NE (2/).

Cnoa'—a, Cnoa’ —x
n—oo n—oo
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Corollary 2.3.6 Assume that (X, ||-]|) is a reflexive locally uniformly convex
Banach space and that the norm || - || is Fréchet differentiable off zero. Let
{Ch }nen be a sequence of closed subsets of X which converges in the sense
of Mosco to a nonempty closed subset C' of X and let x € C. Then, the
following hold :

a) NE(x)=|J" Liminf A, (2'); (b) NE(x) 1 Liminf NZ (2/) ;

Cpoz'—zx, Cpoz'—zx,
r>0 n—o00 n— 00
(¢) NE(z) c I Limsup NZ (2).
Cpoz'—zx,
n—oo

Theorem 2.3.7 Assume that (X, ||-||) is a reflezive locally uniformly convex
Banach space and that the norm || - || is Fréchet differentiable off zero. Let
{Ch }nen be a sequence of closed subsets of X which converges in the sense
of Mosco to a nonempty closed subset C' of X. Then,

gph Né‘ M Lim sup gph Ngn.

n—oo

Proof. Let (z,z*) € gph N&(u). Then, by the definition of the Mordukho-
vich limiting normal cone and by Proposition 2.2.4, there exists a sequence
{(zn, 25) }nen in X x X* such that

C3z,—x, 28 %5 2" and 25 € N5 (z,) Vn € N.

By Corollary 2.3.5, there exist an increasing sequence {k(n)},ey in N and a
sequence {(zp, ) ) bnen in X x X* such that

1 1
o = zall < = ll23 = 240l <, #n € Cigny, and 27, € NE, | (2)

for all n € N. It follows that

*
n

w* *
T, — r and . — z*.

The proof is completed. [

In the case of general reflexive Banach spaces, we have a similar result
but the Fréchet normal functionals have to be involved in place of proximal
normal functionals.
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Theorem 2.3.8 Let X be a reflexive Banach space and {Cy}nen be a se-
quence of closed subsets of X which converges in the sense of Mosco to a
nonempty closed subset C' of X. Then

(a) NE(z) c M Limsup N& (/) ; (b) gph N& c I Lim sup gph NZ .

Cnoz' >z, Nn—00
n—oo

Proof. Recall that any reflexive Banach space (see the section of prelimina-
ries) can be given an equivalent norm || - || which is both unformly convex
and Fréchet differentiable off zero. Endowing X with such a norm, it suffices
to apply (c) of Corollary 2.3.6 and Theorem 2.3.7, and to use the inclusion
NE () CNE, (). O

Now we recall the definition of subsmooth sets (see [5]).

Definition 2.3.9 Assume that (X,|| - ||) ¢s Banach space. A set C' is called
subsmooth at point x € C if for every € > 0 there exists 6 > 0 such that one
has

(2", a" — ) <ella’ — x|,

for all2',x € B(z,0)NC and all x* € N°(C;2) NBx-. The set C is said to
be submooth when it is submooth at any of its points.

The set is uniformly subsmooth if the inequality above holds in a uniform
way, that is, for every e > 0 there exists § > 0 such that

(@, 2" —x) <ella’ — x|

for all ', x € C with |2’ — z|| <6 and all z* € NY(C;z) N Bx-.

If the space X is an Asplund space and C'is closed near z € C, then in the
definition above we can replace NY(C;z)NBx- by N¥'(C;2) NBx- (see [5]).
The next proposition says that for the large class of reflexive Banach spaces
one can also replace N¢(C;-) by N¥(C;-) provided one endows X with an
equivalent norm which is locally uniformly convex and Fréchet differentiable
off zero, as guaranteed by the related renorming result recalled in the previous
section.

Proposition 2.3.10 Assume that the space X is a reflexive Banach space
endowed with a locally uniformly convex norm || -|| which is Fréchet differen-
tiable off zero, and let C be a subset of X which is closed near x € C. Then
C' is subsmooth at T if and only if the inequality in the definition above holds
true with N¢(C; z) replaced by N¥(C;x).
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Proof. Indeed, in such a space X assume that the property in the proposition
is satisfied and, for any given ¢ > 0, choose 6 > 0 such that (z*,2' — z) <
ell’ — z|| for all x,2" € C N B(Z,0) and z* € N¥(C;z) N Bx-«. Fix any
r € C N B(z,0) and any nonzero z* € N¥(C;z) N Bx-. By Proposition
2.2.4 there are a sequence {zy}reny in C' N B(Z,0) converging to = and a
sequence {z;}ren of nonzero vectors in X* converging strongly to z* with
z; € N(C; ). Since we have ||a*|| Hiéll € NP(C;x;) N By, we may write,
for every ' € C'N B(z,§),

("]

,
||I,Z|| ’xl - xk> < EHI/ - kaa

which gives as k — oo
(x*, 2" — ) < el — x|,

hence the desired inequality is fulfilled with N¥(C;x) N Bx~. Consequently,
the set C' is subsmooth at z according to the result recalled above.
The converse implication is obvious since N¥(C;-) ¢ N¥(C;+). O

The concept of subsmooth sets has been introduced by Aussel, Daniili-
dis and Thibault in [5] as an adaptation of the hypomonotonicity property
fulfilled by the truncated normal cone of a prox-regular set. Recall that a
closed set C' of a Hilbert space C' is proz-reqular at x € C' provided there
exists a neighbourhood of x over which the metric projection mapping Pc
is single-valued and continuous. The hypomonotonicity characterization of
prox-regularity says that C'is prox-regular at z if and only if (see [33]) there
exists a neighbourhood U of z and a real » > 0 such that

1
(2] — 25, 21 — x0) > _;Hxl - $2||2 (2.3.2)

for all z; € UNC and o7 € NY(C;2;) N B for i = 1,2. The closed set C' is
called (uniformly) proz-regular when Pp is single-valued and continuous over
some open r-enlargement

E.(C) :={z € X : dist(z,C) < r};

it is proved in [33] (see also [14]) that C' is uniformly prox-regular if and
only if, for some r > 0, the inequality (2.3.2) holds for all z; € C and
x; € NYC;z) N By« fori =1,2.
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More generally, suppose that C'is a closed set of a Banach space (X, || - ||)
and define, as above, the prox-regularity of C' at « € C' (resp. the uniform
prox-regularity of C') by the single-valuedness and continuity of the metric
projection mapping Po on a neighbourhood of z (resp. on some r-enlargement
E.(C)). Assume that the norm || - || is both uniformly convex and uniformly
smooth and that the moduli of convexity and of smoothness of the norm || - ||
are of power type, that is, there are constants ¢,¢ > 0, p > 0 and ¢ > 1
such that o) (g) > ce? for all € €]0,2] and pj (1) < /79 for all 7 > 0 (see
the preliminary section for the definitions of d; (-) and pj(+)); under those
assumptions it is proved in [8, Theorem 4.9] and [9, Theorem 3.2] that the
set C' is prox-regular at z if and only if there exist some real » > 0 and some
neighbourhood U of x such that

(J[J*(x) — (xg — z1)] = J[J*(25) — (21 — x2)], 20 — 1) <O (2.3.3)

for all z; € CNU and x7 € N(C; ;) NrBx- (resp. 27 € N(C; ;) NrBx-)
for i = 1,2. Similarly, the set C' is uniformly prox-regular if and only if (see
8, Proposition 5.6] and [9, Theorem 3.2]) for some r > 0 the latter inequality
holds for all z; € C'and x} € N(C;z;)NrBx- (resp. a7 € NF(C;2;)NrBx-).
Further, if the modulus of smoothness pj | of || || is of power type 2 (that is,
pi (1) < 7% for all 7 > 0), then C' is prox-regular at « € C' (resp. uniformly
prox-regular) if and only if (see [9, Proposition 5.2]) for some o > 0

(x5, 71 — x3) < ol|71 — T2 (2.3.4)

for all 21,29 € CNU (resp. z1,29 € C) and x5 € NY(C;x3) N Bx- (resp.
x5 € NP(C;xy) N Bx-); further, when C is r-prox-regular the constant o
depends only on 7 and the norm || - ||.

Definition 2.3.11 Let {C,}nen be a sequence of closed sets of a Banach
space X . Then we say that the sequence {C,, }nen is subsmooth at T € Liminf C,,

n—oo
with respect to the prorimal normal cone with compatible indexation byn € N,

if for any € > 0 there exist 6 > 0 and N € N such that for each n > N
(%, 2 —z) < ez’ — x|,

for all z,z' € C, N B(z,6) and 2* € N (z) NBx-.

One defines in an obvious way the similar concept with respect to any
normal cone. When the proximal normal cone is used, we will omit its name,
that s, we will just say that the sequance Ch,cn 1S subsmooth at T with
compatible indexation.
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Obviously the sequence {C), },en is subsmooth at any z € Liminf C,, with
n—oo

compatible indexation by n € N whenever it is equi-uniformly submooth in
the following sense. A family {C}}icr is called equi-uniformly subsmooth if
for every € > 0 there exists 6 > 0 such that for each t € T

(x*, 2 —z) < ez’ — x|

for all 2/, 2 € Cy with |2/ — z|| < § and all 2* € N9 (C}; x) N Bx-.

Similarly, if (X, || ||) is a Banach space whose modulus of uniform convexity
of the norm is of power type and modulus of uniform smoothness is of power
type 2, one sees from (2.3.4) that the sequence is subsmooth at any z €

Lim inf C,, with compatible indexation by n € N whenever for some real r > 0
n—oo

all the closed sets C), are r-prox-regular. In fact, in such a case the sequence
of sets {C), }nen is, according to (2.3.4), even equi-uniformly subsmooth.

It is worth noting the following equivalent property.

Proposition 2.3.12 Let X be a Banach space and N be a normal cone. A
sequence of closed sets {Cy}nen of X is subsmooth at T € Liminf C,, with

n—oo
respect to N with compatible indexation by n € N, if and only if for any
e > 0 there exists 6 > 0 such that for any sequence {x, }nen converging to x
with x,, € C, for large n there is some N € N satisfying for each n > N

*

(x*, 2 — x,) <ella’ — x|,

for all ' € C,, N B(x,8) and z* € Ng, (x,) N Bx-.

Proof. The property is obviously implied by the statement of Definition
2.3.11. Suppose now that the statement of that definition fails. Then there
exists some ¢y > 0 such that for each integer n € N there are an in-
teger k(n) > n with k(n + 1) > k(n), uy, 2, € Cyyn N B(z,1/n) and
zt € N (Ciny; un) N By« such that

<x2’x; - un> > 6OHxln - Un”

From the inclusion # € Il Lim inf C,, there exits a sequence {v, },en conver-
n—o0

ging strongly to z with v,, € C,, for large n. Putting z,, := v, for every integer
n & k(N) and @pm) = uy, for all m € N, we see that the whole sequence
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{zp}nen converges srongly to z with z, € C, for all n large enough. Fix
any real 0 > 0. There exists some integer K such that z,,z! € B(z,0) and
x, € C, for all n > K. So, for the constructed sequence {z,}nen, We see
that it converges to = with x,, € C,, for large n and for each integer N > K
we have k(N) > N with the point 2%y € Cyy N B(Z,6) and the vector
zy € N (Ciwy; Tr(vy) N Bx, but

(TN, Ty — Tevy) > oty — T |-

This means that the property of the proposition is not satisfied at  and the
proof is completed. [

The next theorem shows that the inclusion of Theorem 2.3.7 is an equality
whenever the sequence of sets {C), },en is subsmooth.

Theorem 2.3.13 Assume that (X, ||-||) is a reflexive locally uniformly convex
Banach space and that the norm || - || is Fréchet differentiable off zero. Let
{Cy }nen be a sequence of closed subsets of X converging in the sense of Mosco
to a nonempty closed subset C' of X. Assume that the sequence {Cy,}nen is
subsmooth at any point of C' with a compatible indexation. Then

gph N} = gph N} = % Lim sup gph Ngn.

n—oo

Proof. The theorem is a consequence of Theorem 2.3.7 and Proposition
2.3.14 below since the Mosco convergence implies the Painlevé-Kuratowski
convergence of sets. []

Proposition 2.3.14 Let (X, | - ||) is a Banach space and N be a normal
cone. Let {Cp}nen be a sequence of closed subsets of X converging in the
sense of Painlevé-Kuratowski to a nonempty closed subset C' of X. Assume
that the sequence {C),}nen s subsmooth at any point of C' with respect to N
with compatible indexation. Then

I+ Lim sup gph N, € gph N&.

n—oo

Proof. We follow the main ideas of the proof of Theorem 3.3 by X.Y. Zheng
and Z. Wei [39].

38



Fix any (Z,z*) € " LimsupgphNg, . By the definition of that limit

n—oo
superior there exist a sequence {(z,,x})}nen in X X X* and an increasing

sequence {k(n)}nen in N such that
Ty € Cymy and w, € Ng,, (v,) foralln €N,

and such that {z, },en and {27 },,en converge to Z and z* with respect to the
norm topology in X and the weak* topology in X* respectively. This implies

in particular that € Limsup C),, hence T € Liminf C,, according to the
n—0o0 n—00
convergence assumption. Choose a real 8 > 0 such that

|lxr]| < B for allm € N.

Take any real € > 0. For ¢/ := 371¢, the inclusion Z € Liminf C, and the

n—oo
subsmoothness property of the sequence {C), }en furnishes some real § > 0

and some N € N such that for each n > N
(x*, 2 — ) < €|’ — x|

for all z,2’ € C,, N B(z,0) and z* € N(Cy;x) N Bx«. Taking Ny > N such
that x, € B(Z,d) for all n > Ny, we see in particular that, for each n > Nj,
we have for all 2’ € Cl,) N B(Z,9)

(87,2’ — a) < &lla — aa|

or equivalently
(f, 2" — ) <ell2’ — (2.3.5)

Consider any z € C'N B(Z,6). Since C' = Lim inf C},, there exists a sequence
n—o0
{Yn}nen in B(Z,d) such that

|lyn — || =0 and y, € C,, for all n large enough.
This and (2.3.5) imply for all n large enough that
(Trs Yk(n) — Tn) < El[Yn(n) — Tall;
hence letting n — oo, we obtain

(%0 —x) <¢l|lx —z|| forallze CnNB(z,),
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which translates that (7, z*) € gph N&. The proof is completed. ]

In the case of a general reflexive Banach space, the limit superior needs
to involve the cones of Fréchet normal functionals instead of the cones of
proximal normal functionals.

Theorem 2.3.15 Let X be a reflexive Banach space and let {Cy,}nen be a
sequence of closed subsets of X converging in the sense of Mosco to a no-
nempty closed subset C' of X . Assume that the sequence {C,, }nen is subsmooth
with respect to the Fréchet normal cone at any point of C with a compatible
indexation. Then

gph N} = gph N} = % Lim sup gph Ngn.

n—o0

Proof. The theorem follows from Theorem 2.3.8 and Proposition 2.3.14. [J

The Painlevé-Kuratowski convergence of the graphs of Ngn can be deduced
as follows.

Corollary 2.3.16 Assume that (X,|| - ||) is a reflexive locally uniformly
conver Banach space and that the norm ||-|| is Fréchet differentiable off zero.
Let {C}nen be a sequence of closed subsets of X converging in the sense of
Mosco to a nonempty closed subset C' of X satisfying NE(x) = NE(x) for
all x € C. Assume that the sequence {Cp,}nen is subsmooth at any point of C
with a compatible indexation. Then the sequence {gph Ngn}neN of graphs of
the functional prozimal normal cones of C, Painlevé-Kuratowski converges
(with respect to the norm of X x X*) to the graph gph N} of the functional
proximal normal cone of C.

Proof. By Corollary 2.3.5 we have

gph Ng  WLim inf gph Ngn c ''Lim sup gph Ngn,
n—oo

n—o0

and by Theorem 2.3.13 and the normal regularity assumption on the set C'
we have

I Lim sup gph Ngn c I* Lim sup gph Ngn = gph N& = gph N},

n—o0 n—oo
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We deduce that

gph Nt = H'Lim inf gph Ngn = I'Lim sup gph Ngm
n—oo

n—oo

and this translates the desired Painlevé-Kuratowski convergence. [

It is worth recalling that the assumption N (-) = N¥C(-) used in the above
corollary is fulfilled whenever the set C' is prox-regular at any of its points
(see [33] for Hilbert spaces and [9] for uniformly convex Banach spaces).

Theorem 2.3.17 Let (X, || - ||) be a uniformly convex Banach space whose
moduli of convexity and smoothness of the norm are of power type. Let
{Ch}nen be a sequence of r-prox-reqular closed sets of X which converges
in the sense of Mosco to a nonempty closed set C' of X. The following hold :
(a) The set C' is r-proz-regular.

(b) If in addition the modulus of the norm || - || is of power type 2, then the
sequence {gph Ngn bnen of graphs of the functional prozimal normal cones of
C,, Painlevé-Kuratowski converges (with respect to the norm of X x X*) to
the graph gph NE of the functional prozimal normal cone of C.

Proof. (a) Let z; € C and 2} € NP(C;x;)NrBx- with i = 1, 2. By Corollary
2.3.5 there exist sequences z;,, € C and z}, € N¥(Cp;z;) (for large n) with
Tin — x; and xy,, — x} strongly as n — oco. From (2.3.3) we have for large n

(J[J"(21) = (@20 — 210)] = J[J(25,) = (@10 — B2)], 20 — T10) <0,
so using the continuity of J and J* and taking the limit as n — oo give
(J[J"(2]) = (2 — 21)] = J[J"(23) — (21 — 22)], 22 — 21) < 0.

This translates, according to (2.3.3) again, the prox-regularity of the set C.
(b) The set C being prox-regular, we have N¥(C;-) = NF(C; ) (see [8, 9]).
Further, from (2.3.4) we see that the sequence {C },en is subsmooth at
any point with compatible indexation. The assertion (b) then follows from
Corollary 2.3.16. [J
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2.4 Normal cones of Attouch-Wets convergent
sequences of sets

Although the Mosco convergence is generally easy to be checked, the Mosco
convergence of a sequence of sets {C), }nen to a closed set C' requires that the
closed set C' need to be sequentially weakly closed (as it has been seen in the
previous section). Such a sequential weak closedness is not required by the
Attouch-Wets convergence of sequences of sets. Recall (see [4, 6, 34]) that the
sequence of sets {C, }en of the normed space (X, ||-||) converges in the sense

of Attouch-Wets or (AW) converges to a set C' of X, denoted by C, AV o ,
if for all reals p > 0 big enough

Haus,(C,,C) — 0,

n—o0

where Haus,(C,,, C') denotes the Hausdorff p-semidistance between C,, and
C, that is,

Haus,(C,,, C) := max{e(C, N pBx,C),e(C N pBx, Cy)},

where e(A, A") := sup,4 d(a, A’) is the excess of the set A over the set A’

The Attouch-Wets convergence implies the Painlevé-Kuratowski conver-
gence (as easily seen), but the converse does not hold in infinite dimensional
normed space even for closed convex sets.

One of the properties of Attouch-Wets convergence that we will use is the
following.

Lemma 2.4.1 Let X be a Banach space. Let {C,, }nen be a sequence of closed
subsets of X Attouch-Wets converging to a nonempty closed subset C' of X
and let x € X. Then for every € > 0 there is N € N (depending only on x
and €) such that

de, (z) —de(x) <e  forall z € B(x, %) andn > N.
Proof. Let € > 0. Choose v € C such that

g

dofw) = inf llo =yl = flo =] = 5.
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Then by Attouch-Wets convergence (taking p big enough so that v € CNpBx
and Haus,(C,, C) — 0) there exists N € N (depending only on x and ¢) such
that, for each integer n > N, we can select some w,, € C,, satisfying

[o = wa| <

Therefore, for all n > N and z € B(z, §), we have

de,(2) —dc(z) < de,(v) —do(z) + ||z — 2|
g E
< infllz—y|—z—v|+o+2
< yIEDCanE yl| — ||z U||+3+3

2e

< ||$—wn||—||$—v||+§

2e
< Hv—wnHJrgéf-

The proof is completed. [

The next lemma will be crucial in the analysis, as n — oo, of Pg, ()
under the Attouch-Wets convergence of the sequence of sets {C), },en. It will
be convenient below to write for x # y in the vector space X

lz,yli={ty+ (1 —t)xz : t €]0,1[}.

Lemma 2.4.2 Let (X, ||-|) be a locally uniformly convexr Banach space and
C be a closed set of X. Suppose that
(i) x ¢ C and y € Po(z);
(i1) =" €|y, x| and y, € C with ||z" — y,|| — de ().
Then
Y — Y-

n—o0

Proof. As y € Po(x) and 2’ €]z, y[, we have on one hand d¢(2') = ||2' — y||
and on the other hand

0< |z =2 <|lz—yl <|lz—yn|| foralneN.
So we can choose z, €]y,, z[ in such a way that

|z = zall = |z — 2/]|. (2.4.1)
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Our aim is to show that z, — 2’. Let us proceed by contradiction and suppose
there exist € > 0 such that

|z — 2'|| > €, (2.4.2)
for some subsequence that we do not relabel. Put ¢’ := ¢/|jz — 2’| > 0 and
put also w, := 1(a' + z,) for all n € N. By the local uniform convexity of
the norm || || at the point u := (z — 2’)/||Jx — 2'|| there exists ¢’ > 0 such

that |[(u+ @)/2| <1 -0 for all w € X with ||u]| =1 and ||u — @| > €. For
each n € N, observe that u,, := (r — z,)/||x — 2’|| is a unit vector because of
(2.4.1), and observe also that

where the last inequality is due to (2.4.2). Substituting u, for u in the above
inequality of local uniform convexity gives ||z —w,|| < (1—4§")||z — 2’|, hence
for § := ||z — 2’| > 0 we have

|z —wy,|| < JJz—2'|] . (2.4.3)
From (2.4.1) again and from the inclusion z, €ly,, z[ we have

lz =2l + 20 = ynll = [l = zall + 120 = wall = llz = ynll
<z =2l + 12" — gl

0 |z — Ynll < ||2" — yu||. We deduce

1 1
lwn =gall = 15((z0 = 90) + (&' = 9u)) | < 5120 = gl + [|2" = wl])

IN

1
U =l Nl = yall) = ll2" =yl

therefore
lwn = ynll < ll2" = ynll (2.4.4)
It follows from (2.4.3) and (2.4.4) that

[ = ynll < |z = wnll + [[wn = yal|

lz =yl <
< e =2 =0+ [l = wall,
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thus according to the assumption (ii)

lz =yl < lim (lz = 2" =6 +[]2" = yall) = llz = 2"l| = 6 + de(2)
< le =2l =+ 1" =yl = llz =yl =9,
where the last equality is due to the inclusion 2’ €]z, y[. The contradiction

|z — y|| < ||z — y|| — 0 justifies the convergence z, — z’ as n — oc.
To complete the proof we observe on the one hand that

Zn — T
——||yn — || (2.4.5)
— |

Yn =T +
| 2n

according to the inclusion z, €|y,,z[. On the other hand, from the assump-
tion (i) and the inclusion y, € C' we have

ly — =l = de(2) < llyn — 2l < lyn — 2"l + [|2" — 2|

and (since do(2') = ||2' — y|| by the inclusions y € Po(x) and 2’ €]z, y[) we
also have from the assumption (ii)

[y =2l + [l — 2l = lly — 2’| + [|" — 2] = |ly —z[| asn — oo,
where the equality is due to the inclusion 2’ €]z, y[. Consequently, we obtain
llyn — x|| = ||y — «|| and hence (2.4.5) yields

/ y —

ly — |

ynmx—i- |Hy—x||:x—|— ly —z| =2 +y—x=y,

-z
2" — =
where the first equality is due to the inclusion 2’ €]z, y[. The proof is com-
pleted. [J

Remark. The proof of the lemma provided above is direct and self-contained.
The lemma can also be proved through the following result of Fitzpatrick
(see [21])) : A Banach space (X, || ||) is locally uniformly convex at a point
z € X with ||z|| = 1 if and only if for each closed set C and x ¢ C, if

limsup (de(z +t2) —de(x)) /t = 1 then every minimizing sequence for x and
t—0+

de(x) converges to x — do(x)z and Pg is continuous at x.
Proof. Let x, y and 2’ as in the statement of the lemma, that is, z ¢ C,
y € Po(x), 2’ €]y, x| .
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/

Putting z = ; ( % we obviously have ||z|]| = 1. If 0 < t < (d¢(z) —de(2'))
c\x

/ JE——
Cjc(x’?g cla’, z[. Indeed if t = do(x) — de(2') then

hence 2’ +t

' —y -y x—y -y
a:/—Hdc(x’) = 2'+(dc(x)—dc(2')) = = :U’+dc(x)m—dc(a:/) -

<

d-y x’ — T —y
o) +y=y+de(z) @) Y+ c(x)dc(x) T
Therefore for any real t with 0 < < (de(z) —de(2')), it results that Po (2’ +

ticry) = {y} and

' +do(x)

U

' _ ’y_ N
o+t goy) =+ gy~ = (U gl
t

dc(xl)

=(1+ Yde(2') = do(a') +t.

It then follows that

/

. / xr —y !
1 d t—>=)—d t=1
e (e 1) — det)/

so applying Fitzpatrick’s result we obtain that every minimizing sequence for
' and do(2') converges to z’ — de(2') 75 @y = v as desired. O

We can now prove the following theorem concerning the behaviour of the
metric projection P, when the sets {C),},, Attouch-Wets converge as n —
00.

Theorem 2.4.3 Assume that (X, ||-||) is a locally uniformly convex Banach
space. Let C and {C,}nen be closed subsets of X such that C,, AW o and
let z ¢ C. Suppose that
(i) y € Po(x), 2’ €]y, x[;
(ii) x, — ' and y,, € Pc, ().
Then one has
Yn — Y.

n—oo
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Proof. We first show that the sequence {y,}nen is bounded. Indeed take
z € C such that
|2 = 2|| < 2dc(2).

By Attouch-Wets convergence there is z, € C, such that {z,}, converges
strongly to z. This and the inclusions y,, € P¢, (z,) and z, € C,, entail

limsup [|2" — y,|| < limsup(||z, — yu| + ||z’ — x,||) = limsup de, (x,,)

n—00 n—00 n—r00
< Timsup |2, — 2,]| = limsup [l — 2| = o/ — 2| < 2dc (')
n—00 n—00

This justifies the boundedness of the sequence {y, }nen. So, considering the
real p = sup,,cy ||yn| (for which y, € C,, N pBx for all n € N), the Attouch-
Wets convergence furnishes v,, € C such that

Let € > 0. By Lemma 2.4.1 there is Ny € N (depending only on 2’ and ¢)
such that
an (Z) < dc(l’/) +¢e

for all z € B(a/,5) and all n > Njy. Since (by assumption) x,, — 2’ there is

an integer N > Ny such that for all n > N we have z,, € B(2/, §), hence
dcn (ZBn) S dc(ﬂf/) +e.

From the inclusion y,, € Pg, (x,) in the assumption (ii) and from the latter
inequality we deduce for every n > N

12" = wall < 2" = 2all + 170 = ynll + [lyn — vnl
12" = @l + [[Yn — vnll + de, (2n)
< 2" = zall + llyn — vnll + do(a) + ¢,

which implies by (2.4.6) and by the convergence z,, — 2’ in the assumption
(ii)
limsup [|2" — v, || < dc(2) + €.
n—oo
Therefore
limsup ||z — v,|| < de(2').

n—o0
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Since v,, € C, it follows that

lim ||z — v,|| = do(2).
n—oo
From Lemma 2.4.2 we obtain that v,, — y as n — oo, which combined with
(2.4.6) justifies the convergence y,, — y of the theorem. [J

n—oo

For a sequence of sets {C, },en Attouch-Wets converging to C, the next
theorem charaterizes proximal normal functionals of C' through the metric
projection to (), for a large class of Banach spaces.

Theorem 2.4.4 Assume that (X, ||-||) is a reflezive locally uniformly convex
Banach space and that the norm || - || is Fréchet differentiable off zero. Let
{Ch }nen be a sequence of closed subsets of X Attouch-Wets converging to a
nonempty closed subset C' of X . Then the following assertions are equivalent :
(a) one has x* € NE(x) ;

(b) there exist r > 0, ng € N and {x, }nen strongly converging to x, {z}},en
strongly converging to x* such that

Pe, (xy, +rJ*(z))) = {xn} for alln > ny.

Proof. We follow several ideas from the proof of Theorem 2.3.4. Assume first
that for x* the assertion (b) is satisfied, that is, there are r > 0, ng € N and
{,}n strongly converging to x, {x} },en strongly converging to z* such that

Pe, (xp +rJ*(x))) = {z,} for alln > ny.
The continuity of J* (see the section of preliminaries) entails

lim (x, +rJ*(z))) = x + rJ"(z¥),
n—o0

and by Lemma 2.3.3
x € Po(z+rJ*(z")),

which ensures z* € N} (x).

Now we assume that z* € N& (z). If 2* = 0, it suffices to take any r > 0,
any sequence {x,}nen strongly converging to x with z,, € C, for large n
(thanks to the convergence assumption of {C,},) and z} = 0, and to note
that for such choices Pg, (x, +rJ*(x})) = {x,}. So suppose that z* # 0. By
definition there is ¢ > 0 such that

Fo(z +0J%(2")) = {z}.
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Note that z+o0J*(2*) & C since x+0J*(x*) # z. Take a positive real 0’ < o.
The non-emptiness of C' and the Attouch-Wets convergence of {C,, },en to
C' ensures that C,, # () for large n, say n > N. By Theorem 2.2.3, for each
integer n > N, there are z, € B(zx + ¢'J*(z*),1/n) and z, € C, such
that Pg,(z,) = {x,}. Obviously z, — x + o'J*(z*) and = + o'J*(z*) €
|z, x + oJ*(z*)[. Theorem 2.4.3 then guarantess that the sequence {z; }nen
converges strongly to z. Putting z}, = J(%(z, — x,,)) ensures z}, € N& ()
(since z, — x, € PNg¢, (x,)), and by the continuity of J we also have

2= T (= 1)) —— T( (a4 0T (0) — 1)) = J(T*(a%)) = o

o’ n—o00 o

Further, since z, — x, = o'J*(x}) we see that
{z} = P, (20) = Po, (0 + 0" J"(27,)),

so the sequences {z, }neny and {z} },en fulfill the properties of the assertion
(b) with r =¢’. O

The next two corollaries follow directly from Theorem 3.4 (as it has been
above the case for Corollaries 2.3.5 and 2.3.6).

Corollary 2.4.5 Assume that (X, ||-]|) is a reflexive locally uniformly convex

Banach space and that the norm || - || is Fréchet differentiable off zero. Let

{Ch }nen be a sequence of closed subsets of X which converges in the sense

of Attouch-Wets to a nonempty closed subset C' of X. Then,

(a) eph NE = | J ! Liminfgph A, ; (b) gph NZ € I Lim inf gph N, ;
r>0

(¢) gph N5 c I Limsup gph N& .

n—oo

Corollary 2.4.6 Assume that (X, ||-]|) is a reflexive locally uniformly convex
Banach space and that the norm || - || is Fréchet differentiable off zero. Let
{Ch }nen be a sequence of closed subsets of X which converges in the sense
of Attouch-Wets to a nonempty closed subset C' of X and let x € C'. Then,
(a) NE(z)=| " Liminf A, (2/); (b)) NS(x) I Liminf N (2) ;
Cpoz'—zx, " Cnox'—zx, "

r>0 n—00 n—r00

(¢) N&(x) c ' Limsup NE (o).

Cpoz'—zx,
n—00
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The proof of the next theorem is obtained with the same arguments as
those used in the proof of Theorem 2.3.7 in refering to Corollary 2.4.5 in
place of Corollary 2.3.5.

Theorem 2.4.7 Assume that (X, ||-|) is a reflexive locally uniformly convex
Banach space and that the norm || - || is Fréchet differentiable off zero. Let
{Ch }nen be a sequence of closed subsets of X Attouch-Wets convergent to a
nonempty closed subset C' of X. Then,

gph N5 < 1 1im sup gph Ngn.

n—oo

As for Theorem 2.3.8, in the general reflexive Banach setting we have :

Theorem 2.4.8 Let X be a reflexive Banach space and {C,}nen be a se-
quence of closed subsets of X Attouch-Wets convergent to a nonempty closed
subset C' of X. Then

(a) NE(z) c M Limsup N& (2/); (b) gph N& C I Lim sup gph NE .

Cnoz'—x, n—00
n—00

When, in addition to the assumptions in Theorem 2.4.7, the sequence
{C., }», is subsmooth with a compatible indexation, the inclusion in Theorem
2.4.7 is an equality.

Theorem 2.4.9 Assume that (X, ||-|) is a reflexive locally uniformly convex
Banach space and that the norm || - || is Fréchet differentiable off zero. Let
{Ch}nen be a sequence of closed subsets of X converging in the sense of
Attouch-Wets to a nonempty closed subset C' of X. Assume that the sequence
{C }nen is subsmooth at any point of C' with a compatible indexation. Then

gph Né = gph Ng — I* Lim sup gph Ngn.

n—oo

Proof. The theorem is a direct consequence of Theorem 2.4.7 and Proposi-
tion 2.3.14. UJ

A similar equality holds true in general reflexive Banach spaces for the
limit superior of the graphs of Fréchet normal cones.
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Theorem 2.4.10 Let X be a reflexive Banach space and let {C), }nen be a se-
quence of closed subsets of X Attouch-Wets convergent to a nonempty closed
subset C' of X. Assume that the sequence {Cy, }nen is subsmooth with respect
to the Fréchet normal cone at any point of C' with a compatible indezxation.
Then

gph N5 = gph N} = H* Lim sup gph Ngn.

n—oo

The Painlevé-Kuratowski convergence of the graphs of N(i _ follows from
Corollary 2.4.5 and Theorem 2.4.9 exactly as we deduced Corollary 2.3.16
from Corollary 2.3.5 and Theorem 2.3.13. We state that in the following
corollary :

Corollary 2.4.11 Assume that (X, | - ||) is a reflexive locally uniformly
convezr Banach space and that the norm ||-|| is Fréchet differentiable off zero.
Let {Cy }nen be a sequence of closed subsets of X converging in the sense of
Attouch-Wets to a nonempty closed subset C' of X satisfying NE(x) = NE ()
for allz € C. Assume that the sequence {Cy, }nen is subsmooth at any point of
C' with a compatible indexation. Then the sequence {gph Ngn}neN of graphs
of the proximal normal cones of C,, Painlevé-Kuratowski converges (with res-
pect to the norm of X x X*) to the graph gph N& of the prozrimal normal
cone of C'.

2.5 Subdifferentials of Mosco and Attouch-
Wets convergent sequences of functions

Let X be a normed space. Consider the topology 7 on X x R, product
of the norm topology of X and the usual topology of R. Let f, f, : X —
R U {400} be extended real-valued lower semicontinuous functions with
n € N. One says that the sequence of functions {f, }.en (sequentially) epi-
converges or I'-converges to the function f if the sequence of sets {epi f,, }nen
T-sequentially Painlevé-Kuratowski converges to epi f in X x R. Similarly,
one says that {f,}nen converges in the sense of Mosco to f if the sequence
of sets {epi f,}nen converges in the sense of Mosco to epif in X x R. In
fact, the Painlevé-Kuratowski limit inferior (resp. superior) of the epigraphs
{epi f}n is the epigraph of an extended real-valued function called the I'-
limit or epi-limit superior (resp. inferior) of {f,},; this function is denoted
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by
['—limsup f, (resp.I' —liminf f,).
n—00 n—o0
There is an analytic description of sequential I'-convergence and Mosco
convergence. Indeed { f,, }nen (sequentially) I'-converges (resp. Mosco converges)
to f if and only if, for every sequence {x, },en in X strongly (resp. weakly)
converging to x, we have (see [1, 17])

f(z) < liminf f,(z,),

n—o0

and, for every x € X, there is a sequence {z, },en strongly converging to x

such that
f(z) > limsup fo(z,).

n—o0

Theorem 2.5.1 Assume that (X, ||-||) is a reflezive locally uniformly convex
Banach space and that the norm || - || is Fréchet differentiable off zero. Let
{fn}nen be a sequence of proper lower semicontinuous functions from X into
R U {400} which converges in the sense of Mosco to a function f. Then,

(a) gphdpf C Il Limint gphdp fu;
n—oo

(b) gphdpf C Il Limsup gphdp f,..

n—oo

Proof. Endow X x R with the norm || - || given by ||(z,s)| = (||z]|* + |s|?)"/?
and note that this norm is locally uniformly convex and Fréchet differentiable
off zero, and that X x R is reflexive. Fix any (x,z*) € gph dpf hence

((ZL’, f([E)), (I*’ _1)> € gtheI;if’

Since the sequence of functions {f, },en converges in the sense of Mosco to
f, the sequence of sets {epi f,, }nen converges in the sense of Mosco to epi f,
then by the assertion (b) of Corollary 2.3.5

((z, f(2)), (", =1)) € gph Ny € | I Lim inf gph N7

epi epi fn*

Thus there exists ((z,, sn), (), —7)) € gph N2

epi f, Such that

(Tn, $n) = (z, f(x)) and (x),—r,) — (2%, —1).
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Choose some integer N € N such that, for all n > N, we have r, > 0 hence
$p = fu(zn) according to Lemma 2.2.5. Putting u} := r,'z* for alln > N
and v := 0 for all n < N we see that

(Tn,ur) — (z,2%) strongly in X x X~ (2.5.1)

and
((xn) f(zn)), (uy,, —1)) € gph Nej;fn for all n > N.

The latter inclusion is equivalent to
(xn,ur) € gphOpf, foralln > N,

which combined with (2.5.1) completes the proof of (a). The proof of (b) is
similar with the use of the assertion (c) of Corollary 2.3.5. O

In the theorem below we use the notation !ll* Limsup gphdpf, to de-
n—00, fn

note the set of all pairs (x,z*) in X x X* for which there exists an increa-
sing sequence {k(n)},eny in N and a sequence {(z,,z%) }neny with (x,,2) €
gph Op fi(n) and such that

Theorem 2.5.2 Assume that (X, ||-|) is a reflexive locally uniformly convex
Banach space and that the norm || - || is Fréchet differentiable off zero. Let
{fn}nen be a sequence of proper lower semicontinuous functions from X into
R U {400} which converges in the sense of Mosco to a function f. Then,

gphdr f < I Lim sup gph dp f,..
n—o00, fn
Proof. The arguments are quite similar to those of the proof of the previous
theorem. As above, endow X xR with the locally uniformly convex norm |||
given by ||(z,s)|| = (||z|*> + |s|?)"/? and note that this norm is also Fréchet
differentiable off zero. Assume that (z,2*) € gphd f, or equivalently

((z, f(2)), (z*,—1)) € gph Nk ;.

By the definition of Mosco convergence of the sequence { f,, }nen, the sequence
of sets {epi f, }nen converges in the sense of Mosco to epi f in X x R. From
Theorem 2.3.7 we deduce

((z, f(2)), (z*,—1)) € gph NL; ; I * Lim sup gph N

epi fn "
n—oo
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This furnishes an increasing sequence {k(n) }nen in N, a sequence { (2, sp) }nen
in X x R with (2, 5,) € epi fim), and a sequence {(x},r,)}neny in X* x R
such that

*

(Tn, 80) = (z, f(x)) and (2%, —1,) 2= (2*, 1),

n’

and ((zn, s,), (z5,7,)) € gph Né;ifun)' There exists some N € N such that,
for all n > N, we have r, > 0 thus s,, = fyn)(2,) according to Lemma 2.2.5.
Putting v} := r; 'z} for all n > N and u := 0 for all n < N, we obtain for
every n > N

(s ful@a)), (uy, —1)) € gPh NLp,

or equivalently (z,,u}) € gph Op fin). Observing that the sequence {u} }nen
converges weakly star to z*, we see that

(z,2*) € I I* Lim sup gph 0p f,,

n_>oo7 f7L

as required. [

From the previous theorem and Theorem 2.5.1(b) we deduce, for general
reflexive Banach spaces, as in Theorem 2.3.8 the following :

Theorem 2.5.3 Let X be a reflevive Banach space and let {f,}nen be a
sequence of proper lower semicontinuous functions from X into RU {400}
which converges in the sense of Mosco to a function f. Then,

gphd, f I Lim sup gph 9 f,,.

n—00, frn

The next theorem provides an inclusion in the opposite sense of that of
the previous theorem for the limit superior of subdifferentials of a sequence
of functions. The desired inclusion requires the introduction of a form of
equi-subsmoothness property for sequences of functions.

Definition 2.5.4 Assume that X is a reflexive Banach space endowed with
a stricly convex norm || - || satisfying the (sequential) Kadec-Klee property.
Let f, : X — RU{+o0} be proper lower semicontinuous functions. Then we
say that the sequence { f,}nen is subsmooth at & € dom (I" — Lim sup f,,) with

n—0o0
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compatible indexation by n € N, if for any € > 0 there exist some real 6 > 0
and some N € N satisfying for each integer n > N

(2%, 2" — ) < fu(2) = fulz) + (1 + [J2"]) |2 — =]

for all 2’ € B(z,0), v € B(z,0) N Dom dp f,, and z* € Op fr(x).

When, in place of Op f,, another subdifferential is involved over a general
Banach space, we will say that the sequence is subsmooth at T with respect to
this subdifferential with compatible indexation by n € N.

Among examples of such sequences we have of course any sequence of
convex functions. Another one is any sequence of extended real-valued func-
tions which are equi-subsmooth in the following sense.

Definition 2.5.5 Let X be a Banach space. A family { fi }ier of functions
from X into RU {+oo} is called equi-subsmooth at & € X whenever for any
real € > 0 there exists some real 6 > 0 such that for eacht € T

(2%, 2" —x) < fila!) = fi(w) + (1 + ||lz7[)]]2" —

for all ' € B(z,9), x € B(z,0) N Dom d¢y fr and x* € Oy fi(x).

An important example of equi-subsmooth family of functions is that of
equi-primal lower regular functions; such functions have been introduced by
R.A. Poliquin [30] under the name of primal lower nice functions. Recall that
a family {f;}ier of functions from the Banach space X into R U {400} is
equi-primal lower reqular at T € X (see [35]) provided there exists some reals
6 > 0 and ¢ > 0 such that for each t € T

(a*,2" =) < fi(@') = filx) + (1 + |2*|)]|2" — 2]
for all ' € B(z,6), v € B(Z,0) N Dom O¢; f; and x* € Oy fi(x).

Lemma 2.5.6 Assume that X is a reflevive Banach space endowed with a
locally uniformly convex norm || - || which is Fréchet differentiable off zero.
Let {fn}nen be a sequence of proper lower semicontinuous functions from
X into RU {+oo} which T'-converges to a proper function f from X into
RU{+oo}. If { fu}nen is subsmooth at T € domf with compatible indexation
by n € N, then the sequence of sets {epi fn}nen is subsmooth at (z, f(Z)) with
compatible indexation by n € N.
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Proof. We endow the reflexive Banach space X x R with the norm || - || given
by ||(z, s)|| = (||z]|?>+|s|?)'/2. Assume that the sequence of functions {f, }en
is subsmooth at x € dom f with compatible indexation by n € N. Fix any
real € > 0 and take § > 0 and N &€ N given by Definition 2.5.4 above, so for
each integer n > N

(2", 2" —x) < fu(2') = fol@) + (1 + 272" — =] (2.5.2)
forall 2’ € B(z,9), x € B(z,0)NDom dp f,, and z* € dpf,(z). Fix any integer
n > N and consider any (2/,s') € B((z, f(z)),0) with (2',s') € epif,,
that is, s > f(«'), any (z,s) € B((z, f(z)),0) with (z,s) € epif,, any

(z*,—r) € NEi; ((z,5)) with (2*,—r) € Bx-xz. We know from Lemma

2.2.5 that » > 0. We will distinguish two cases : » > 0 and r = 0.
Case I : r > 0. In this case we have s = f,,(x) (see Lemma 2.2.5) hence

(x*,—r) € NLip ((z, ful@))), that is, (r~'a*, —1) € NLi s ((z, fu(x))).

This means r~'z* € Op f,(x), thus we have by (2.5.2)
(1,0 — 1)+ (1) (@) — ful@) < e+ e )2’ — 2]
and according to the inequality s’ > f,(z)
(rrla” o’ —a) + (=1)(s' = ful2)) S L+ 2]z’ — 2|
or equivalently

((rta", =), (2", ) = (2, fu(@))) < L+ 772" [D]l2" — |-

Multiplying by r > 0 and taking the inclusion (z*, —r) € B+ g into account,
we obtain

(&%, =r), (', 8) = (,5)) < e(r+ 2" )2’ — 2| < 2|2 — z].

Case II : r = 0. We know in this case by Lemma 2.2.5 that we also have
(z*,0) € NLi ;. (2, fa(2))). Then by Proposition 2.2.6 there exist a sequence
{(xkms fr(Ten)) e in epi f,, converging to (z, f,(x)) as k — oo and a sequence
{(@F s —Thn) b in X* X R converging strongly to (z*,0) as k — oo such that
(T —Thm) € Ny (@, fa(zrn))) and 73, > 0 for all k& € N. From the
latter inclusion into the normal cone we see that T1;111$Zn € Op fu(Tk,y). Since
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x € B(Z,0), there exists some integer K, such that x;, € B(z,0) for all
integers k > K,,. Then for any k > K, the inequality (2.5.2) yields

(TenThms ¥ = Tan) < fol@) = falzrn) + (U4 rgllaia Dz’ — ziall,

so as above we obtain

((@h s =Thn), (2, 87) = (@, fr(@rn))) < €(rim + 2kl ll2" = zpnll
Taking the limit as k — oo gives
((@",0), (2", 8) = (z, ful2))) < ellz”|l[la" — 2| < ell2’ — 2|

thus
((27,0), (2", 8') = (z,5)) < el|a’ — 2]

Consequenty both cases furnish
(&, =), (@', ') = (2,5)) < 2e(||a’ — || +|s' — s])

for all (2/,s') € epif, with (2/,s") € B((z, f(7)),9), (z,s) € epif, with
(z,s) € B((z, f(z)),0) and (2%, —r) € NI ((x,s)) with (2, —r) € Bx-xx.
We then conclude that the sequence of sets {epi f,, }, is subsmooth at (z, f(z))

with compatible indexation. [

Remark 2.5.7 It is not difficult to see that the lemma still holds if the se-
quence is assumed to be subsmooth with respect to any other of subdifferentials
Or, O, Oci- U

Theorem 2.5.8 Assume that (X, ||-||) is a reflezive locally uniformly convex
Banach space. Let {f,}nen be a sequence of proper lower semicontinuous
functions from X into RU {+o00} which I'-converges to a proper function f.
Assume that the sequence { f,}nen is subsmooth at every point of dom f with
a compatible indexation. Then,

M Lim sup gph dp f,, C gph dp f.

n—00, fn

Proof. Consider any (z,2*) € Il l* Lim sup gph 9p f,,. There exist a sequence
n—o00, fn

({xn,z%)} in X x X* and a strictly increasing sequence {k(n)} in N such
that

(xna {L':;) € gph ank(n) and (mm fk(n)(xn)) - (27, f(ﬂf))
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and such that {z}} converges to x* with respect to the weak star topology
in X*. Therefore

((«'L’m fk(n)(xn))7 (x:u _1)) € gph Ne];ifk(n)’

so by Lemma 2.5.6 and Proposition 2.3.14
((z, f(2)), (2", ~1)) € ' Lim sup gph Ny

epi
n—oo

We then obtain
(x,2") € gphOpf.
and the proof is completed. [J
Theorems 2.5.2 and 2.5.8 directly yield :

Theorem 2.5.9 Assume that (X, ||-||) is a reflexive locally uniformly convex
Banach space and that the norm || || is Fréchet differentiable off zero. Let
{fn}nen be a sequence of proper lower semicontinuous functions from X into
R U {400} which converges in the sense of Mosco to a proper function f.
Assume that the sequence {f,} is subsmooth at every point of dom f with a
compatible indexation. Then,

gph dp,f = gphdp f = I Lim sup gph 9p f...

n—00, fn

Concerning the limit superior of the graphs of Fréchet subdifferentials (ins-
tead of proximal subdifferentials), the following results hold in a general re-
flexive Banach space :

Theorem 2.5.10 Let X is a reflexive Banach space and let {f,}nen be a
sequence of proper lower semicontinuous functions from X into R U {400}
which T'-converges to a proper function f. Assume that the sequence { f,, }nen
15 subsmooth at every point of dom f with respect to the Fréchet subdifferential
with a compatible indexation. Then,
I Lim sup gph 9p f,, C gph dp f.
n—00, fn
If in addition to the above subsmoothness property, the sequence {fn}n
satisfies the stronger assumption of Mosco convergence to f instead of the
['-convergence, then one has the equalities
gph 0y f = gphdpf = I Limsup gph Op ..

n—00, fn
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Proof. Concerning the assertion (a) it is enough to apply the arguments of
Theorem 2.5.8 using Remark 2.5.7 in place of Lemma 2.5.6. The assertion
(b) follows from (a) above and Theorem 2.5.3. O

Now we turn on the case of Attouch-Wets convergence. Recall that the
sequence of extended real-valued functions {f, },en on X is said to converge
in the sense of Attouch-Wets to an extended real-valued function f provided
that the sequence of sets {epi f,,}neny in X x R converges in the sense of
Attouch-Wets to the set epi f. All the theorems that we have established
in the previous part of this section for the Mosco convergence can be also
obtained for the Attouch-Wets convergence and the proofs are similar and
omitted. Theorems 2.5.11 and 2.5.13 are concerned with locally unformly
convex Banach spaces and the limit superior of proximal subdifferentials,
while Theorems 2.5.12 and 2.5.14 are stated for general reflexive Banach
spaces but with the limit superior of Fréchet subdifferentials.

Theorem 2.5.11 Assume that (X, ||-||) is a reflexive locally uniformly convex
Banach space and that the norm || - || is Fréchet differentiable off zero. Let
{fn}nen be a sequence of proper lower semicontinuous functions from X into
RU{+o0} which converges in the sense of Attouch-Wets to a proper function
f. Then,

(a) gphdpf I Liminf gph dp f,;

(b) gphdpf c I ' Limsup gphdpf,.

n—oo

Theorem 2.5.12 Let X be a reflerive Banach space and let {f,}nen be a
sequence of proper lower semicontinuous functions from X into R U {400}
which converges in the sense of Attouch-Wets to a proper function f. Then

(a) gphopf C VI Limsup gph Op f,;

n—o0

() gphdpf I Limsup gph O f.-

n—00, fn
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Theorem 2.5.13 Assume that (X, ||-||) is a reflexive locally uniformly convex
Banach space and that the norm || - || is Fréchet differentiable off zero. Let
{fn}nen be a sequence of proper lower semicontinuous functions from X into
RU{+o0} which converges in the sense of Attouch-Wets to a proper function
f. Assume that the sequence {f,}nen is subsmooth at every point of dom f
with a compatible indexation. Then one has

gphdrf = gph dp f = I* Lim sup gph dp f,,.

n—00, fn

Theorem 2.5.14 Let X is a reflerive Banach space and let {f,}nen be a
sequence of proper lower semicontinuous functions from X into R U {+oco}
which converges in the sense of Attouch-Wets to a proper function f. Assume
that the sequence { fy }nen is subsmooth at every point of dom f with respect
to the Fréchet subdifferential with a compatible indexation. Then one has

gphd,f = gph Op f = I I* Lim sup gph 9r f,,.

n—00, fn

Acknowledgment. We thank both referees for their comments on the pre-
sentation of the paper.

Bibliographie

[1] H. Attouch, Variational convergence for functions and operators, Appli-
cable Mathematics Series, Pitman, London (1984).

[2] H. Attouch, J.L. Ndoutoume, and M. Théra, Epigraphical convergence of
functions and converge of their derivatives in Banach spaces Exp. No.
9, Sem. Anal. Convexe (Montpellier) 20 1990, 9.1-9.45.

[3] H. Attouch and M. Théra, Convergence en analyse multivoque et varia-
tionnelle, Matapli 36 (1993), 22-39.

[4] H. Attouch and R.J-B. Wets, Quantitative stability of variational sys-
tems, I : The epigraphical distance, Trans. Amer. Math. Soc. 338 (1991),
695-729.

60



[5]

[14]

[15]

D. Aussel, A. Daniilidis and L. Thibault, Subsmooth sets : functional
characterizations and related concepts, Trans. Amer. Math. Soc. 357
(2005), 1275-1301.

G. Beer, Topologies on Closed and Closed Convex Sets, Kluver Academic
Publishers, Dordrecht-Boston-London (1993).

F. Bernard and L. Thibault, Proz-reqular functions in Hilbert spaces, J.
Math. Anal. Appl. 303 (2004), 217-240.

F. Bernard, L. Thibault and N. Zlateva, Characterization of proz-reqular
sets in uniformly convexr Banach spaces, J. Convex Anal. 13 (2006), 525-
559.

F. Bernard, L. Thibault and N. Zlateva, Prox-reqular sets and epigraphs
in uniformly convex Banach spaces : various reqularities and other pro-
perties, Trans. Amer. Math. Soc. 363 (2011), 2211-2247.

J.M. Borwein and H. Strojwas, Prozimal analysis and boundaries of
closed sets in Banch space. II : Applications, Canad. J. Math. 39 (1987),
428-472.

F.H. CLarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth
Analysis and Control Theory, Springer, Berlin (1998).

F.H. Clarke, R.J. Stern and P.R. Wolenski, Prozimal smoothness and
the lower C* property, J. Convex Anal. 2 (1995), 117-144.

G. Colombo and V. Goncharov, Variational inequalities and reqularity
properties of closed sets in Hilbert spaces, J. Convex Anal. 8 (2001),
197-221.

G. Colombo and L. Thibault, Prox-reqular sets and applications, in
Handbook of Nonconvex Analysis, D.Y. Gao and D. Motranu eds., In-
ternational Press, (2010).

C. Combari, R.A. Poliquin and L. Thibault, Convergence of subdiffe-
rentials of convezly composite functions, Canad. J. Math. 51 (1999),
250-265.

C. Combari and L. Thibault, On the graph convergence of subdifferen-
tials of convex functions, Proc. Amer. Math. Soc. 126 (1998), 2231-2240.

61



[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

G. Dal Maso, An Introduction to I'-Convergence, Birkh’/auser, Bassel
(1993).

R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in
Banach Spaces, Longman and Willey, New-York (1993).

J. Diestel, Geometry of Banach Spaces-Selected topics, Lecture Notes
485, Springer, Berlin (1975).

J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in
Mathematics 92, Springer, Berlin (1984).

S. Fitzpatrick, Nearest points to closed sets and directional derivatives
of distance functions, Bull. Austral. Math. Soc. Vol 39 (1989) [233-238]

A. Toffe, Proximal analysis and approximate subdifferentials, J. London
Math. Soc. 41 (1990), 175-192.

A. Jourani, Limits superior of subdifferentials of uniformly convergent
func- tions in Banach spaces, Positivity, 3 (1999), 33-47.

A. Jourani, L. Thibault and D. Zagrodny, Differential properties of Mo-
reau envelope, to appear in J. Funct. Analysis.

L.-S. Lau, Almost Chebyshev subsets in reflexive Banach spaces, Indiana
Univ. Math. J. 27 (1978), 791-795.

A. Levy, R.A. Poliquin and L. Thibault, A partial extension of Attou-
ch’s theorem and its applications to second-order differentiation, Trans.
Amer. Math. Soc. 347 (1995), 1269-1294.

R.E. Megginson, An Introduction to Banach Space Theory, Springer,
New York (1998).

B.S. Mordukhovich, Variational Analysis and Generalized Differentia-
tion I, Grundlehren der Mathematischen Wissenschaften, 330, Springer-
Verlag, Berlin (2005).

J.-P. Penot, Calculus Without Derivatives, Graduate Texts in Mathe-
matics, Springer, New York (2013).

62



[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

R.A. Poliquin, Integration of subdifferentials of nonconvex functions,
Nonlinear Anal. 17 (1991), 385-398.

R.A. Poliquin, An extension of Attouch’s theorem and its applications to
second order epi-differentiation of convexly composite functions, Trans.
Amer. Math. Soc. 348 (1992), 861-874.

R.A. Poliquin and R.T. Rockafellar, Proz-regular functions in variatio-
nal analysis, Trans. Amer. Math. Soc. 348 (1996), 1805-1838.

R.A. Poliquin, R.T. Rockafellar and L. Thibault, Local differentiability
of distance functions, Trans. Amer. Math. Soc. 352 (2000), 5231-5249.

R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Grundleh-
ren der Mathematischen Wissenschaften, 317, Springer-Verlag, Berlin
(1998).

O.S. Serea and L. Thibault, Primal lower nice property of value functions
in optimization and control problems, Set-Valued Var. Anal. (2010), 1-
35.

M.A. Smith, Some examples concerning rotundity in Banach spaces,
Math. Ann. 233 (1978), 155-161.

D. Zagrodny, On the weak™ convergence of subdifferentials of convex
functions, J. Convex Anal. 12 (2005), 213-219.

D. Zagrodny, A weak™ approximation of subgradient of convex function,

Control Cybern. 36 (2007), 793-802.

X.Y. Zheng and Z. Wei, Convergence of the associated sequence of nor-
mal cones of a Mosco convergent sequence of sets, SIAM J. Optim. 22
(2012), no. 3, 758-771.

63



64



Chapitre 3

The validity of the “lim inf”
formula and a characterization
of Asplund spaces

A. JOURANI AND T. ZAKARYAN

Abstract. We show that for a given bornology  on a Banach space X the
following “lim inf” formula

liminf T5(C; 2") C T.(C; )
C

'Sz

holds true for every closed set C' C X and any x € C, provided that the
space X x X is Os-trusted. Here T3(C; z) and T.(C; ) denote the S-tangent
cone and the Clarke tangent cone to C' at x. The trustworthiness includes
spaces with an equivalent g-differentiable norm or more generally with a
Lipschitz (-differentiable bump function. As a consequence, we show that
for the Fréchet bornology, this “liminf” formula characterizes in fact the
Asplund property of X. We use our results to obtain new characterizations
of T-pseudoconvexity of X.

3.1 Introduction

Let X be a real Banach space and X* be its topological dual with pairing
(-,9). A bornology B on X is a family of bounded and centrally symmetric
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subsets of X whose union is X, which is closed under multiplication by po-
sitive scalars and is directed upwards (i.e., the union of any two members of
B is contained in some member of (). The most important bornologies are
Gateaux bornology consisting of all finite symetric subset of X, Hadamard
bornology consisting of all norm compact symetric sets, weak Hadamard bor-
nology consisting of all weakly compact symetric sets and Fréchet bornology
consisting of all bounded symetric sets.
Each bornology 3 generates a (-subdifferential which in turn gives rise to
the S-normal cone, and hence by making polars to the S-tangent cone.
In this paper, we are concerned with sufficient conditions on a Banach space
X satisfying the following “lim inf” formula

limcinf T5(Csa’) C To(C; x) (3.1.1)

'Sz

for each closed set C' C X, and for each x € C. Here T3(C;z) and T.(C; x)
denote the f-tangent cone and the Clarke tangent cones to C' at x and for
a multivalued mapping F' : C = X h € limcian (u) iff for each sequence

uU—T
(x,) C C converging in norm to x there exists a sequence h,, — h, such that

for all sufficiently large n, h, € F(z,).
This kind of formulas has been studied by many authors in special situations.
They started with the work by Cornet [6] who found a topological connection
between the Clarke tangent cone and the contingent cone K(C;z) to C' at
x. He has shown that if C C R™, then
T.(C; z) = liminf K(C; ).
oS
Using his new characterization of Clarke tangent cone, Treiman [20, 21](see
also [8] for an independent proof) showed that the inclusion
liminf K(C;2') C T.(C; x)
oS
is true in any Banach space and equality holds whenever C'is epi-Lipschitzian
at x in the sense of Rockafellar [19]. In [4, 5], Borwein and Strojwas introduced
the concept of compactly epi-Lipschitz sets to show that the previous equality
holds for C'in this class unifying the finite and infinite dimensional situations.
In the case when the space in question is reflexive, these authors obtained
the following equality
T.(C,z) = liminf WK (C, 2")

x’£>x
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where W K (C, z) denotes the weak-contingent cone to C' at z. They generalize
the results of Penot [16] for finite dimensional and reflexive Banach spaces and
of Cornet [6] for finite dimensional spaces. Aubin-Frankowska [2] obtained the
following formula

T.(C;z) = liminf WK (C;2') = lim inf co(W K (C; z'))

/C /C
' Sz =

in the case when the space X is uniformly smooth and the norm of X* is
Fréchet differentiable off the origin.

The validity of the “liminf” formula (3.1.1) has been accomplished in Bor-
wein and loffe [3] in the case when the space X admits a [-differentiable
equivalent norm.

Our aim in this paper is to show that if the space X x X is Os-trusted or
equivalently basic fuzzy principle is satisfied on X x X (this includes spaces
with equivalent -differentiable norm or more generaly spaces with Lipschitz
p-differentiable bump function) then the “liminf” formula (3.1.1) holds. As
a consequence, we show that for the Fréchet bornology, the formula (3.1.1)
characterizes in fact the Asplund property of X. We then use our results to
obtain new characterizations of S-pseudoconvexity.

The plan of the present paper is as follows : After recalling some tools of
nonsmooth analysis in the second section, we establish in the third one a
connection between Gateaux (Fréchet) differentiability of the norm and the
regularity of the set D = B¢ = {x € X : ||z|| > 1}. For z € D, with ||z|| = 1,
Borwein and Strojwas [5] showed that Gateaux differentiability of the norm
at T is equivalent to coK (C;z) # X. We prove that Gateaux differentiabi-
lity of the norm at Z is equivalent to K (D;Z) equal to a half space which
in turn is equivalent to the Clarke tangential regularity of D at z. Similar
results are obtained for Fréchet differentiability by means of the Fréchet nor-
mal cone to D. In the fourth section, we prove our main theorem and some
of its consequences. In the fifth section, we give some corollaries, namely a
new characterization of Asplund spaces : A Banach space is Asplund space
if and only if the “liminf” formula holds true with the Fréchet bornology
for any closed set C' C X. The last section concerns characterizations of
Ts-pseudoconvex sets.
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3.2 Notation and Preliminaries

Let X be a Banach space with a given norm | - ||, X* be its topological
dual space and (-,-) be the duality pairing between X and X*. The sphere
of X and the open ball in X centered at z and of radius § are defined by
Sx={h€ X : ||h||=1} and B(z,d) ={h € X : ||h —z| < d}.

Let C be a closed subset of X. The contingent cone K(C;x) (resp. weak-
contingent cone WK(C;x)) to C at x is the set of all h € X for which
there are a sequence (h,,) in X converging strongly (resp. weakly) to h and
a sequence of positive numbers (t,) converging to zero such that

x4+ t,h, € C,

for all n € N. A vector h € X belongs to the Clarke tangent cone T.(C;x)
of C' at x provided that for any € > 0 there exists o > 0 such that

(u+tB(h,e)) NC #0,

for all w € CNB(x,0d) and t €]0,4[. It is known that h € T,.(C; z) if and only
if for any sequences (z,) C C converging to = and every sequence (t,) of
positive numbers converging to zero there is a sequence (h,,) in X converging
to h such that

Tp + tph, € C, Vn € N.

It is obvious that T.(C;x) C K(C;x). The Clarke normal cone is defined as
the negative polar cone of the Clarke tangent cone, that is,

N(Cyz):={a" € X*: (2", h) <0 forall h € T.(C;z)}.
Let us recall that the (negative) polar cone of a convex cone K is given by

Ke={z"e X*: (z",h) <0 Vhe K}.

Definition 3.2.1 Let f : X — RU{%o00} be a function finite at x and (3 be
a bornology on X.
(a) f is said to be [-differentiable at x if there is x* € X* such that for each
set S €

lim ¢~ 'sup |f(x +th) — f(x) — (x*,th) | = 0,

t—0t hesS
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(b) x* € X* is called a B-subgradient of f at x, if for each € > 0 and each
set S € [ there is 6 > 0 such that for all0 <t < and all h € S

7 (f(z+th) = f(x)) — (2", h) > —.
We denote by Osf () the set of all B-subgradients of f at x.

It follows from this definition that if 51 C s, then 0s, f(x) C 9g, f(x).

Applying Definition 3.2.1(a) to the bounded bornology and Gateaux borno-
logy, we obtain the following classical definitions of :

e Fréchet differentiability : There is 2* € X™* such that
lim [[B]| 7 (f (@ + h) = f () = (2", b)) = 0.
—0

e Gateaux differentiability : There is 2* € X* such that

Vhe X, limt '(f(z+th) — f(z)) = (z*, h).
t—0t
While Definition 3.2.1(b) leads ([14]) in the case of the bounded bornology
(e.g. B = F) to the following classical definition of Fréchet-subdifferential of
fatax:

Orf(z) = {:c e X* liming LW SO =y 2) 0}.

yoe ly — |
We denote by 0 the Fenchel (or Moreau-Rockafeller) subdifferential that
is
Of(x) ={z* € X*: f(x+h) — f(x) > (x,h),Vh € X}.
It is important to note that in case of lower semicontinuous convex function
f, we have

Opf(x) = 0f ().
We will denote by Nz(C;x) the S-normal cone of C' at x which is defined
by
Np(C;x) = Ostpe(x)

where ¢ is the indicator fonction of C, that is,

0 if r € C,
wc(ﬂc)—{ +oo ifxgC
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and by T3(C;x) the S-tangent cone which is defined as the negative polar
cone of the S-normal cone intersected with X, that is

Ts(C,x) = (Np(C,x))" N X.
Clearly, for an bornology 3 the following inclusions hold :
Np(C;z) C Ng(Ci2) C Ng(Ciw),  To(Cix) C Te(Csx) C Tr(Cs ).

When f is the Fréchet bornology, then ([1],[17]) we obtain that

< 0}.

Np(C;z) = {z* € X* : limsup (@' u — )
TP T ]

Definition 3.2.2 Let X be a Banach space and let 5 be a bornology on it.
We say that X is Og trusted, if the following fuzzy minimization rule holds :
let f be a lower semicontinuous function on X finite at * € X, and let g
be a Lipschitz continuous function on X. Assume that f + g attains a local
minimum at x. Then for any € > 0 there are x,u € X and z* € O0gf(x),
u* € dgg(u) such that

o -zl <&, [lu—z| <&, [f(z)=f(@)] <e and [2"+y"|| <e.
We recall that a bump function on X is a real-valued function ¢ which has
bounded nonempty support supp(¢) = {z € X : ¢(x) # 0}.

Proposition 3.2.3 [14] If there is on X a [-differentiable Lipschitz bump
function, then X is Og—trusted,

Proposition 3.2.4 [9] A Banach space is trusted for the Fréchet subdiffe-
rential if and only if it is Asplund.

3.3 Characterizations of Gateaux and Fréchet
differentiability of the norm

In this section, we study the connection between differentiability of the norm
|| - || on X and some property of the subset D := B¢ = {x € X : ||z] >
1}. In [5] Borwein and Srojwas showed several properties of D in various

70



Banach spaces. In particular they showed that if ||Z|| = 1 then Gateaux
differentiability of the norm at Z is equivalent to the P-properness of D et
Z, i.e., c0oK(D;z) # X. In this section we will show furthur properties for
various norms. We denote by Pc(x) the set of projections of x on a subset C
of X, i.e.,

Polw) = {y € C o — y|l = de(a)}.

Proposition 3.3.1 Assume that X is a Banach space with a given norm
| -||. Let & € X with ||| = 1. Then

(a) K(D;Z) contains at least one closed half space,

(b) T+ K(D;z) C D,

(c) K(D;z) # X,

(d) YA €)0,1[, DN B(z,1—\) +tB(z,\) C D, forall t >0,
(e) B(z,1) C T.(D;7),

(f) Hi_H € Po(z) and dp(z) =1 — ||z||  for all = € B\{0}.

Proof. (a) By Hahn-Banach theorem, find z* € X* such that
lo*]| = (", 7) =1

Then, clearly, the closed half space T+ {h € X : (z* h) > 0} lies in D.
Therefore K (D;x) contains at least a one half space.

(b) Take any h in K(D,T) and let sequences (h,,) and (t,) witness for that.
The convexity of || - || implies that for all large n € N we have

o O R

fw+hf—1 > > e T

Hence, letting n go to oo here, we get the desired inclusion

(c) It is a direct consequence of (b).
(d) Forany x € D, z€ X and t > 0

Iz = A+t <t = @+l - llzll <t = 1<
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Therefore B((1 +t)x,t) C D or equivalently z + tB(z,1) C D. Let X €]0,1]
and pick z € B(z,1-A\)ND. Then B(Z,\) C B(x,1) and hence x+tB(z, ) C
D. Finally we receive that

DnB(z,1-X)+tB(z,\) CD.

(e) Take any h € B(Z,1). Consider any sequence (z,) C C converging to
T and any t, | 0. For n € N put h,, := h+ x, —T; then h, — h, and as

|lzn + tohnl = |1+ t)xn +to(h—Z)|| > 14+ t, —t, =1

for every n € N, we can conclude that h € T.(C, 7).
(f) Suppose that = € By and z € D, then

T
o= 2l = Y2l = flall 2 1= llof) = |} = |
el

therefore ﬁ € Pp(x). O
x

The following proposition contains several characterizations of the Gateaux
differentiability of the norm.

Proposition 3.3.2 Let X be a Banach space with a given norm ||-||. Assume
that ||Z|| = 1. Then the following assertions are equivalent :
(a) || - || is Gateauz differentiable at Z,

(b) there is z* € X*, ||z*|| = 1 such that K(D;z) ={h € X : (x*,h) > 0},
(¢) T(D;z) = K(D; 7).

Proof. (a) = (b). Suppose that || - | is Gateaux differentiable at z with
derivative x*. By (a) of Proposition 4.4.1 the cone K (D;Z) contains at least
one closed half space. If we show that K(D;z) C {h € X : (z*,h) > 0} then
this inclusion will become equality. Take h € K(D;z) and find (h,) in X
converging strongly to h and a sequence (t,),, of positive numbers converging
to zero such that for all n € N large enough

T +tyhy, € D.

72



Thus, as ||Z + t,h,|| > 1,

I L T
> = (" h) = [|h = ha].
Therefore . |z + t,h| — ||Z|| (@, h) > — (2", ])
n e t R
0= —(2%h),
(z*,h) >0

(b)=(a) Assume that K(D;z) = {h: (x*, h) > 0} for some z* € X*, with
|z*]| = 1. Let 2* € 9| - ||(Z). Then ||z*|| =1 and

T+ vl — ||Z|| > (z*,v) for every v € X.

Hence, if h € X is such that (z*,h) > 0, then we have for all £ > 0 that
|Z +th|| > 1, and so T + th € D, which means that h € K (D, ). By Farkas
Lemma ([11]), we conclude that z* = Az* with A > 0. Thus

A= =] =1 and 2" =2a"
(Bl
This asserts that d|| - ||(z) = {#*} or equivalently the norm || - || is Gateaux
differentiable at z.
(a) = (c) Suppose that the norm || - || is Gateaux differentiable at z. It
suffices to show that there exists a unique z* € X*, with ||z*|| = 1 such that

T.(D;z) ={h € X :{(z" h) > 0}.

Assertions (c¢) and (d) of Proposition 4.4.1 ensure that 0 is a boundary point
of T.(D; Z) and intT.(D, Z) # 0. So the separation theorem produces z* € X*,
with ||z*|| = 1 such that

T.(D;z) C{he X : (z",h) >0}

and as B(z,1) C T.(D;z) (by (d) of Proposition 4.4.1), the assumption (a)
implies that x* is exactly the Gateaux derivative of the norm || - || at z. It
remains to establish the reverse inclusion

T.(D;z) D {h e X : (z* h) > 0}.
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Suppose that there exists v € X satisfying (z*,v) > 0 and v ¢ T.(D;Z).
Once again, the separation theorem yields u* € X*, with ||u*|| = 1, such that

T.D;z) c{he X :(u",h) >0} and (u*,v)<D0.

As before we show that u* is also a Gateaux derivative of the norm || - || at
Z, and by (a), z* = u* and this contradicts the relations

(x*,v) >0 and (u",v) <O0.

(¢) = (b) Suppose that T,.(D;z) = K(D;z). Then T.(D; ) contains at least
one half space. By Proposition 4.4.1, T.(D,z) # X and by the separation
Theorem (recall that the Clarke cone is convex and closed) there is 2* € X*,
||l*|| = 1 such that

T.(D;z) C {he X : (z* h) > 0}.
By the Farkas lemma we have
T.(D;x)={h e X :(z* h) >0}

O
The following corollary on the density of points of Gateaux differentiability
of the norm is a consequence of Propositions 4.4.1 and 3.3.2.

Corollary 3.3.3 Let (X, | - |) be a Banach space and put D = {u € X :
llu|| > 1}. The following assertions are equivalent :

(1) For each x € Sy, liminfcoK (D; ") # X.

Bz
(2) The norm || - || is Gateauz differentiable at the points of a dense subset
of X.

Proof. First, we remark that

liminfcoK(D;a') # X <= liminfcoK (D;z") # X
S

D X
' =z =Sz

(1) = (2) : It suffices to show that || - || is Gateaux differentiable on dense
subset of Sx. Let x € Sx. Then

liminf oK (D; ') # X.

x’gz
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Therefore for any € > 0 there is z € B(z,e) N D such that
coK(D;z) # X.

That is the convex cone €K (D;z) belongs to a half space, thus K(D; z)
also belongs to a half space. Since by (a) of Proposition 4.4.1 we know that
K(D:; z) contains at least one half space, then by Farkas Lemma we deduce
that K(D; z) is equal to the half space and || - || is Gateaux differentiable at
z according to Proposition 3.3.2.

(2) = (1) : Let z € Sx and consider a sequence (x,) in Sx converging
to x, such that || - || is Gateaux differentiable at each x,. Proposition 3.3.2
asserts that there exists zf € X*, ||zf|| = 1, such that K(D,z,) ={h € X :
(x,h <0}, and hence ¢oK (D;x,) = K(D;z,). Applying Proposition 4.4.1
(b), we get COK (D;xy) C D — xy. Thus liminf  » GoK(D;2') C D —x, and
the proof is completed. O

Proposition 3.3.4 Let X be a Banach space with a given norm ||-||. Consi-
der T € Sx. Then the following assertions are equivalent :

(a) || - || is Fréchet differentiable at z,
(b) Np(D;z) # {0},

Proof. (a) = (b) If (a) holds then there is some 2* € X*, ||z*|| = 1 which is

the Fréchet derivative of || - || at z, that is, for any £ > 0 there is § > 0 such

that

Iyl = [1z]| = (=", y — 7)
ly — x|

for all y € B(z,9). If y € DN B(%,0) then ||y|| > 1 = ||Z|| and so

_ES Sga

<—ZL‘*, Yy— ‘7_:>

— <e.
ly — z||

This implies that —z* € Np(D; 7).
(b) = (a) Suppose that z* € Np(D;z) with ||z*|| = 1. Since Np(D;z) C
(K(D;x))° then 2* € (K(D;x))° or equivalently

(", h) <0Vh € K(D,z)
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and hence
K(D;z) c{h e X :{(z" hy <0}.

As K(D;z)° contains at least one half space, we deduce by Farkas Lemma
that K (D; ) is a half space and therefore Proposition 3.3.2 asserts that —z*
is a Gateaux derivative of || - || at Z and (—z*,Z) = 1. By the definition of
Np(D;z), for any € > 0 there is § > 0 (with 6 < 1) such that

(", z — 1) < |z — 7 (3.3.1)

forall x € DN B(a’c7 ). We note that

- lz||z|| < |||« zlz — |||z
[Ea H$|| IIxH

Thus if z € B(Z,0/2), then B, B(z,d) N D and therefore by inequality
T
(3.3.1)

]l + (2", 2) < 2ejz|[||lz — ],
2]l = 1+ (2", & — 2) < defla — 2],
2]l = 2]l + (2", 2 — 7) < de|lz — 2.
As —z* is the Gateaux derivative of || - || at & we receive finally that
0 < flzfl — NIzl + («*, 2 — Z) < dellz — Z],

for all z € B(z,0/2). Therefore || - || is Fréchet differentiable at z. O

The following corollary on the density of points of Fréchet differentiability of
the norm is a consequence of Propositions 4.4.1 and 3.3.4. Its proof is similar
to that of Corollary 3.3.3.

Corollary 3.3.5 Let (X, || -||) be a Banach space and put D = {u € X :
llu|| > 1}. The following assertions are equivalent :

76



(1) For each x € Sy, liminf Tr(D;2') # X.
D

'Sz

(2) The norm || - || is Fréchet differentiable at the points of a dense subset
of X.

3.4 The validity of the “liminf” formula

Theorem 3.4.1 Let (X, || -||) be a Banach space and 5 a bornology on X
such that X x X is Og-trusted. Then for any closed subset C' of X andz € C

liminf T3(C; z) C T.(C; z).
C

T—T

Proof. We follow the proof in [15]. Pick w € liminf T3(C, x). We want to
C _
T—T

show that w € T.(C;x). Suppose that w ¢ T.(C,z). Then by Lemma 1.2.1
in [20] there are a sequence (z,) in C converging to z, a sequence (A,) in
(0,400) converging to zero and € > 0 such that

(z,+]0, A, ]B(w,e)) NC =0, VneN.

An
2

Let us fix an integer n € N and put D := x,, + [O, ] B(w,¢). Then (D +

Atw) N C = (). Define the function f by
flay) = [l —y = Nuwll, V(z,y) e X x X.
Thus f(z,,7,) = A} and

A\ inf > f(n, Tn).
n+($7y§gcwf(x,y) > f(Tn, Tn)

The Ekeland’s variational principle provides (u,,v,) € C x D satisfying
ltn = @l + llon = zall < A7,
and
Yue O, Yo €D, flun,v,) < fu,v) + XN2(||u— ]| + [Jv — va).
Thus

Fn, o) < fu,0) + Al = wnll + o = vall) + v (u) +¥p(v),  (3.4.1)
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for all u,v € X. Since (D + Xw) NC =0, we get
|tn — vn — A2w|| >0
and so there is §,, > 0 such that
It =7 — Nauwl| >0,

for all t € B(uy,0,) and 7 € B(vy, dy).

Since X x X is p-trusted, 3.4.1 provides there are u;,u2, v} v2 € X and
wl w? vl v*? € X* such that

e, = wall + llun, = wnll + [lon, — vall + [[7 = vall < 0 = min{d,, Ay},

lugt + w2l + llogt + vl < o = min{d,, Ay} (3.4.2)

and
(st i) € s (£ + A2+ —wall + I =val) ) (w3,

(w2, 0;2) € 95 (e () + ¥p () (ug, v7)-
By the convexity and the continuity of separate summands
O (f + A2(1- =l + 11 =vall) ) (ah, v})
= oS+ 22 (1 - —uall + 11+ =vall) ) (uh )
C Of(ul,vr) + A2(Bx+ x Bx+).

n’ - n

Since ||ul —vl —=A2w]| # 0 we receive that 9 f (ul, v}) is included in {(z*, —z*) :
||lz*|| = 1}. That is there is ) € X* with ||| = 1 such that

lup! = 23l < X% and o' +a7]] < A2
By the inequality (3.4.2) we receive that
o+ w2 < X2+ AL and [Jo? — 2 < X2+ AL (3.4.3)
and thus

a2 + v < 2002 + ML) (3.4.4)
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It is evident that

05(e(-) + ¥p () (up, vy) = Ostbc(uy) x Ogvop(vy).

Thus
<v*2u—v2><0 Yu € D,

An
<v:;2,xn + 7(10 +b) — vi> <0 Vbe B(0,¢e),

An An
el + (vt =2+ o) <0,

An
82 (1—)\2 Ai)g < ;2,vi—xn—7w>.

Using (3.4.3) and (3.4.4), we get

Ay < <v:§,2+u:;2,vi—xn—ﬁw>+<_“?,vi—xn—ﬁw
2 2 2
2 4 An An
< 2N+ AN|02 —xn——wll+< u?, vl fﬂn>+7<
A, A
A0 (102 N (02,0 — ) < 2024 02— — S+ 22 (02,
gy,

A A,
- (L= A=) = e lllln = zall < 204X llon =2 = Swll+ 57 (0, w)

2 2 V7

A A
(LN (NN (N2 A < 20248 02— a5 (i,

An
e(1=A2 = 2B —2(14+ 2+ AN (A +22) < 4N\, +23) |02 —xn——wH+< W) .
Now remember that u*? € 9zpc(u?) = NP(C,u2), {u2}, converges to 7,
(An)n converges to zero and w € liminf T3(C'; x). Therefore, there are w, €
C

T—T
Ts(C,u?) converging to w. Thus we receive that

e—(2e+ 8N\, < 4N+ X)) |02 — 2, — %w“ + (u? w —wy) + (ul?, wy,)

A
< AR+ Al — @ = Frwll + e e = wall
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as u*® € Ng(C;u?). Passing to the limit on n and taking into account that
w2 <1422+ A% and v2 —x,, — 22w converges to 0 we receive ¢ < 0 which
is contradiction. O

We know that if there is on X a p-differentiable Lipschitz bump function
then there is also on X x X a [-differentiable Lipschitz bump function,
therefore according to Proposition 3.2.3, X x X is ds-trusted. So the following
corollary is a direct consequence of Theorem 3.4.1.

Corollary 3.4.2 Assume that there is on X a [-differentiable Lipschitz
bump function. Then for any closed subset C' of X containing x

liminf T5(C; 2") C T.(C; x).

, C
T —T

We recall that if X admits an equivalent [-differentiable norm (at all
nonzero points), then there is on X a g-differentiable Lipschitz bump function
[18]. Note that the reverse is not true. Haydon [12] constructed a nonseparable
Banach space that has Fréchet differentiable Lipschitz bump function but
does not admit an equivalent Gateaux differentiable norm.

Corollary 3.4.3 (/3]) Let X be a Banach space with a norm which is (-
differentiable away from the origin. Let C' be a closed subset of X. Then for
any v € C we have

limcinfTB(C;x’) C T.(C; ).

'Sz

The following corollary is an extention of Theorem 3.4 in [4] from spaces
with equivalent Fréchet differentiable norm away from the origin to Asplund
spaces and without the weak compcatness assumption on the set C'. We recall
that WK (C; z) denotes the weak-contingent cone to C' at x.

Corollary 3.4.4 ([15]) Let X be Asplund space and C' be a closed subset of
X. Then for any x € C" we have

liminfeco(WK (C;2")) C T.(C; ).

, C
=T

Proof. Borwein and Strojwas [4] proved that for any closed subset C' of X
and z € C
Np(Ciz) C (WK(C;z))°.
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Therefore
cO(WK(C;z)) C Tp(C; x).

On the other hand since X is Asplund, X x X is also Asplund and therefore
according to the Proposition 3.2.3 trusted for the Fréchet subdifferetnial. By
Theorem 3.4.1 we receive that

liminf Tp(C; x) C To(C; x),

, C
T'—x

and therefore
liminfeo(WK(C;z)) C T.(C; x).

oSz
The proof is completed. O

To end up this section, we give an extention of Theorem 5.4 in [5] where
lower semicontinuity (LSC) of a multivalued mapping is involved. A multi-
valued mapping F' : C' = X is said to be lower semicontinuous at =z € C'
if

F(z) C liminf F(z2')
C

' S

and is LSC on C' if it is LSC at each point x in C.

Theorem 3.4.5 Let (X, | - ||) be a Banach space, B be a bornology on X
containing the Hadamard bornology such that X x X is Og-trusted and C
be a closed subset of X. Suppose that F' : C' = X is LSC on C. Then the
following statements are equivalent :

(1) F(z) CT(C;x), for all z € C,
(i7) F(x) C T3(C;x), for all x € C.

Proof (i1) = (i) follows from the lower semicontinuity of F' and Theorem
3.4.1.

(1) = (ii) : Since T.(C;z) C coK(C;x), our hypothesis on the bornology
ensures that 7.(C;x) C 0K (C;x) C T3(C; x) and so (z) implies (47). O

Remark 3.4.6

e Statement (2) in Theorem 5.4 in [5] is extended from refelexive Banach
spaces to Asplund spaces.
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e The weak compactness assumptions and the Gateaux smoothness of
an equivalent norm (resp. the Fréchet differentiability of an equivalent
norm) off zero assumed in the statement (4) (resp. (5)) of Theorem
5.4 in [5] are weakened by assuming that the space admits a Gateaux
differentiable lipschitz bump function (resp. the space is Asplund) and
the set is closed.

3.5 The ’liminf” formula as a characteriza-
tion of Asplund spaces

We begin by recalling that X is an Asplund space if every continuous convex
function on any open convex subset U of X is Fréchet differentiable at the
points of a dense G subset of U.

A well known theorem of Fabian and Mordukhovich [10] affirms that the
space X is Asplund if and only if for every closed set C' C X and every
Z € C one has the limiting representation

N(C;7) = limsup N¥(C; z)

T—T

where N(Z;C') denotes the limiting normal cone of C' at Z. Here, we give a
characterization of Asplund spaces by mean of the ”liminf” formula.

Theorem 3.5.1 A Banach space X is Asplund if and only if for every closed
set C' in it and every x € C', the following inclusion holds

liminf Tr(C; 2') C T.(C; ).

, C
r'—T

Proof. (a) = (b) : We know that if X is an Asplund space then X x X is
also an Asplund space. According to (c) of Proposition 3.2.4 X x X is trusted
for Fréchet subdifferential. Theorem 3.4.1 asserts that

liminf T (C; 2") C T.(C; x),

m’gm
for any set C' C X and z € C.

(b) = (a) : Suppose that X is not an Asplund space. Then it is known |7,
p. 27| (see also [18, p. 33]) that there is an equivalent norm on X which is
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nowhere Fréchet differentiable. Therefore by Proposition 3.3.4 Np(Cy;x) =
{0} for all x € C, where C} = {z € X : ||z|| > 1}. Thus Tp(Cy;2z) = X for
all z € ¢ and
X = limcinfTF(C'l;x’) C T.(Cy; x).
' 3z
This is in contradiction with T.(Cy;z) € K(Cy,x) # X (see Proposition
4.4.1 (c)). O

3.6 Convexity of Pseudoconvex sets

Let C be a set in a Banach space X and let z € C. Let R(C; x) denotes one of
the cones T,.(C; x), T(C;z), K(C;x), .... We say that C' is R-pseudoconvez
at x if

C —x C R(C;x).

We say that C' is R-pseudoconvex if the last inclusion holds for every x € C.
Concerning this notion, Borwein and Strojwas [5] established the following
result on the equivalence between convexity and R-pseudoconvexity.

Theorem 3.6.1 [5] For a closed set C' in a Banach space X TFAFE : (i) C
is convez ; (ii) C is K-pseudoconvez ; (iii) C is T.-pseudoconvexr.

Proof. (i) = (it) and (ii) = (¢ii) are obvious.

(#4i) = (1) : By Treiman Theorem ([20]-[21]) we receive that T .-pseudoconvexity
coincide with K-pseudoconvexity. Suppose that C' is T,.-pseudoconvex, that
is C —x C T.(C;z) for all x € C. If C' is not convex, then there exist distinct
u,v € C such that Ju,v[NC = . Let w €]u,v[ and consider the function
f(x) = ||z — w||. For every n € N find u,, € C such that

1
— < inf ||z — —. 6.1
o~ w] < inf o — ] + - (36.1)
By Ekeland’s variational principle, there exists x, € C such that

1
|xn — un| < — (3.6.2)

3

and )
flan) < f2) + o —zal] Vo €.
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This later one ensures that z,, is a local minimum of the function
1 1
= (1+ —)de(z) + [lv — w|| + =l — ]|
n n
and hence

1 1
0e(1+ E)(’?do(a:n) + 0| - —w||(z,) + HaH s =z |[(xn).

Since x, # w, there exists #7, € || - —wl|(z,) and b, € L9|| - —x,||(x,,) such
that
znll =1, (ah, 20 — w) = |lzn — wl, € ddc(zn) = Ne(C; 0).

141

n

By T.-pseudoconvexity, we get

{

x4+ by
1+17

n

r—x,) <0 Vel

or equivalently

xy + 0

( 1+%,w xn><<1+%,x w) Yz e C. (3.6.3)
Remark that
(-xf:?’w_x”>:1i%[< TEw — ) + (—bw — )]
= ol — vl + g (=)
> o del) + (b =

and, by (3.6.1) and (3.6.2), (—b’,w — x,) — 0. Thus extracting subnet, we
may assume that lew—m*, with ||z*|| < 1, and, by relation (3.6.3), we obtain
de(w) < (z*,z —w) Vzel.

In particular this later one holds for x = v and x = v, and hence on all the
segment [u,v] and particularly for z = w. Thus d¢(w) < 0 and the closeness
of C ensures that w € C' and this is in contradiction with Ju, w[NC = (.00

Here we give another result in terms of the Ts-pseudoconvexity.
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Theorem 3.6.2 Let X be a Banach space and [ be a bornology on X. If
X x X is Og-trusted then

a closed set C' C X is Tg-pseudoconvex (if and) only if it is conver.
Proof. If C'is Ts-pseudoconvex then
C—xCT3(Cix), VYrel,
and hence by Theorem 3.4.1

C—z=1lm(C—-2")C limcinfTﬁ(C;x’) C T.(C; ),
' —x S

and therefore by Theorem 3.6.1 C' is convex. 0

Using Propositions 3.2.3 and 3.2.4, we obtain the following corollaries.

Corollary 3.6.3 Let X be a Banach space and 3 be a bornology on X. If
there is on X a B-differentiable Lipschitz bump function, then

C' is Tg-pseudoconvez (if and) only if C is conve.

Corollary 3.6.4 Assume that X is an Asplund space and C' is a closed
subset of X. Then

C' is coW K -pseudoconvez (if and) only if C is convex.

Proof. It follows from Theorem 3.6.2 and Proposition 3.2.3. U
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Chapitre 4

New conditions ensuring the
convexity of Chebyshev sets

T. ZAKARYAN

Abstract. We investigate the convexity of Chebyshev sets. It is well known
that in a smooth reflexive Banach space with the Kadec-Klee property every
weakly closed Chebyshev subset is convex. We prove that the condition of
the weak closedness can be replaced by the local weak closedness, that is,
for any « € C there is € > 0 such that C' N B(x,¢) is weakly closed. We also
prove that the Kadec-Klee property is not required when the Chebyshev set
is represented by a finite union of closed convex sets.

4.1 Introduction

Let C be a nonempty subset of a Banach space (X, || ||). The metric pro-
jection (or set of nearest points) of x onto C' is defined by :

Fo(r) ={y € C:[lz —y| = do(z)},

where d¢ () is the distance function, i.e., do(x) = inf{||z—y|| : y € C}. We say
that C'is Chebyshev if Po(x) is a singleton for all z € X. It is easy to see that
Chebyshev sets are strongly closed. The first positive result for the convexity
of Chebyshev sets was established, in FEuclidean finite dimensional spaces,
independently by Blunt [4] and Motzkin [11]. Later, in [10, 13] it was shown
that every Chebyshev subset of a smooth, finite-dimensional normed linear
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space is convex. One of the most famous unsolved problems in approximation
theory is : whether in a smooth reflexive Banach space (or even in a Hilbert
space) every Chebyshev set is convex ? Although this problem is open (see
[3] and [2] a recent survey), several sufficient conditions for a Chebyshev set
to be convex have been obtained, until now. Here is a first important result :

Theorem 4.1.1 (Viasov [15]) Let X be a Banach space with rotund dual.
Then any Chebyshev subset of X with continuous metric projection is convex.

This theorem was previously obtained by Asplund [1] in Hilbert spaces.

Assume now that C' is a weakly closed Chebyshev set of a reflexive Banach
space X . Consider any € X and any sequence (z,), in X converging to x
and note that

[z = Po(zn)| = de(zn) = de(x) = ||z = Po()]. (4.1.1)

This tells us in particular that the sequence (Po(z,)), is bounded, hence it
admits a subsequence (that we do not relabel) converging weakly to some
y € ' according to the reflexivity of X and to the weak closedness of C'. Using
(4.1.1) and the weak lower semicontinuity of |||, we see that ||zt —y|| < deo(z),
and hence y = Po(x). This yields the following result (see also [5, p. 193]) :

Theorem 4.1.2 Let X be a reflexive Banach space with the Kadec-Klee pro-
perty. Then any weakly closed Chebyshev subset of X has continuous metric
projection.

In this paper we consider two sufficient conditions for Chebyshev set to be
convex. First, we look at the local weak closedness, in the sense that for any
x € C there is € > 0 such that C N B(z,¢) is weakly closed, B(z, e) denotes
the closed ball centered at x with radius e. We prove that any locally weakly
closed Chebyshev subset of a reflexive Banach space with the Kadec-Klee
property has continuous metric projection. As a corollary we derive that any
locally weakly closed Chebyshev subset of a smooth reflexive Banach space
with the Kadec-Klee property is convex. Second, we look at the Chebyshev
sets which can be represented as a finite union of closed convex sets. We
proved that they are convex in a smooth reflexive Banach space. The interest
of the latter result is that the Kadec-Klee property is not required.

90



4.2 Notation and Preliminaries

Let X be a normed space with a given norm || - ||, X* be its topological dual
and (-, -) be the duality pairing between X and X*. A real-valued function f
on X is Gateauz differentiable at x if there is 2* € X* such that

vhe X, lim T (flx+th) — f(z)) = (z*, h).

If the limit in the definition of Gateaux differentiability exists uniformly in
h on the unit sphere of X, we say that f is Fréchet differentiable at x.

The normed space (X, || - )
(i) is rotund or strictly convex whenever for all z,y € X with x # y and
[zl = llyll =1 one has [|=3*|| <1,
(ii) has the (sequential) Kadec-Klee property provided the weak convergence
of a sequence of the unit sphere of the space is equivalent to the norm conver-
gence of this sequence,
(iii) is smooth (or has Gateauz differentiable norm) if the norm ||-|| is Gateaux
differentiable off zero (or equivalently, on the unit sphere of X),
(iv) has Fréchet differentiable norm if the norm || - || is Fréchet differentiable
off zero.

Let C' be a closed subset of the normed space X. The set C' is connected
if there are no disjoint nonempty open sets A, B such that C C AU B and
ANC #0, BNC #10).

Recall that a sequence (y,,), from C' is a minimizing sequence for x if

|2 = ynll = do().

Recall also that the metric projection P is said to be continuous at x € X
provided Pg is single-valued at x and y, — Pg(x) whenever x,, — = and
Yn € Po(zy,). If X is strictly convex, then y € Po(x) and z €]y, x| ensure
Po(z) = {y}. The set C is a sun if, for each point z € X and y € Po(x),
every point on the ray y + R, (z — y) has y as a nearest point in C, where
R, := [0,400). This notion was introduced by Klee [8, 9] and studied by
Efimov, Steckin and Vlasov [7, 13, 14]. It is not difficult to see that every
convex set is a sun. Indeed, let x € X, y € Po(z) and A > 0, then for all
zeC

ly + Az —y) —yll = Az —yl|

1 1
<Al = (354 0= 20) =+ A =) <
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thus y € Po(y + Mz — y)).

Klee [8] proved that in a finite-dimensional Euclidean space, sun sets are
convex. There are some generalizations of this result to infinite dimensional
spaces. The following Vlasov [14] result is the most general one.

Theorem 4.2.1 Let X be a smooth Banach space. Then every proximinal
sun subset of X is convex.

Recall that the set C' is proziminal if for every x ¢ C' the set Po(x) is not
empty.

To end up this section, we denote by z,, —— z the weak convergence of
n—oo

the sequence (x,), C X tox € X.

4.3 The case of locally weakly closed Cheby-
shev set

We announce our main result of this section :

Theorem 4.3.1 Let X be a reflexive Banach space with the Kadec-Klee pro-
perty. Let C be a locally weakly closed Chebyshev subset of X. Then Pg is
continuous.

To study the relationship between properties of a Chebyshev set C' of X
and its metric projection, Wulbert [17] introduced the notion of bounded
connectedness : a subset of X is called boundedly connected if its intersection
with every open ball in X is a connected set. To prove Theorem 4.3.1 we will
use the following result on bounded connectedness of a Chebyshev subset.

Theorem 4.3.2 (Tsarkov [12]) Let X be a reflexive Banach space with the
Kadec-Klee property. Then every Chebyshev subset of X is boundedly connec-
ted.

Proof of Theorem 4.3.1 Let z € X\C and Po(z) = {y}. From the local
weak closedness there is ¢ > 0 such that B(y,e) N C is weakly closed or
equivalently weakly compact. Let (x,), be any sequence of X \ C' converging
to z, and put y, := Pc(x,); note that

|z — ynl| = do(x) since ||z, — yn|| = do(x,) — do(z).
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We want to show that the sequence (y, ), converges to y. Suppose the contrary,
that is, without loss of generality there is some real ¢ €]0,¢[ such that

lyn —yll > 96, VneN.
Put
oy :=2([|lz = yu|| — de(z)) > 0 and A, = int<B(I,dc($) + an)) nc,

(where int(K') denote the interior of a set K'). By Theorem 4.3.2 the set A,
is connected and obviously y, vy, € A,. We define two open disjoint sets B
and B, as follows :

Bl—{zeX:||z—yH<g} and Bgz{zeX:Hz—yH>6}.

It is evident that y € By N A, and y, € By N A,,. Therefore by the connec-
tedness of A,, there is z, € A,, such that

Zn¢31UB2

and thus

N

<|ly—zl <d<e. (4.3.1)

We deduce that z, € B(y,e) N C for every n € N. By weak compactness of
B(y,e) N C there is z € C such that some subsequence of (z,), (that we do
not relabel) converges weakly to z. Therefore

de(z) < ||z —z|| < liminf ||z — z,|| < limsup ||z — z,||
n—00 n—oo

< limsup (de(z) + ) = de().

n—o0

Finally we obtain that z € Po(z) and thus z = y (since C' is Chebyshev) and

T — 2z, —— x—vy and |z — z|| — ||z — yl|,
n—oo

n—oo

which by the Kadec-Klee property implies that z, — y. This is in contradic-
tion with (4.3.1) and the proof is completed. OJ

Theorem 4.3.3 Let X be a smooth reflexive Banach space with the Kadec-
Klee property. Then every locally weakly closed Chebyshev set is convex.
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Proof. It is well known that every smooth reflexive Banach space has rotund
dual. Then Theorem 4.1.1 and Theorem 4.3.1 together imply the convexity
of any locally weakly closed Chebyshev set of X. [J

Remark. After I have completed this work, I received a very interesting
paper by D. Zagrodny [16] dealing with the convexity of Chebyshev sets by
using the local approximate weak compactness notion. A set C' C X is called
locally approximately weakly compact if for every u ¢ C' and s € clC' there
is 0 > 0 such that we have the following implication

(sn)n C (B(5,0) N C),

|sn — u|| = de(u) and s, MLOJ sex (— €0 (4.3.2)
This notion is slightly weaker than the local weak closedness. Nevertheless
Theorem 4.3.1 and Theorem 4.3.3 remain true if we replace condition of the
local weak closedness by the local approximate weak compactness condition.
Indeed within the proof of Theorem 4.3.1 we use the local weak closedness
to ensure that the weak limit of the sequence (z,), belongs to C. This will
be provided by assuming C' is locally approximately weakly compact since
(2n)n, © and y satisfy the assumptions on the left-hand side of the implication
(4.3.2). In the framework of Hilbert spaces, Zagrodny’s proof is completely
different from the present one.

4.4 The case of the finite union of closed convex
sets

The union of finitely many closed convex sets being weakly closed, we see
in a smooth reflexive Banach space X with the Kadec-Klee property that a
n

subset C' of X is convex whenever C' = U C; where C; are closed convex

sets. Our aim in this section is to removeZ f:)r such a set C' the Kadec-Klee
assumption of the norm.

We start with some properties of sets which can be represented as a finite
union of closed convex sets.

Proposition 4.4.1 Let X be a normed space and let C' = U C; be a union
i=1
of finitely many closed subsets of X. Then for any v € X,
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(a) Po(z) = U Pe(z), where J = {i:1<i<m, do(z) = de,(x)},

(b) there is 6 > 0 such that for all uw € B(x,0)

max de, (u) < minde, (u),

where J¢ = {1,2,....,m}\J.
Proof. (a) It is evident that de(x) = 11<ni<n de,(z) and therefore J # (). Let
j € Jand z € Pg,(z). By the definition of J and C' we have

do(w) = dg,(v) = ||r — 2|| and 2z € C,

which means that z € Po(z). Now let z € Po(x), then z € C = UC’i and
i=1
consequently z € C; for some j, 1 < j < m. We deduce that

do(x) = min de,(x) < de, () < |z — 2] = de(x),

and thus j € J and z € P, ().
(b) By the definition of J we have that

max dc, () = de(z) < mindg, (). (4.4.1)

ieJ ieJe
The continuity of u max de,(u) and u +— m:ljn de;(u) and (4.4.1) ensure
1€ (IS AS
the existence of § > 0 satisfying

max de,(u) < min de,(u), Yu € B(x,9).

Theorem 4.4.2 Let X be a smooth reflexive Banach space. Let C be a Che-
byshev subset of X with C = U C; where C; are closed convex sets. Then C'

‘ i=1
1S conver.
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Proof. By Theorem 4.2.1 it is sufficient to show that C' is sun. Let us prove
the sun property of C. Suppose that x ¢ C' and Po(x) = y. Put

o= sup{t >0:y= PC(Qt)}7

where ¢, = y + t(z — y). We want to show that ¢ = +o00. Suppose that
0 < 400. Then we have

dc(qo) = }gr; de(y +t(x —y)) = }g{; ly +tx —y) —yll = lle — vl

that is y € Po(q,) and therefore Po(q,) = y. Let J and J¢ denote as in Propo-
sition 4.4.1, J ={i: 1 <i<m, de(q,) =dc,(¢o)} and J* = {1,2,...,m}\J.
Then, by Proposition 4.4.1, we have

Pe(qs) = U Pe,(40) (4.4.2)

ieJ
and there is ¢ > 0 such that for all u € B(g,,0)
max d¢, (u) < minde, (u). (4.4.3)

ieJ i€Je
By the non-vacuity of Pg,(x) we get from (4.4.2) that
Pe,(¢r) =y forall i€ J (4.4.4)

Let ¢’ > o such that y + o'(x — y) = ¢» € B(qo,9), (4.4.3) provides

do(ger) = min de,(gor) = minde,(go)- (4.4.5)
As Cj is a convex and hence a sun, (4.4.4) ensures

de,(¢0) = |lgo — Y| for all 7€ J
Finally we get that

do(go) = minde,(do) = [1gor =yl

or equivalently y = Po(q,+). This contradicts the definition of ¢ and the proof
is completed. [
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