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dant les années de ma thèse. C’est avec beaucoup de gentillesse que Francis
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sont réjouies de mes succès.



 

              

                                                                                

                                                                                                                    À mes parents 

 

                                              Իմ ծʍʏղʍեʗիʍ՝ Աʎʏʖիʍ եւ Սʏւսաʍʍաիʍ 





Abstract

The aim of this thesis is to study the following three problems:
1) We are concerned with the behavior of normal cones and subdifferentials
with respect to two types of convergence of sets and functions: Mosco and
Attouch-Wets convergences. Our analysis is devoted to proximal, Fréchet,
and Mordukhovich limiting normal cones and subdifferentials. The results
obtained can be seen as extensions of Attouch theorem to the context of
non-convex functions on locally uniformly convex Banach space.
2) For a given bornology β on a Banach space X we are interested in the
validity of the following “lim inf” formula

lim inf
x′
C→x

Tβ(C;x′) ⊂ Tc(C;x).

Here Tβ(C;x) and Tc(C;x) denote the β-tangent cone and the Clarke tangent
cone to C at x. We proved that it holds true for every closed set C ⊂ X and
any x ∈ C, provided that the space X×X is ∂β-trusted. The trustworthiness
includes spaces with an equivalent β-differentiable norm or more generally
with a Lipschitz β-differentiable bump function. As a consequence, we show
that for the Fréchet bornology, this “lim inf” formula characterizes in fact
the Asplund property of X.
3) We investigate the convexity of Chebyshev sets. It is well known that in
a smooth reflexive Banach space with the Kadec-Klee property every weakly
closed Chebyshev subset is convex. We prove that the condition of the weak
closedness can be replaced by the local weak closedness, that is, for any x ∈ C
there is ε > 0 such that C ∩B(x, ε) is weakly closed. We also prove that the
Kadec-Klee property is not required when the Chebyshev set is represented
by a finite union of closed convex sets.

Keywords: Mosco (Attouch-Wets) convergence, proximal normal cone, Fréchet
(Mordukhovich limiting) subdifferential, subsmooth sets (functions), Clarke
tangent (normal) cone, contingent cone, bornology, Asplund space, trustwor-
thiness, Chebyshev set, metric projection, minimizing sequence.





Résumé

Le but de cette thèse est d’étudier les trois problèmes suivantes :
1) On s’intéresse à la stabilité des cônes normaux et des sous-différentiels
via deux types de convergence d’ensembles et de fonctions : La convergence
au sens de Mosco et celle d’Attouch-Wets. Les résultats obtenus peuvent
être vus comme une extension du théorème d’Attouch aux fonctions non
nécessairement convexes sur des espaces de Banach localement uniformément
convexes.
2) Pour une bornologie β donnée sur un espace de Banach X, on étudie la
validité de la formule suivante

lim inf
x′
C→x

Tβ(C;x′) ⊂ Tc(C;x).

Ici Tβ(C;x) et Tc(C;x) désignent le β-cône tangent et le cône tangent de
Clarke à C en x. On montre que si, X×X est ∂β-“trusted” alors cette formule
est valable pour tout ensemble fermé non vide C ⊂ X et x ∈ C. Cette classe
d’espaces contient les espaces ayant une norme équivalent β-différentiable, et
plus généralement les espaces possédant une fonction “bosse” lipschitzienne
et β-différentiable). Comme conséquence, on obtient que pour la bornologie
de Fréchet, cette formule caractérise les espaces d’Asplund.
3) On examine la convexité des ensembles de Chebyshev. Il est bien connu
que, dans un espace normé réflexif ayant la propriété Kadec-Klee, tout en-
semble de Chebyshev faiblement fermé est convexe. On démontre que la
condition de faible fermeture peut être remplacée par la fermeture faible
locale, c’est-à-dire pour tout x ∈ C il existe ε > 0 tel que C ∩ B(x, ε) est fai-
blement fermé. On montre aussi que la propriété Kadec-Klee n’est plus exigée
lorsque l’ensemble de Chebyshev est représenté comme une union d’ensembles
convexes fermés.

Mots-clés : Convergence au sens de Mosco (d’Attouch-Wets), cône normal
proximal, sous-différentiel de Fréchet (de Mordukhovich), ensembles sous-
réguliers, fonctions sous-régulières cône normal (tangent) de Clarke, cône
tangent de Bouligand, bornologie, espace d’Asplund, ensemble de Chebyshev,
projection metrique, suite minimisante.
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Chapitre 1

Présentation générale

Ce travail est composé de trois parties indépendantes. Dans la première
nous présentons l’article “Convergence of subdifferentials and normal cones
in locally uniformly convex Banach space” écrit en collaboration avec Lionel
Thibault. Dans la deuxième partie nous présentons l’article “The validity of
the “lim inf” formula and a characterization of Asplund spaces” écrit en colla-
boration avec Abderrahim Jourani. Et dans la dernière partie nous présentons
l’article “New conditions ensuring the convexity of Chebyshev sets”.

1.1 Présentation des outils d’analyse non lisse

Soient X un espace de Banach et X∗ son dual topologique avec un crochet
de dualité 〈·, ·〉. Une bornologie β sur X est une famille d’ensembles bornés
et centralement symétriques de X dont l’union est X, et telle que l’union
de deux éléments de β est un élément de β. Les bornologies les plus impor-
tantes sont la bornologie de Gâteaux qui consiste en tous les ensembles finis
symétriques de X, la bornologie de Hadamard qui consiste en tous les en-
sembles compacts symétriques, la bornologie faible de Hadamard qui consiste
en tous les ensembles faiblement compacts symétriques et enfin la bornologie
de Fréchet qui consiste en tous les ensembles bornés et symétriques.

Chaque bornologie β génère un β-sous-différentiel qui est à son tour en-
gendre un β-cône normal, et en polarisant on obtient aussi le β-cône tangent.

Definition 1.1.1 Soient f : X → R ∪ {±∞} une fonction finie en x et β
une bornologie sur X.
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(a) f est β-différentiable en x s’il existe x∗ ∈ X∗ tel que pour tout ensemble
S ∈ β

lim
t→0+

t−1 sup
h∈S
|f(x+ th)− f(x)− 〈x∗, th〉 | = 0,

(b) x∗ ∈ X∗ est appelé β-sous-gradient de f en x, si pour tout ε > 0 et tout
ensemble S ∈ β il existe δ > 0 tel que pour tout 0 < t < δ et tout h ∈ S

t−1
(
f(x+ th)− f(x)

)
− 〈x∗, h〉 ≥ −ε.

On note ∂βf(x) l’ensemble de tous β-sous-gradients de f en x.

En appliquant la définition 1.1.1(a) à la bornologie de Fréchet et à la Gâteaux
bornologie, on obtient les définitions classiques suivantes :

• Fréchet-différentiabilité : il existe x∗ ∈ X∗ tel que

lim
h→0
‖h‖−1(f(x+ h)− f(x)− 〈x∗, h〉) = 0.

• Gâteaux-différentiabilité : il existe x∗ ∈ X∗ tel que

∀h ∈ X, lim
t→0+

t−1(f(x+ th)− f(x)) = 〈x∗, h〉.

De la même manière la définition 1.1.1(b) aboutit dans le cas de la bornologie
de Fréchet (c.-à-d. β = F ) à la définition classique du sous-différentiel Fréchet
de f en x :

∂Ff(x) =

{
x∗ ∈ X∗ : lim inf

y→x

f(y)− f(x)− 〈x∗, y − x〉
‖y − x‖

≥ 0

}
.

Nous allons noter par Nβ(C;x) le β-cône normal de C en x :

Nβ(C;x) = ∂βψC(x)

où ψC est la fonction indicatrice de C, c’est à dire

ψC(x) =

{
0 if x ∈ C,
+∞ if x /∈ C

et par Tβ(C;x) le β-cône tangent qui est défini comme le cône polaire négatif
du β-cône normal intersecté avec X, c’est à dire

Tβ(C, x) = (Nβ(C, x))◦ ∩X.
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Definition 1.1.2 Soit X un espace de Banach et β une bornologie sur X.
On dit que X est ∂β-“trusted”, si la règle floue souivante de minimisation
est verifiée : soit f une fonction sur X finie en x̄ ∈ X, et soit g une fonction
lipschitzienne sur X. Supposons que f + g atteint un minimum local en x̄.
Alors pour tout ε > 0 ils existent x, u ∈ X et x∗ ∈ ∂βf(x), u∗ ∈ ∂βg(u) tels
que

‖x− x̄‖ < ε, ‖u− x̄‖ < ε, |f(x)− f(x̄)| < ε, et ‖x∗ + u∗‖ < ε.

Le cône tangent de Bouligand K(C;x) de C en x est défini par :

K(C, x) = {h ∈ X : ∃tn → 0+,∃hn → h, tel que x+ tnhn ∈ C ∀n ∈ N}

Le cône tangent de Clarke Tc(C;x) de C en x est défini par :

Tc(C;x) = {h ∈ X : ∀xn
C→x,∀tn → 0+,∃hn → h tel que xn+tnhn ∈ C ∀n ∈ N}

Soient (Cn)n une suite d’ensembles d’un espace normé X. Notons

Lim inf
n→∞

Cn :=
{
x ∈ X : ∃ une suite (xn)n convergeant vers x

avec xn ∈ Cn pour tout entier n suffisamment grand},

Lim sup
n→∞

Cn :=
{
x ∈ X : ∃ une suite (k(n))n dans N et

(xn)n convergeant vers x avec xn ∈ Ck(n) pour tout n ∈ N
}
,

w Lim sup
n→∞

Cn :=
{
x ∈ X : ∃ une suite (k(n))n dans N et (xn)n

convergeant faiblement vers x avec xn ∈ Ck(n) pour tout n ∈ N
}
.

Definition 1.1.3 On dit que la suite (Cn)n converge au sens de Painlevé-
Kuratowski vers l’ensemble C de X si

C = Lim inf
n→∞

Cn = Lim sup
n→∞

Cn.
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Definition 1.1.4 On dit la suite (Cn)n converge au sens de Mosco vers l’en-
semble C de X si

C = Lim inf
n→∞

Cn = w Lim sup
n→∞

Cn.

L’excès de l’ensemble A sur l’ensemble A′ et Hausdorff ρ-semi-distance entre
A et A′ sont définis de la manière suivante

e(A,A′) := sup
a∈A

dist(a,A′),

Hausρ(A,A
′) := max

{
e(A ∩ ρBX , A′), e(A′ ∩ ρBX , A)

}
.

Definition 1.1.5 On dit que la suite (Cn)n converge au sens d’Attouch-Wets
vers l’ensemble C de X, si pour tout ρ > 0 suffisamment grand

Hausρ(Cn, C) −−−→
n→∞

0.

1.2 Convergence des sous-différentiels et des

cônes normaux dans un espace de Banach

localement uniformément convexe

Dans cette partie nous étudions les questions suivantes : supposons que
la suite (Cn)n des ensembles fermés dans un espace de Banach converge au
sens de Mosco ou d’Attouch-Wets vers un ensemble C, que peut-on dire sur
la convergence de la suite des graphes des cônes normaux ? Nous allons nous
concentrer sur les cônes normaux proximaux, Fréchet et de Mordukhovich.
Et le même type de questions se pose en remplaçant les ensembles par des
fonctions et les cônes normaux par des sous-différentiels.

H. Attouch [3] était le premier à s’intéresser à des questions de ce type. Il
a établi qu’une suite de fonctions à valeurs réelles étendues, semi-continues
inférieurement, convexes et propres sur un espace normé réflexif converge au
sens de Mosco si et seulement si la suite des graphes des sous-différentiels
converge au sens de Painlevé-Kuratowski vers le graphe du sous-différentiel
de la fonction limite à une constante additive près. Concernant la convergence
à la Attouch-Wets, H. Attouch, J.L. Ndoutoume et M. Théra [4] ont montré
qu’une famille de fonctions convexes propres semi-continues inférieurement
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(définies sur un espace normé super-réflexif) converge au sens d’Attouch-
Wets si et seulement si la suite des graphes des sous-différentiels converge au
sens d’Attouch-Wets à une constante additive près.

R.A. Poliquin [20] a étendu le théorème d’Attouch aux fonctions non-
convexes dites“primal lower nice” (pln) dans un espace de dimension fi-
nie. A. Levy, R.A. Poliquin et L. Thibault [18] ont prouvé que dans un
espace d’Hilbert, si (fn)n est une suite de fonctions minorées par la même
constante autour de x, avec

(
fn(x)

)
n

bornées, et “equi-primal-lower-nice”
en x, alors la convergence au sens de Mosco vers f entrâıne que la suite
des graphes des sous-différentiels converge au sens de Painlevé-Kuratowski
vers le graphe du sous-diffrentiel de f . Ils ont aussi montré que la conver-
gence au sens d’Attouch-Wets des (fn)n implique la convergence au sens de
Painlevé-Kuratowski des graphes des sous-différentiel aussi bien que la quasi
Attouch-Wets convergence des sous-gradients dans le même sens. A. Jourani
[16] a montré que le sous-différentiel approché de Ioffe d’une fonction semi-
continue inférieurement sur un espace de Banach est contenu dans la limite
supérieur des sous-différentiels approchés de Ioffe d’une famille de fonctions
semi-continues infé-rieurement convergeant uniformément vers cette fonction.

Récemment X.Y. Zheng and Z. Wei [25] ont considéré la convergence
des cônes normaux pour une suite d’ensembles sous-réguliers sur un es-
pace d’Hilbert. Comme conséquence, ils ont obtenu une généralisation de
[18] : Si la suite (fn)n de fonctions à valeurs réelles propres semi-continues
inférieurement sur un espace d’Hilbert H converge au sens de Mosco vers
une fonction propre f et (fn)n est uniformément sous-réguliers en x̄, alors un
élément ζ ∈ H appartient au sous-différentiel de Mordukhovich de la fonc-
tion f en x̄ si et seulement si il existe une suite

(
(xn, ζn)

)
n

dans H × H et

une suite strictement décroissante
(
k(n)

)
n

dans N telles que

ζn ∈ ∂Pfk(n)(xn) et
(
xn, fk(n)(xn)

)
→
(
x̄, f(x̄)

)
et (ζn)n converge faiblement vers ζ. Ici on désigne par ∂Pfk(n) le sous-différentiel
proximal de fk(n). On dit que (fn)n est uniformément sous-régulière en x si
pour tous ε > 0 et M > 0 il existe δ > 0 tel que

〈ζn, x′ − x〉 ≤ fn(x′)− fn(x) + ε‖x′ − x‖

pour tous n ∈ N, x′, x ∈ B(x, δ) (la boule ouverte de centre x et de rayon δ)
et ζn ∈ ∂Pfn(x) avec ‖ζn‖ ≤M .
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Dans ce travail nous avons étendu le résultat ci-dessus à un espace normé
réflexif locallement uniformément convexe avec une norme Fréchet différentiable
(sauf en zéro). Nous établissons aussi un résultat similaire pour la conver-
gence au sens d’Attouch-Wets : Si une suite de fonctions semi-continues
inférieurement propres à valeurs réelles étendues converge au sens d’Attouch-
Wets vers une fonction propre f et la suite (fn)n est sous-régulière en x ∈
dom f avec une indéxation compatible, alors un élément x∗ de X∗ appartient
au sous-différentiel de Mordukhovich de f au point x si et seulement si il
existe une suite

(
(xn, x

∗
n)
)
n

dans X ×X∗ et une suite strictement croissante(
k(n)

)
n

dans N telles que

x∗n ∈ ∂Pfk(n)(xn) et
(
xn, fk(n)(xn)

)
→
(
x, f(x)

)
et (x∗n)n converge faiblement vers x∗. Notre définition de l’indéxation com-
patible est la suivante : pour chaque ε > 0 il existe δ > 0 et N ∈ N tels
que

〈x∗, x′ − x〉 ≤ fn(x′)− fn(x) + ε(1 + ‖x∗‖)‖x′ − x‖

pour tous n ≥ N , x′ ∈ B(x, δ), x ∈ B(x, δ) ∩ dom ∂Pfn et x∗ ∈ ∂Pfn(x).
Lorsque la suite (fn)n est sous-régulière en tout point de dom f avec une
indéxation compatible, nous obtenons que le graphe du sous-différentiel de
Mordukhovich de f est une limite supérieur des graphes des sous-différentiels
proximaux des fonctions fn.

Les applications de nos resultats sont nombreuses, on peut citer, par exemple,
les processus de Rafle de Moreau qui jouent un rôle important en mécanique
du contact, la stabilité des solutions de viscosités, l’existence de la proto-
dérivée au sens de Poliquin-Rockafellar. En effet, pour cette dernière le théorème
d’Attouch avait été utilisé pour relier diverses dérivées généralisées. On rap-
pelle la définition de la proto-dérivée et l’épi-dérivée. Supposons que f est
une fonction à valeur réelle définie sur un espace de Banach X et ∂f son
sous-différentiel de Fréchet. On considère la multiaplication suivante

∆ε[∂f ](x|x∗) : x′ 7→ 1

ε

[
∂f(x+ εx′)− x∗

]
avec x∗ ∈ ∂f(x).

Lorsque ces multiapplications convergent graphiquement, alors la multiap-
plication limite est la proto-dérivée de ∂f en x pour x∗,

D[∂f ](x, x∗) : X ⇒ X∗.
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Maintenant on considère le quotient d’ordre deux de f

∆2
εf(x|x∗) : x′ 7→ 1

ε2

[
f(x+ εx′)− f(x)− ε 〈x∗, x′〉

]
avec x∗ ∈ ∂f(x).

Si ces fonctions épi-convergent lorsque ε → 0, alors la fonction limite notée
par d2f(x|x∗), est appelée épi-dérivée d’ordre deux de f en x pour x∗.

Supposons que X = Rn et f est de classe C2. Alors on obtient que

D[∂f ](x, v) = d2f(x|v) = ∇2f(x)x′

où ∇2f(x) est le hessien et v = ∇f(x).
Ceci nous suggère la possibilité d’une certaine relation entre ces deux ap-

proches différentes de la différentiation d’ordre deux. De plus par des outils
du calcul sous-différentiel on obtient que

∂[∆2
εf(x|x∗)](x′) = 2∆ε[[∂f ](x, x∗)](x′) pourtout x′ ∈ X.

Est-ce que l’égalité est préservée à la limite lorsque ε → 0 ? Grâce aux
Théorèmes mentionnés ci-dessus nous pouvons avoir l’égalité sous certaines
hypothèses sur f .

1.3 La validité de la formule de “lim inf” et

une caractérisation des espaces d’Asplund

Dans cette partie nous nous sommes intéressés aux conditions suffisantes
sur l’espace de Banach X assurant la formule suivante

lim inf
x′
C→x

Tβ(C;x′) ⊂ Tc(C;x) (1.3.1)

pour tout ensemble fermé C ⊂ X et x ∈ C. Ici Tβ(C;x) et Tc(C;x) désignent
le β-cône tangent et le cône tangent de Clarke de C en x et pour une mul-

tiapplication F : C ⇒ X, h ∈ lim inf
u
C−→x

F (u) ssi pour toute suite xn
C−→x il

existe hn → h, telle que pour tout n suffisamment grand, hn ∈ F (xn).

Plusieurs auteurs se sont intéressés à ce type de questions. En particulier
Cornet [14] a démontré que si C ⊂ Rn, alors

Tc(C;x) = lim inf
x′

C−→x
K(C;x′),

7



où K(C, x) désigne le cône tangent de Bouligand ou le cône contingent à C
en x. Treiman [22, 23] a démontré que sur un espace de Banach on a

lim inf
x′

C−→x
K(C;x′) ⊂ Tc(C;x),

et de plus l’inclusion devient égalité si C est épi-Lipschitzien en x au sens de
Rockafellar [21].

Borwein et Ioffe [7] ont démontré la validité de la formule (1.3.1) dans le
cas où X admet un norme équivalente β-différentiable.

Dans ce travail nous prouvons que pour un espace X tel que X×X soit ∂β-
“trusted” ou autrement dit vérifiant ce qu’on appelle “basic fuzzy principle”
est satisfait sur X×X (ceci inclut les espaces avec une norme équivalente β-
différentiable, et plus généralement les espaces possédant une fonction “bos-
se” lipschitzienne et β-différentiable) alors la formule “lim inf” a lieu. Comme
conséquence, nous avons montré que pour la bornologie de Fréchet, la formule
(1.3.1) caractérise les espaces d’Asplund.

Ce sujet a de diverses applications (voir [9]) dans divers domaines en
mathématiques appliquées. En particulier il intervient dans les problèmes
de viabilité.

Supposons que X est un espace de Banach et C un ensemble fermé de X
et F : X ⇒ X. On considère la problème de viabilité suivant

ẋ(t) ∈ F (x(t)), x(0) = x0, x(t) ∈ C for all t ∈ [0, T ), (1.3.2)

qui consiste à trouver une fonction absolument continue x : [0, T )→ X avec
x(0) = x0, x(t) ∈ C et ẋ(t) ∈ F (x(t)) presque partout sur l’intervalle [0, T ).
Ce type de problèmes a été étudié par divers auteurs (voir en particulier
[11, 12, 13, 15]), nous considérons le resultat classique suivant :

Theorem 1.3.1 (A. Bressan [11]) Supposons que C est compact et F : X ⇒
X une multiapplication semi-continue inférieurement tel que F (x) ⊂ K(C;x)
pour tout x ∈ X. Alors pour tout x0 ∈ C, le problème (1.3.2) a une solution
x definie sur [0,+∞).

La condition F (x) ⊂ K(C;x) s’appelle la condition de tangence. Comme un
corollaire (voir (3.4.5)) nous avons obtenu que K(C;x) peut être remplacé
par d’autres cônes :
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Theorem 1.3.2 Supposons que X est un espace de Banach et β une bor-
nologie sur X contenant la bornologie d’Hadamard tels que X × X soit
∂β-“trusted” et C un ensemble fermé de X. Supposons que F : C ⇒ X
est semi-continue inférieurement sur C. Alors les assertions suivantes sont
équivalentes.

(i) F (x) ⊂ Tc(C;x), pour tout x ∈ C,

(ii) F (x) ⊂ K(C;x), pour tout x ∈ C,

(iii) F (x) ⊂ Tβ(C;x), pour tout x ∈ C.

1.4 Nouvelles conditions assurant la convexité

des ensembles de Chebyshev

Soit C un ensemble non-vide d’un espace de Banach (X, ‖ ‖). La projection
métrique de x sur C est définie par

PC(x) = {y ∈ C : ‖x− y‖ = dC(x)},

où dC(x) est la fonction distance, i.e., dC(x) = inf{‖x− y‖ : y ∈ C}. On dit
que C est de Chebyshev si PC(x) est un singleton pour tout x ∈ X. C’est
facile de voir que les ensembles de Chebyshev sont fermés. Le premier resultat
positif sur la convexité des ensembles de Chebyshev dans les espaces Euclidien
de dimension finie, est dû indépendamment à Bunt [10] et Motzkin [19]. Plus
tard, dans [17, 24] il a été démontré que chaque ensemble de Chebyshev d’un
espace normé, lisse, de dimension finie est convexe. L’une des conjectures la
plus célèbre en théorie d’approximation est la suivante : dans un espace normé
lisse réflexif (ou même dans un espace d’Hilbert) un ensemble de Chebyshev
est-il nécessairement convexe ? Bien que le problème reste ouvert (voir [2, 6]),
plusieurs conditions suffisantes ont été données, jusqu’à maintenant. Voici le
premier résultat important :

Theorem 1.4.1 (Vlasov [15]) Soit X un espace de Banach dont l’espace
dual est strictement convexe. Alors tout sous-ensemble de Chebyshev de X
dont la projection métrique est continue, est convexe.

Ce théorème était précédemment obtenu par Asplund [1] dans un espace
d’Hilbert.
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Supposons maintenant que C est un ensemble faiblement fermé d’un espace
normé réflexif X. Considérons un point x ∈ X et une suite (xn)n dans X
convergeant vers x et notons que

‖xn − PC(xn)‖ = dC(xn)→ dC(x) = ‖x− PC(x)‖. (1.4.1)

Ceci nous montre que la suite (PC(xn))n est borné, donc il admet une sous-
suite convergeant faiblement vers y ∈ X en tenant compte de la réflexivité de
X et de la faible fermeture de C. Utilisant (1.4.1) et la faible semi-continuité
inférieure de le norme on voit que ‖x − y‖ ≤ dC(x) et par conséquent y =
PC(x). Cela donne le résultat suivant (voir aussi [8, p. 193]) :

Theorem 1.4.2 Soit X un espace normé réflexif avec la propriété Kadec-
Klee. Alors tout ensemble de Chebyshev faiblement fermé a une projection
continue.

Dans ce travail nous considérons deux conditions suffisantes afin que l’en-
semble de Chebyshev soit convexe. Premièrement nous allons regarder la fer-
meture faible locale au sens suivant : pour tout x ∈ C il existe ε > 0 tel que
C∩B(x, ε) est faiblement fermé. Nous prouvons que tout ensemble de Cheby-
shev localement faiblement fermé d’un espace normé réflexif avec la propriété
Kadec-Klee a une projection continue. Comme corollaire, on obtient que tout
ensemble de Chebyshev localement faiblement fermé d’un espace normé lisse
réflexif avec la propriété Kadec-Klee est convexe. Deuxièment nous allons re-
garder les ensembles de Chebyshev qui peuvent être représentés comme une
union d’ensembles convexes fermés. Nous prouvons que ces ensembles sont
convexes dans un espace normé réflexif lisse. L’intérêt de ce résultat est que
la propriété Kadec-Klee n’est plus nécessaire.
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Chapitre 2

Convergence of subdifferentials
and normal cones in locally
uniformly convex Banach space

L. Thibault and T. Zakaryan

Abstract. In this paper we study the behaviour of normal cones and sub-
differentials with respect to two types of convergence of sets and functions :
Mosco and Attouch-Wets convergences. Our analysis is devoted to proxi-
mal, Fréchet, and Mordukhovich limiting normal cones and subdifferentials.
The results obtained can be seen as extensions of Attouch to the context of
non-convex functions on locally uniformly convex Banach space. They also
generalize, to sequences of subsmooth sets or functions, various results in the
literature.

2.1 Introduction

This paper is concerned with the behaviour of normal cones and subdifferen-
tials with respect to two types of convergence of sets and functions : Mosco
and Attouch-Wets convergences. More precisely, given a sequence {Cn}n∈N of
closed sets of a Banach space converging to a set C of this space in the sense
of Mosco or Attouch-Wets, we study how the graphs of the normal cones of
Cn converge to the graph of the normal cone of C. We focus the analysis
to proximal, Fréchet, and Mordukhovich limiting normal cones. The study
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for subdifferentials of extended real-valued lower semicontinuous functions is
then derived through the epigraphs of the functions.

Such a study of convergence of subdifferentials began in the 70s when H.
Attouch (see [1]) established that a sequence of extended real-valued lower se-
micontinuous proper convex functions on a reflexive Banach space, converges
in the sense of Mosco if and only if the graphs of the subdifferentials Painleve-
Kuratowski converge to the graph of the subdifferential of the limit function
and a condition which fixes the constant of integration holds ; we also re-
fer to [3], [6], [16], [37] and [38] for other results in this line under Mosco
convergence of convex functions. Concerning the Attouch-Wets convergence,
H. Attouch, J.L Ndoutoume and M. Théra in [2] showed that a family of
lower semicontinuous proper convex functions (defined on a super reflexive
Banach space) Attouch-Wets converges if and only if the graphs of the sub-
differentials Attouch-Wets converge plus a condition fixing the constant.

Poliquin [31] extended Attouch’s Theorem to possibly nonconvex primal-
lower-nice functions in a finite-dimensional setting. A. Levy, R.A. Poliquin
and L. Thibault [26] proved, in the Hilbert space setting, that if {fn}n∈N is a
sequence of equi-primal-lower-nice functions at x (see the definition in Section
5), equibounded below near x with {fn(x)} bounded, then the convergence
in the sense of Mosco to f entails that the graphs of the subdifferentials
Painlevé-Kuratowski converge to the graph of the subdifferential of f . They
also showed, in the same Hilbert space setting, that the convergence in the
sense of Attouch-Wets of {fn}n∈N implies the Painlevé-Kuratowski conver-
gence of the graphs of the subdifferentials, as well as almost Attouch-Wets
convergence of the subgradients in some sense. A. Jourani [15] showed that
the Ioffe (geometric) approximate subdifferential of a lower semicontinuous
function on a Banach space is contained in the limit superior of the Ioffe
approximate subdifferential of lower semicontinuous uniformly convergent
family to this function. Through the latter result, the approximate subdif-
ferential of a lower semicontinuous function f (bounded from below on the
Banach space by a quadratic function) is described in [15] in terms of the
subdifferentials of the Moreau envelopes ; see also [24] where the Mordukho-
vich limiting subdifferential of f is obtained, in the Asplund space setting,
as some limit superior of the Fréchet subdifferentials of Moreau envelopes.

Recently X.Y. Zheng and Z. Wei [39] considered the convergence of normal
cones for sequences of subsmooth sets of a Hilbert space. As a consequence,
for sequences of extended real-valued functions, they obtained the following
generalization of [26] : If a sequence {fn}n∈N of extended real-valued proper
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lower semicontinuous functions on a Hilbert space H Mosco converges to a
proper function f and {fn}n∈N is uniformly subsmooth at x̄, then an element
ζ ∈ H belongs to the Mordukhovich limiting subdifferential of the function
f at x̄ if and only if there exist a sequence {(xn, ζn∈N)}n in H × H and a
strictly increasing sequence {k(n)}n∈N in N such that

ζn ∈ ∂Pfk(n)(xn) and (xn, fk(n)(xn))→ (x̄, f(x̄))

and such that {ζn}n∈N weakly converges to ζ. Above ∂Pfk(n) denotes the
proximal subdifferential of fk(n), and the uniform subsmoothness of {fn}n∈N
at x̄ means that for any reals ε > 0 and M > 0 there exists δ > 0 such that

〈ζn, x′ − x〉 ≤ fn(x′)− fn(x) + ε‖x′ − x‖

whenever n ∈ N, x′, x ∈ B(x̄, δ) (the open ball around x̄) and ζn ∈ ∂Pfn(x)
with ‖ζn‖ ≤M .

In the present paper, we extend the latter result to a reflexive locally
uniformly convex Banach space X with a norm Fréchet differentiable off
zero. We also establish a similar result for the Attouch-Wets convergence :
If a sequence of extended real-valued proper lower semicontinuous functions
{fn}n∈N converges in the sense of Attouch-Wets to a proper function f and
the sequence is subsmooth at x̄ ∈ dom f with a compatible indexation, then
a continuous linear functional x∗ ∈ X∗ belongs to the Mordukhovich limiting
subdifferential of the function f at x̄ if and only if there exist a sequence
{(xn, x∗n)}n∈N in X × X∗ and a strictly increasing sequence {k(n)}n∈N in N
such that

x∗n ∈ ∂Pfk(n)(xn) and (xn, fk(n)(xn))→ (x̄, f(x̄))

and such that {x∗n}n∈N converges weakly to x∗. Our definition of subsmooth-
ness with a compatible indexation is the following : for any ε > 0 there exist
some real δ > 0 and some N ∈ N satisfying for each integer n ≥ N

〈x∗, x′ − x〉 ≤ fn(x′)− fn(x) + ε(1 + ‖x∗‖)‖x′ − x‖

for all x′ ∈ B(x̄, δ), x ∈ B(x̄, δ) ∩ Dom ∂Pfn and x∗ ∈ ∂Pfn(x). When the
sequence {fn}n∈N is subsmooth at every point of dom f with a compatible
indexation, we obtain that the graph of the Mordukhovich limiting subdiffe-
rential of f is a certain limit superior of the graphs of the proximal subdiffe-
rentials of the functions fn.
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The paper is organized as follows. In Section 2 we recall some properties
of uniformly convex/smooth norm and some concepts of subgradients and
normals ; we also establish a result of approximation of horizontal proximal
normals to the epigraph of a function by nonhorizontal ones in the context
of a reflexive locally uniformly convex Banach space with a norm Fréchet
differentiable off zero. The latter result is involved in several places of the
paper. Section 3 studies the convergence of the graphs of normal cones of
Mosco convergent sequences of sets and Section 4 deals with Attouch-Wets
convergence of sequences of sets. The results in both sections are obtained for
(non-Hilbert) reflexive locally uniformly convex Banach space with a norm
Fréchet differentiable off zero ; a particular attention is paid to the case when
the sequence of sets is subsmooth with compatible indexation. Section 5
provides the aforementioned extensions of [31, 26, 39] to subdifferentials of
Mosco and Attouch-Wets convergent sequences of subsmooth functions with
compatible indexation in the setting of reflexive locally uniformly convex
Banach space with a norm Fréchet differentiable off zero.

2.2 Notation and Preliminaries

Recall that a norm ‖ ·‖ on a vector space X is strictly convex whenever for
all x, y ∈ X with x 6= y and ‖x‖ = ‖y‖ = 1 one has ‖x+y

2
‖ < 1. One is often

interested in the case when the latter inequality holds in a uniform way.
The norm ‖ · ‖ of X is locally uniformly convex at x ∈ X with ‖x‖ = 1 if

for every ε > 0 there exists δ > 0 (depending on both x and ε) such that, for
every y ∈ X with ‖y‖ = 1 and ‖y−x‖ ≥ ε, the inequality ‖1

2
(x+y)‖ ≤ 1− δ

is fulfilled. When the norm ‖ · ‖ is locally uniformly convex at any point of
the unit sphere, one says that it is locally uniformly convex. Obviously, the
norm ‖ · ‖ is stricly convex whenever it is locally uniformly convex.

Another important concept is that of uniform convexity. The norm ‖ · ‖ on
X is uniformly convex when the real δ above depends merely on ε, that is,
when for every ε > 0 there is some δ > 0 so that for any two vectors x, y ∈ X
with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε one has

‖1

2
(x+ y)‖ ≤ 1− δ.

Sometimes, instead of saying that the norm ‖ · ‖ is uniformly convex (resp.
locally uniformly convex), it will be convenient as usual to say that the
normed space (X, ‖ · ‖) is uniformly convex (resp. locally uniformly convex).
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Considering the modulus of uniform convexity δ‖·‖ of the norm ‖·‖ defined
for ε ∈ [0, 2] by

δ‖ ‖(ε) := inf{1− ‖x+ y

2
‖ : x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε},

we see that the norm ‖ · ‖ is uniformly convex if and only if δ‖ ‖(ε) > 0 for
all ε ∈]0, 2].

Any uniformly convex normed space is obviously locally uniformly convex,
and any uniformly convex Banach space is known to be reflexive (see, e.g.,
[27]). In [36] one can find an example of a norm ‖ · ‖L on the space `2(N),
equivalent to the usual Hilbertian norm of `2(N), which is locally uniformly
convex but is not uniformly convex. So, (`2(N), ‖ · ‖L) is an example of a
reflexive Banach space which is not uniformly convex but is locally uniformly
convex.

The norm ‖ · ‖ on X is uniformly smooth if its modulus of smoothness,

ρ‖|(τ) := sup

{
1

2
‖x+ τy‖+

1

2
‖x− τy‖ − 1 : ‖x‖ = 1, ‖y‖ = 1

}
for τ ≥ 0

satisfies lim
τ↓0

1

τ
ρ‖ ‖(τ) = 0. A normed space (X, ‖ · ‖) whose norm ‖ · ‖ is

uniformly smooth is called a uniformly smooth space.
When the dual norm ‖ · ‖∗ in X∗ is uniformly smooth (resp. uniformly

convex), the norm ‖ · ‖ itself (of the space X) is uniformly convex (resp.
uniformly smooth) (see [18, p. 35], [19, p. 38]).

It is possible to renorm any uniformly convex Banach space with an equi-
valent norm which is both uniformly convex and uniformly smooth. Then,
the corresponding dual norm in X∗ is both uniformly convex and uniformly
smooth too.

When the dual norm ‖ · ‖∗ of the norm ‖ · ‖ of a vector space X is lo-
cally uniformly convex (resp. stricly convex), the norm ‖ · ‖ is Fréchet (resp.
Gâteaux) differentiable off zero, see, for example, [18, p. 37], [19, p. 32].

The above properties of uniformly (resp. locally uniformly) convex spaces
can be found in detail in [18, 19, 20, 27]. Let us recall some other properties.

It is well known (see, for example,[27]) that all Hilbert spaces H and the
Banach spaces lp, Lp, and W p

m(1 < p < ∞) are all (for their usual norms)
uniformly convex and uniformly smooth.
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Consider, for a normed space (X, ‖·‖), the set-valued mapping J : X ⇒ X∗

defined by

J(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖ · ‖x‖, ‖x∗‖ = ‖x‖}.

It is not difficult to see that the norm ‖ · ‖ is stricly convex if and only if
J(x1) ∩ J(x2) = ∅ for all x1, x2 ∈ X with x1 6= x2. It is generally called the
normalized duality mapping associated with the norm ‖ · ‖. If X is reflexive,
we have that J is surjective. The set-valued mapping J is the subdifferential
of the convex function 1

2
‖·‖2, i.e., J = ∂(1

2
‖·‖2). If (X, ‖·‖) is reflexive and the

norm ‖·‖ is Fréchet differentiable off zero and stricly convex, then J is single-
valued, norm-to-norm continuous and bijective. The inverse mapping J−1 (of
J) will be denoted by J∗ ; it is the normalized duality mapping for the dual
norm on X∗. So, according to what has been recalled above concerning locally
uniformly convex norm and concerning differentiable norm, whenever (X, ‖·‖)
is a reflexive Banach space whose norm ‖ · ‖ is both locally uniformly convex
and Fréchet differentiable off zero, then both duality mappings J and J∗ are
single-valued, bijective and norm-to norm continuous. It is worth mentioning
(see, e.g., Corollary 3, page 167 in [19]) that every reflexive Banach space X
can be given an equivalent norm ‖ · ‖ such that both ‖ · ‖ and the dual norm
‖ · ‖∗ are simultaneously locally uniformly convex and Fréchet différentiable
off zero.

The space X×R will be endowed with the norm ||| ||| given by |||(x, r)||| =√
‖x‖2 + r2. So, for the normalized duality mapping JX×R : X×R→ X∗×R

associated with the norm ||| · |||, one has the equality

JX×R(x, r) = J(x)× {r}. (2.2.1)

When there is no risk of confusion, JX×R will be simply denoted by J .
We will denote by B or BX (resp. B∗ or BX∗) the closed unit ball of X

(resp. X∗) and by B(x, α) (resp. B[x, α]) the open (resp. closed) ball centred
at x with radius α > 0.

For a closed set C of the normed space (X, ‖ · ‖), a nonzero vector p ∈ X
is said to be a primal proximal normal vector to C at x ∈ C (see [12]) if
there are u /∈ C and r > 0 such that p = r−1(u − x) and ‖u − x‖ = dC(u).
(Here dC(u) denotes the distance from u to the set C ; sometimes it will be
convenient to put d(u,C) instead of dC(u)). It is known, according to Lau’s
theorem [25] recalled below, that in any reflexive Banach space endowed
with a stricly convex Kadec-Klee norm, the set of those points which have
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a nearest point in any fixed closed subset is a dense set. The norm ‖ · ‖ of
a vector space has the (sequential) Kadec-Klee property provided the weak
convergence of a sequence of the unit sphere of the space is equivalent to the
norm convergence of this sequence. Hence, the Kadec-Klee property holds
true whenever the norm is locally uniformly convex, as easily seen.

Equivalently, a nonzero p ∈ X is a primal proximal normal vector to C at
x ∈ C if there exists r > 0 such that x ∈ PC(x + rp), where PC denotes the
metric projection on C, that is, for any u ∈ X,

PC(u) := {y ∈ C : ‖u− y‖ = dC(u)}.

Note that the inclusion x ∈ PC(x + rp) is equivalent to PC(x + r′p) = {x}
for all 0 < r′ < r whenever the norm ‖ · ‖ is stricly convex (as easily seen).
We also take by convention the origin of X as a primal normal vector to C
at x. The sets of all primal proximal normal vectors to C at x is obviously a
cone. It will be denoted by PNC(x). The concept is local in the sense of the
following proposition established in [8, p. 530].

Proposition 2.2.1 ([8]) Let (X, ‖ · ‖) be a normed space and C be a no-
nempty closed set of X. For any u 6∈ C and any closed ball V := B[x, r]
centred at x ∈ C and such that ‖u− x‖ = d(u,C ∩ V ), one has

u− x ∈ PNC(x).

�

A continuous linear functional p∗ ∈ X∗ is said to be a proximal normal
functional to C at x ∈ C if there exists p ∈ PNC(x) such that p∗ ∈ J(p).
This means for p∗ 6= 0 (see [12]) that there is r > 0 such that x ∈ PC(x+ rp)
and p∗ ∈ J(p). The sets of all proximal normal functionals to C at x is a
cone which will be denoted by NP

C (x) or NP (C;x). Of course J(p) ⊂ NP
C (x)

whenever p ∈ PNC(x), and if in addition X is reflexive and the norm ‖ · ‖ of
X is Fréchet differentiable outside zero (so J is bijective) one easily verifies
that J∗(p∗) ∈ PNC(x) whenever p∗ ∈ NP

C (x) (keep in mind that J∗ = J−1 is
the normalized duality mapping for X∗ endowed with the dual norm of ‖ ·‖).
Hence, under the assumption that (X, ‖ · ‖) is reflexive and the norm ‖ · ‖
is Fréchet differentiable off zero, PNC(x) and NP

C (x) completely determine
each other.

We will also need in our development the concept of the Fréchet normal
cone NF

C (x) or NF (C;x) of a set C of the normed space X. A continuous
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linear functional x∗ ∈ X∗ is said to be a Fréchet normal functional (see,e.g.,
[28, 16]) to C at x ∈ C if for any ε > 0 there exists a neighbourhood U of x
such that the inequality 〈x∗, x′− x〉 ≤ ε‖x′− x‖ holds for all x′ ∈ C ∩U . We
denote by NL

C (x) or NL(C;x) the Mordukhovich limiting normal cone of C
at x ∈ C, that is,

NL
C (x) = seq Lim sup

C3u→x
NF
C (u) :=

{
x∗ ∈ X∗ : ∃ sequences C 3 xn → x,

x∗n
w∗−→ x∗ with x∗n ∈ NF

C (xn).

}
More will be recalled in the next section concerning the concepts of limits
superior and inferior of sets and set-valued mappings. By convention one
defines PNC(x), NP

C (x), NF
C (x) and NL

C (x) as the empty set whenever x 6∈ C.
The above notation and concepts can be translated into the context of

functions. Let f : X → R ∪ {−∞,+∞} be an extended real-valued function
on the normed space X. By definition, the effective domain of f is the set
dom f := {x ∈ X : f(x) < +∞} and the epigraph of f is the set epi f :=
{(x, r) ∈ X×R : f(x) ≤ r} ; the function f is proper when it does not take on
the value −∞ and dom f 6= ∅. For a lower semicontinuous function f which is
finite at x, we say that p∗ ∈ X∗ is a proximal subgradient of f at x if (p∗,−1) is
a proximal normal functional to the epigraph of f at (x, f(x)). The proximal
subdifferential of f at x, denoted by ∂Pf(x), consists of all such functionals.
Thus we have p∗ ∈ ∂Pf(x) if and only if (p∗,−1) ∈ NP

epi f (x, f(x)). Similarly,
for a function f which is finite at x, the Fréchet subdifferential of f at x,
denoted by ∂Ff(x), consists of all functionals x∗ ∈ X∗ such that (x∗,−1) ∈
NF

epi f (x, f(x)). If x /∈ domf then all subdifferentials of f at x are empty,
by convention. It is known that, for an extended real-valued proper lower
semicontinuous function f on a reflexive Banach space endowed with a Kadec-
Klee and Fréchet differentiable norm, the (effective) domain of the set-valued
mapping ∂Pf : X ⇒ X∗

Dom ∂Pf := {x ∈ X : ∂Pf(x) 6= ∅}
is dense in dom f (see [10, Theorem 7.1]). The Fréchet subgradients are known
(see [28]) to have an analytical characterization in the sense the x ∈ ∂Ff(x)
if and only if

lim inf
y→x

f(y)− f(x)− 〈x∗, y − x〉
‖x− y‖

≥ 0.

When ∂Ff(x) 6= ∅, one says that f is Fréchet subdifferentiable at the point
x. Similarly to the above definitions, the Mordukhovich limiting subdifferen-
tial of f at x, denoted by ∂Lf(x), consists of all functionals x∗ ∈ X∗ such
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that (x∗,−1) ∈ NL
(
epi f ; (x, f(x))

)
. It is known that x∗ ∈ ∂Lf(x) if and

only if there exists a sequence {(xn, f(xn))}n∈N converging to (x, f(x)) and a
sequence {x∗n}n∈N converging weakly star to x∗ such that x∗n ∈ ∂Ff(xn) (see
[28]). That is,

∂Lf(x) = seq Lim sup
u→fx

∂Ff(u).

The last concepts that we need is the Clarke tangent and normal cones.
For a subset C of X and a point x ∈ C, a vector h ∈ X belongs to the Clarke
tangent cone TCl(C;x) of C at x provided that for any real ε > 0 there exists
a real δ > 0 such that

(
u + tB(h, ε)) ∩ C 6= ∅ for all u ∈ C ∩ B(x, δ) and

t ∈]0, δ[, where we recall that B(x, δ) denotes the open ball centred at x and
of radius δ. It is known that h ∈ TCl(C;x) if and only if for any sequences
{xn}n∈N in C converging to x and {tn}n∈N in ]0,+∞[ tending to 0 there is
a sequence {hn}n∈N in X converging to h such that xn + tnhn ∈ C for all
n ∈ N. The Clarke normal cone is defined as the negative polar cone of the
Clarke tangent cone, that is,

NCl(C;x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 for all h ∈ TCl(C;x)};

the Clarke subdifferential of the function f at x ∈ dom f is the set

∂Clf(x) := {x∗ ∈ X∗ : (x∗,−1) ∈ NCl
(
epi f ; (x, f(x))

)
}.

As above TCl(C;x) and NCl(C;x) (resp. ∂Clf(x)) are defined to be empty
whenever x 6∈ C (resp. f is not finite at x).

If X is an Asplund space, we have (see [28])

NCl(C;x) = co∗(NL(C;x)) (2.2.2)

where co∗ denotes the weak star closed convex hull. Recall that a Banach
space X is an Asplund space provided the toplogical dual of any separable
subspace of X is separable.

We will use the result below concerning the proximal and Fréchet normal
cones (see [10]). For the convenience of the reader, we sketch a proof.

Lemma 2.2.2 ([10]) Let (X, ‖ ·‖) be a Banach space whose norm is Fréchet
differentiable (off zero) and C be a closed subset of X. The following holds :
(a) For all x ∈ C, we have NP

C (x) ⊂ NF
C (x).

(b) The inclusion ∂Pf(x) ⊂ ∂F (x) holds for all x ∈ X.
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Proof. (a) We take any v ∈ PN(C;x), so there is σ > 0 such that

‖x− (x+ σv)‖2 ≤ ‖x+ σv − y‖2 for all y ∈ C,

hence
σ2‖v‖2 ≤ ‖x+ σv − y‖2,

0 ≤ σ2(
1

2
‖v + σ−1(x− y)‖2 − 1

2
‖v‖2).

For each y ∈ C, this yields, according to the equality J(v) = D(1
2
‖ · ‖2)(v)

(the Frechet differential of 1
2
‖ ‖2), a mapping ε : X → R with ε(u)→ 0 when

u→ 0 and such that

0 ≤ σ2
(
〈J(v), σ−1(x− y)〉+ σ−1‖x− y‖ε(y − x)

)
〈J(v), y − x〉 ≤ ‖y − x‖ε(y − x).

Thus J(v) ∈ NF (C;x), which implies that NP (C;x) ⊂ NF (C;x).
(b) The assertion (b) follows directly from (a). �

We recall now the famous Lau theorem concerning the metric projection
on closed sets which has been involved above. It easily ensures that the points
of the set where the proximal normal cone is not reduced to zero are dense
in the set.

Theorem 2.2.3 (Lau [25]) Let X be a reflexive Banach space endowed with
a stricly convex norm ‖·‖ satisfying the (sequential) Kadec-Klee property and
let C be a nonempty (strongly) closed set of X. Then there exists a dense Gδ

set of X\C with unique nearest points in C.

We recall that any locally uniformly convex norm (in particular, any uni-
formly convex norm) fulfills the Kadec-Klee property.

The next proposition provides an approximation result of Fréchet normals
by proximal normals. It appears in the paper [9] by F. Bernard, L. Thibault
and N. Zlateva as an adaptation of the proof a similar result of A.D. Ioffe
[13].

Proposition 2.2.4 ([9, 13]) Assume that (X, ‖ · ‖) is a reflexive locally uni-
formly convex Banach space and that the norm ‖ · ‖ is Fréchet differentiable
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off zero. Let C be a closed subset of X with x ∈ C and let x∗ ∈ NF
C (x). Then

for any ε > 0 there exist u∗ε ∈ NP
C (uε) such that

‖uε − x‖ < ε and ‖u∗ε − x∗‖ < ε.

In fact the result uses only the Fréchet differentiability outside of zero of the
norm ‖ · ‖ and of its dual norm.

Through the latter proposition we can approximate horizontal proximal
normals to the epigraph of a function by nonhorizontal ones. Before proving
that approximation property let us establish the following lemma which has
its own interest.

Lemma 2.2.5 Let (X, ‖ · ‖) be a normed space and f : X → R ∪ {+∞} be
an extended real-valued proper lower semicontinuous function. The following
hold :
(a) For any (p,−r) ∈ PN

(
epi f ; (x, s)

)
one has r ≥ 0 ; further, if the norm

‖ · ‖ is stricly convex and if r > 0, then s = f(x).
(b) If ‖ · ‖ is stricly convex, then, for any (p, 0) ∈ PN

(
epi f ; (x, s)

)
, one also

has (p, 0) ∈ PN
(
epi f ; (x, f(x))

)
.

Similarly :
(c) For any (x∗,−r) ∈ NP

(
epi f ; (x, s)

)
one has r ≥ 0 ; further, if the norm

‖ · ‖ is in addition stricly convex and if r > 0, then s = f(x).
(d) If ‖ ·‖ is stricly convex, then, for any (x∗, 0) ∈ NP

(
epi f ; (x, s)

)
, one also

has (x∗, 0) ∈ NP
(
epi f ; (x, f(x))

)
.

Proof. (a) Suppose that (x, s) ∈ epi f and (p,−r) ∈ PNepi f (x, s). Then
there is some σ > 0 such that

(x, s) ∈ Pepi f

(
(x, s) + σ(p,−r)

)
, (2.2.3)

hence
depi f

(
(x, s) + σ(p,−r)

)
=
√
σ2‖p‖2 + σ2r2. (2.2.4)

We want to show that r ≥ 0. Suppose on the contrary r < 0 and fix α ∈]σ, 2σ[.
Then s− αr > s, so (x, s− αr) is also included in epi f , and

‖
(
(x, s) + σ(p,−r)

)
− (x, s− αr)‖ =

√
σ2‖p‖2 + (α− σ)2r2

<
√
σ2‖p‖2 + σ2r2

= depi f

(
(x, s) + σ(p,−r)

)
.
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This contradiction ensures r ≥ 0 as desired.
Now we suppose that r > 0 and the norm ‖ · ‖ of X is stricly convex. The

norm ‖ · ‖ on X ×R, given by ‖(u, t)‖ :=
√
‖u‖2 + t2, is also stricly convex.

Consequently, the real σ > 0 in (2.2.3) can be taken such that

Pepi f

(
(x, s) + σ(p,−r)

)
= {(x, s)}

(it is enough take as σ a positive real less than the one involved in (2.2.3)).
Note that f(x) is finite since f(x) ≤ s. Let 0 ≤ t = min{σr, s − f(x)}.
Therefore

0 ≤ σr − t ≤ σr and f(x) ≤ s− t.

So we have that (x, s− t) ∈ epi f . We consider the distance between the pairs
((x, s) + σ(p,−r)) and (x, s− t), and we write

‖
(
(x, s) + σ(p,−r)

)
− (x, s− t)‖ =

√
σ2‖p‖2 + (σr − t)2

≤
√
σ2‖p‖2 + σ2r2

= depi f

(
(x, s) + σ(p,−r)

)
,

where the last equality is due to (2.2.4). By the uniqueness of (x, s) as the
nearest point in epi f of (x, s)+σ(p,−r) we deduce that t = 0 and we obtain
that s = f(x).
(b) Assume now that (p, 0) ∈ PN(epi f ; (x, s)

)
and the norm of X is stricly

convex. Consider the norm ‖ · ‖ on X × R defined as above. Taking σ as in
(2.2.3) we have, for all (x′, s′) ∈ epi f ,

‖(x, s) + σ(p, 0)− (x′, s′)‖ ≥ σ‖p‖

and since (x′, s′ + s− f(x)) ∈ epi f (because s− f(x) ≥ 0) we also have

‖(x, s) + σ(p, 0)− (x′, s′ + s− f(x))‖ ≥ σ‖p‖,

which yields, for all (x′, s′) ∈ epi f ,

‖(x, f(x)) + σ(p, 0)− (x′, s′)‖ ≥ σ‖p‖.

The latter inequality means (x, f(x)) ∈ Pepi f

(
(x, f(x)) +σ(p, 0)

)
. So (p, 0) ∈

PNepi f

(
(x, f(x))

)
as required in (b).

Finally, the assertions (c) and (d) follow directly from (a) and (b) respectively.
�
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Proposition 2.2.6 Assume that (X, ‖ · ‖) is a reflexive locally uniformly
convex Banach space and that the norm ‖ · ‖ is Fréchet differentiable off
zero. Let f : X → R ∪ {+∞} be a lower semicontinuous function and x ∈
dom f , and let x∗ ∈ X∗ with (x∗, 0) ∈ NP

epi f

(
(x, f(x))

)
, where the proximal

normal cone in X × R is taken with respect to the product norm ‖(u, r)‖ =
(‖u‖2 + |r|2)1/2. Then for any ε > 0 there exist xε ∈ dom f and (x∗ε,−rε) ∈
NP

epi f

(
(xε, f(xε))

)
with rε > 0 such that (x∗ε,−rε) ∈ NP

epi f

(
(xε, f(xε))

)
along

with

‖xε − x‖+ |f(xε)− f(x)| < ε and ‖(x∗ε,−rε)− (x∗, 0)‖ < ε.

Proof. We first observe that the norm ‖(u, r)‖ = (‖u‖2 + |r|2)1/2 on X × R
is locally uniformly convex and Fréchet differentiable off zero. Fix (x∗, 0) ∈
NP

epi f

(
(x, f(x))

)
. Then (x∗, 0) ∈ NF

epi f

(
(x, f(x))

)
by Lemma 2.2.2 above, so

(see [28, Lemma 2.37]) we know that there is some yε ∈ dom f with ‖yε −
x‖+ |f(yε)−f(x)| < ε/2 and (y∗ε ,−sε) ∈ NF

epi f

(
(yε, f(yε))

)
with ‖(y∗ε ,−sε)−

(x∗, 0)‖ < ε/2 and sε > 0. Considering the positive real η(ε) := min{sε, ε/2},
Proposition 2.2.4 furnishes (xε, ρε) ∈ epi f with ‖xε−yε‖+ |ρε−f(yε)| < η(ε)
and (x∗ε,−rε) ∈ NP

epi f

(
(xε, ρε)

)
with ‖(x∗ε,−rε) − (y∗ε ,−sε)‖ < η(ε). Since

|sε − rε| < sε, we have rε > 0 hence ρε = f(xε) according to Lemma 2.2.5.
Consequently,

‖xε − x‖+ |f(xε)− f(x)| < ε and ‖(x∗ε,−rε)− (x∗, 0)‖ < ε,

rε > 0 and (x∗ε,−rε) ∈ NP
epi f

(
(xε, f(xε))

)
, and this finishes the proof. �

2.3 Normal cones of Mosco convergent se-

quences of sets

Let {Cn}n∈N be a sequence of subsets of the normed space X. Prior to
introduce the Mosco convergence, we will recall the Painlevé-Kuratowski
convergence (see, e.g., [6, 34]). Given a topology τ on X, one defines the
sequential limit inferior τ Lim inf

n→∞
Cn of the sequence {Cn}n∈N with respect to

the topology τ as the set of all τ -limits of sequences {xn}n with xn ∈ Cn for
all n ∈ N large enough. The sequential limit superior τ Lim sup

n→∞
Cn with res-

pect to τ is defined as the set of all τ -limits of sequences {xn}n with xn ∈ Cn
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for infinitely many n ∈ N. Equivalently, x ∈ τ Lim sup
n→∞

Cn provided there are

an increasing sequence {k(n)}n∈N in N and a sequence {xn}n∈N converging
to x with xn ∈ Ck(n) for all n ∈ N. Clearly,

τ Lim inf
n→∞

Cn ⊂ τ Lim sup
n→∞

Cn.

One then says that the sequence {Cn}n∈N τ -sequentially Painlevé-Kuratowski
converges to a subset C of X whenever

C = τ Lim inf
n→∞

Cn = τ Lim sup
n→∞

Cn.

When τ is the topology associated with the norm of X, one just says that
the sequence Painlevé-Kuratowski converges to C, and in that case, one can
verify that

‖ ‖ Lim inf
n→∞

Cn = {x ∈ X : lim sup
n→∞

d(x,Cn) = 0},

‖ ‖ Lim sup
n→∞

Cn = {x ∈ X : lim inf
n→∞

d(x,Cn) = 0}.

For C ⊂ ‖ ‖ Lim inf
n→∞

Cn (resp. C ⊂ ‖ ‖ Lim sup
n→∞

Cn) it is known for any x ∈ X
that

lim sup
n→∞

dCn(x) ≤ dC(x) (resp. lim inf
n→∞

dCn(x) ≤ dC(x) ). (2.3.1)

When the sequence {Cn}n∈N (sequentially) Painlevé-Kuratowski converges
to C with respect to both the norm convergence and the weak convergence,
one says that it converges in the sense of Mosco to C. It is easily seen that
this is equivalent to

C = ‖ ‖ Lim inf
n→∞

Cn = w Lim sup
n→∞

Cn,

where w stands here for the weak topology w(X,X∗) of X. Note that, in
this case, the subset C is weakly sequentially closed in the sense that the
limit of any weakly convergent sequence of C belongs to C. Indeed, suppose
without loss of generality that every Cn is nonempty, and take any sequence
{xm}m∈N of C converging weakly to x ∈ X. For eachm ∈ N, from the equality
C = ‖ ‖ Lim inf

n→∞
Cn there is a sequence {xm,n}n∈N converging strongly to xm
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with xm,n ∈ Cn for all n ∈ N. We can then choose an increasing sequence
{k(m)}m∈N in N such that ‖xm,k(m)− xm‖ < 1/m. So, for x′m := xm,k(m), the
sequence {x′m}m∈N converges weakly to x as m→∞ and x′m ∈ Ck(m) for all
m ∈ N. This and the equality C = w Lim sup

m→∞
Cm justify the inclusion x ∈ C.

Let ‖ ‖ Lim inf
n→∞

gphNP
Cn denote the limit inferior (with respect to the norm

topology in X × X∗) of the sequence {gphNP
Cn
}n∈N of the graphs of the

functional proximal normal cones, that is, the set of all (x, x∗) in X ×X∗ for
which there exists a sequence {(xn, x∗n)}n∈N in X ×X∗ such that

xn ∈ Cn and x∗n ∈ NP
Cn(xn) for n ∈ N large enough,

and such that {xn}n∈N and {x∗n}n∈N converge to x and x∗ with respect
to the norm topology of X and X∗ respectively. Similarly, we denote by
‖ ‖,∗ Lim sup

n→∞
gphNP

Cn the sequential limit superior of {gphNP
Cn
}n∈N with res-

pect to the ‖ ‖×w(X∗, X) topology of X ×X∗, that is, the set of all (x, x∗)
in X ×X∗ for which there exist a sequence {(xn, x∗n)}n∈N in X ×X∗ and an
increasing sequence {k(n)}n∈N in N such that

xn ∈ Ck(n) and x∗n ∈ NP
Ck(n)(xn) for all n ∈ N,

and such that {xn}n∈N and {x∗n}n∈N converge to x and x∗ with respect to
the norm topology of X and the weak star topology of X∗ respectively. It is
evident that

‖ ‖ Lim inf
n→∞

gphNP
Cn ⊂

‖ ‖,∗ Lim sup
n→∞

gphNP
Cn .

If they are equal we denote it by Lim
n→∞

gphNP
Cn , then,

Lim
n→∞

gphNP
Cn := ‖ ‖ Lim inf

n→∞
gphNP

Cn = ‖ ‖,∗ Lim sup
n→∞

gphNP
Cn .

In the definition above, gphM denotes the graph of a set-valued mapping
M : U ⇒ V , that is,

gph M := {(u, v) ∈ U × V : v ∈M(u)}.

We can now start with the lemma below. It has been proved by X.Y. Zheng
and Z. Wei [39] for Hilbert spaces. Here with different techniques we establish
the lemma in the context of reflexive Banach spaces.
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Lemma 2.3.1 Assume that (X, ‖ · ‖) is a reflexive Banach space and that
the norm ‖·‖ is strictly convex and has the Kadec-Klee property. Let {Cn}n∈N
be a sequence of closed subsets of X Mosco convergent to a closed subset C
of X. Suppose that x ∈ X and y ∈ C satisfy PC(x) = {y}. Then there exists
a sequence {(xn, yn)}n∈N in X ×X such that

lim
n→∞

(
‖xn − x‖+ ‖yn − y‖

)
= 0 and PCn(xn) = {yn} for large n ∈ N.

Proof. The set C being nonempty, the convergence assumption of {Cn}n∈N
entails that Cn 6= ∅ for large n, so without loss of generality we may assume
that all the sets Cn are nonempty. By Theorem 2.2.3, for any n ∈ N there
exists xn ∈ B(x, 1

n
) and yn ∈ Cn such that PCn(xn) = {yn}. Thus {xn}n∈N

converges to x. Further, it is not difficult to see that the sequence {yn}n∈N is
bounded. Indeed, since C ⊂ Lim inf

n→∞
Cn, we have (see (2.3.1)) that

lim sup
n→∞

dCn(x) ≤ dC(x),

from which we deduce that

lim sup
n→∞

‖yn‖ ≤ lim sup
n→∞

‖yn − xn‖+ lim
n→∞

‖xn‖

= lim sup
n→∞

dCn(xn) + ‖x‖

≤ dC(x) + ‖x‖,

and so the sequence {yn}n∈N is bounded. Consequently there exists a sub-
sequence {yk(n)}n∈N of {yn}n∈N converging weakly to some z ∈ X and z ∈
w Lim sup

n→∞
Cn ⊂ C. Further, one has

dC(x) ≥ lim sup
n→∞

dCn(x) = lim sup
n→∞

(dCn(x) + ‖x− xn‖)

≥ lim sup
n→∞

dCn(xn) = lim sup
n→∞

‖xn − yn‖

≥ lim sup
n→∞

‖xk(n) − yk(n)‖ = lim sup
n→∞

‖x− yk(n)‖

≥ lim inf
n→∞

‖x− yk(n)‖ ≥ ‖x− z‖,

the latter inequality being due to the weak lower semicontinuity of the norm
‖ · ‖. Therefore z ∈ PC(x), which entails z = y according to the assumption
PC(x) = {y}. On the other hand, since

lim inf
n→∞

‖xk(n) − yk(n)‖ = lim inf
n→∞

‖x− yk(n)‖ ≥ ‖x− y‖,
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according again to the weak lower semicontinuity of the norm ‖ · ‖, and since

lim sup
n→∞

‖xk(n) − yk(n)‖ = lim sup
n→∞

dCk(n)(xk(n))

≤ lim sup
n→∞

(dCk(n)(x) + ‖x− xk(n)‖) ≤ dC(x) = ‖x− y‖,

we see that lim
k→∞
‖xk(n) − yk(n)‖ = ‖x− y‖. We have also that

xk(n) − yk(n)
w−→ x− y.

From the Kadec-Klee property of the norm ‖ · ‖ we obtain that

xkn − ykn → x− y.

We deduce that {yk(n)}n∈N converges strongly to y, or equivalently, any
weakly convergent subsequence of {yn}n∈N converges strongly to y. From
this and the boundedness of {yn}n∈N it is easily seen (through the reflexivity
of X) that the whole sequence converges strongly to y. �

The second lemma relax the equality assumption PC(x) = {y} in the
lemma above into the inclusion y ∈ PC(x).

Lemma 2.3.2 Assume that (X, ‖ · ‖) is a reflexive Banach space and that
the norm ‖·‖ is strictly convex and has the Kadec-Klee property. Let {Cn}n∈N
be a sequence of closed subsets of X Mosco convergent to a closed subset C
of X. Suppose that x ∈ X and y ∈ C satisfy y ∈ PC(x). Then there exist an
increasing sequence {k(n)}n∈N in N and a sequence {(xn, yn)}n∈N in X ×X
such that

lim
n→∞

(
‖xn − x‖+ ‖yn − y‖

)
= 0 and PCk(n)(xn) = {yn} for all n ∈ N.

Proof. For each n ∈ N put x′n := (1 − 1
n
)x + 1

n
y. Then PC(x′n) = {y}

for all n ∈ N. Choose by Lemma 2.3.1 some integer k(1) and x1 ∈ X with
‖x1−x′1‖ < 1

1
such that PCk(1)(x1) = {y1} with ‖y1−y‖ < 1

1
. We can produce

by induction an increasing sequence {k(n)}n in N and two sequences {xn}n
and {yn}n in X such that ‖xn−x′n‖ < 1

n
, ‖yn−y‖ < 1

n
and PCk(n)(xn) = {yn}.

Those sequences fulfill the desired properties. �

The next lemma is concerned with the assumption of the equality PCn(xn) =
{yn}.
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Lemma 2.3.3 Let {Cn}n be a sequence of closed subsets of X and let C =
Lim sup
n→∞

Cn. Suppose that {(xn, yn)}n∈N is a sequence in X ×X such that

lim
n→∞

(
‖xn − x‖+ ‖yn − y‖

)
= 0 and PCn(xn) = {yn} for large n ∈ N.

Then one has y ∈ PC(x).

Proof. Since {yn}n∈N converges to y and Lim sup
n→∞

Cn ⊂ C, we have y ∈ C.

Further, since C ⊂ Lim sup
n→∞

Cn, for any u ∈ C, there exists an increasing

sequence {k(n)}n∈N in N and a sequence {un}n∈N converging to u with un ∈
Ck(n) for all n ∈ N. We then have

‖x− y‖ = lim
n→∞

‖xk(n) − yk(n)‖ = lim
n→∞

dCk(n)(xk(n))

≤ lim inf
n→∞

‖xk(n) − un‖ = ‖x− u‖.

This translates the desired inclusion y ∈ PC(x). �

Now we give the main results of this section. They establish connections
between diverse limits of {gphNP

Cn
}n∈N and the sets gphNP

C and gphNL
C

when the sequence of sets {Cn}n∈N Mosco converges to the set C.

Theorem 2.3.4 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{Cn}n∈N be a sequence of closed subsets of X Mosco converging to a nonempty
closed subset C of X. Then the following assertions are equivalent :
(a) one has x∗ ∈ NP

C (x) ;
(b) there exist r > 0, n0 ∈ N and {xn}n strongly converging to x, {x∗n}n∈N
strongly converging to x∗ such that

PCn(xn + rJ∗(x∗n)) = {xn} for all n ≥ n0.

(Note that for such x∗n one has x∗n ∈ NP
Cn

(xn)).

Proof. Assume that, for x∗, the assertion (b) is satisfied, that is, there are
r > 0, n0 ∈ N and {xn}n∈N strongly converging to x, {x∗n}n∈N strongly
converging to x∗ such that

PCn(xn + rJ∗(x∗n)) = {xn} for all n ≥ n0.
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The continuity of J∗ (see the previous section) entails

lim
n→∞

(xn + rJ∗(x∗n)) = x+ rJ∗(x∗),

and by Lemma 2.3.3
x ∈ PC(x+ rJ∗(x∗)),

which guarantees the inclusion x∗ ∈ NP
C (x).

Now we assume that x∗ ∈ NP
C (x). By definition there is σ > 0 such that

PC(x+ σJ∗(x∗)) = {x}.

By Lemma 2.3.1 there is a sequence {xn}n∈N converging strongly to x and
a sequence {zn}n∈N converging strongly to x+ σJ∗(x∗) such that PCn(zn) =
{xn}, for large n, say n ≥ N . For each such n ≥ N , putting x∗n = J( 1

σ
(zn −

xn)) ensures x∗n ∈ NP
Cn

(xn) (since zn−xn ∈ PNCn(xn)), and by the continuity
of J we also have

x∗n = J(
1

σ
(zn − xn)) −−−→

n→∞
J(

1

σ
(x+ σJ∗(x∗)− x)) = J(J∗(x∗)) = x∗.

Further, since zn − xn = σJ∗(x∗n) we see that

{xn} = PCn(zn) = PCn(xn + σJ∗(x∗n)),

so the sequences {xn}n∈N and {x∗n}n∈N fulfill the properties of the assertion
(b) with r = σ. �

Now we denote by Λr
C : X ⇒ X∗ the set-valued mapping whose graph is

given by

gph Λr
C := {(x, x∗) ∈ X ×X∗ : PC(x+ rJ∗(x∗)) = {x}}

=
{

(x, x∗) ∈ gphNP
C : PC(x+ rJ∗(x∗)) = {x}

}
,

and we obtain the following corollary. The assertion (b) of the corollary is a
generalization of Theorem 3.1 of X.Y. Zheng and Z. Wei [39] to uniformly
smooth and uniformy convex Banach spaces which are not necessarily Hilbert
spaces. The corollary is even obtained for some locally uniformly convex
Banach spaces.
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Corollary 2.3.5 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{Cn}n∈N be a sequence of closed subsets of X which converges in the sense
of Mosco to a nonempty closed subset C of X. Then,

(a) gphNP
C =

⋃
r>0

‖ ‖ Lim inf
n→∞

gph Λr
Cn ; (b) gphNP

C ⊂ ‖ ‖ Lim inf
n→∞

gphNP
Cn ;

(c) gphNF
C ⊂ ‖ ‖ Lim sup

n→∞
gphNP

Cn.

Proof. The first assertion is a direct consequence of Theorem 2.3.4. The
second assertion obviously follows from the first since Λr(Cn) is a subset
of gphNP

Cn
. For the third assertion, note that by Proposition 2.2.4 for each

(x, x∗) ∈ gphNF
C there is a sequence {(xk, x∗k)}k∈N in gphNP

C such that

‖xk − x‖ <
1

k
and ‖x∗k − x∗‖ <

1

k
.

From the second assertion, for each integer k, there is a sequence {(xk,n, x∗k,n)}n∈N
with (xk,n, x

∗
k,n) in gphNP

Cn
such that

xk,n −−−→
n→∞

xk and x∗k,n −−−→
n→∞

x∗k.

Therefore there is a strictly increasing sequence {ν(k)}k in N such that

‖xk,ν(k) − xk‖ <
1

k
and ‖x∗k,ν(k) − x∗k‖ <

1

k
.

Thus we obtain that

xk,ν(k) −−−→
k→∞

x and x∗k,ν(k) −−−→
k→∞

x∗.

The proof is completed since (xk,ν(k), x
∗
k,ν(k)) ∈ gphNP

Cν(k)
. �

Now, through Theorem 2.3.4 again, we reformulate the result above in a
local way in the next corollary. In the statement of the corollary we denote by
‖ ‖ Lim inf

Cn3x′→x,
n→∞

Λr
Cn

(x′) the set of all x∗ ∈ X∗ such that for any sequence {xn}n in

X converging strongly to x with xn ∈ Cn for large n there exists a sequence
{x∗n}n in X∗ converging strongly to x∗ with x∗n ∈ Λr

Cn
(xn) for n large enough.

We define similarly the set ‖ ‖ Lim inf
Cn3x′→x,
n→∞

NP
Cn

(x′) and ‖ ‖ Lim sup
Cn3x′→x,
n→∞

NP
Cn

(x′).
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Corollary 2.3.6 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{Cn}n∈N be a sequence of closed subsets of X which converges in the sense
of Mosco to a nonempty closed subset C of X and let x ∈ C. Then, the
following hold :

a) NP
C (x) =

⋃
r>0

‖ ‖ Lim inf
Cn3x′→x,
n→∞

Λr
Cn(x′) ; (b) NP

C (x) ⊂ ‖ ‖ Lim inf
Cn3x′→x,
n→∞

NP
Cn(x′) ;

(c) NF
C (x) ⊂ ‖ ‖ Lim sup

Cn3x′→x,
n→∞

NP
Cn(x′).

Theorem 2.3.7 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{Cn}n∈N be a sequence of closed subsets of X which converges in the sense
of Mosco to a nonempty closed subset C of X. Then,

gphNL
C ⊂ ‖ ‖,∗ Lim sup

n→∞
gphNP

Cn .

Proof. Let (x, x∗) ∈ gphNL
C (u). Then, by the definition of the Mordukho-

vich limiting normal cone and by Proposition 2.2.4, there exists a sequence
{(zn, z∗n)}n∈N in X ×X∗ such that

C 3 zn → x, z∗n
w∗−→ x∗ and z∗n ∈ NP

C (zn) ∀n ∈ N.

By Corollary 2.3.5, there exist an increasing sequence {k(n)}n∈N in N and a
sequence {(xn, x∗n)}n∈N in X ×X∗ such that

‖xn − zn‖ <
1

n
, ‖x∗n − z∗n‖ <

1

n
, xn ∈ Ck(n), and x∗n ∈ NP

Ck(n)
(xn)

for all n ∈ N. It follows that

xn → x and x∗n
w∗−→ x∗.

The proof is completed. �

In the case of general reflexive Banach spaces, we have a similar result
but the Fréchet normal functionals have to be involved in place of proximal
normal functionals.
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Theorem 2.3.8 Let X be a reflexive Banach space and {Cn}n∈N be a se-
quence of closed subsets of X which converges in the sense of Mosco to a
nonempty closed subset C of X. Then
(a) NF

C (x) ⊂ ‖ ‖ Lim sup
Cn3x′→x,
n→∞

NF
Cn(x′) ; (b) gphNL

C ⊂ ‖ ‖,∗ Lim sup
n→∞

gphNF
Cn.

Proof. Recall that any reflexive Banach space (see the section of prelimina-
ries) can be given an equivalent norm ‖ · ‖ which is both unformly convex
and Fréchet differentiable off zero. Endowing X with such a norm, it suffices
to apply (c) of Corollary 2.3.6 and Theorem 2.3.7, and to use the inclusion
NP
Cn

(·) ⊂ NF
Cn

(·). �
Now we recall the definition of subsmooth sets (see [5]).

Definition 2.3.9 Assume that (X, ‖ · ‖) is Banach space. A set C is called
subsmooth at point x̄ ∈ C if for every ε > 0 there exists δ > 0 such that one
has

〈x∗, x′ − x〉 ≤ ε‖x′ − x‖,
for all x′, x ∈ B(x̄, δ)∩C and all x∗ ∈ NCl(C;x)∩BX∗. The set C is said to
be submooth when it is submooth at any of its points.

The set is uniformly subsmooth if the inequality above holds in a uniform
way, that is, for every ε > 0 there exists δ > 0 such that

〈x∗, x′ − x〉 ≤ ε‖x′ − x‖

for all x′, x ∈ C with ‖x′ − x‖ ≤ δ and all x∗ ∈ NCl(C;x) ∩ BX∗.

If the space X is an Asplund space and C is closed near x̄ ∈ C, then in the
definition above we can replace NCl(C;x)∩BX∗ by NF (C;x)∩BX∗ (see [5]).
The next proposition says that for the large class of reflexive Banach spaces
one can also replace NCl(C; ·) by NP (C; ·) provided one endows X with an
equivalent norm which is locally uniformly convex and Fréchet differentiable
off zero, as guaranteed by the related renorming result recalled in the previous
section.

Proposition 2.3.10 Assume that the space X is a reflexive Banach space
endowed with a locally uniformly convex norm ‖ · ‖ which is Fréchet differen-
tiable off zero, and let C be a subset of X which is closed near x̄ ∈ C. Then
C is subsmooth at x̄ if and only if the inequality in the definition above holds
true with NCl(C;x) replaced by NP (C;x).
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Proof. Indeed, in such a space X assume that the property in the proposition
is satisfied and, for any given ε > 0, choose δ > 0 such that 〈x∗, x′ − x〉 ≤
ε‖x′ − x‖ for all x, x′ ∈ C ∩ B(x̄, δ) and x∗ ∈ NP (C;x) ∩ BX∗ . Fix any
x ∈ C ∩ B(x̄, δ) and any nonzero x∗ ∈ NF (C;x) ∩ BX∗ . By Proposition
2.2.4 there are a sequence {xk}k∈N in C ∩ B(x̄, δ) converging to x and a
sequence {x∗k}k∈N of nonzero vectors in X∗ converging strongly to x∗ with

x∗k ∈ NP (C;xk). Since we have ‖x∗‖ x∗k
‖x∗k‖
∈ NP (C;xk) ∩ BX∗ , we may write,

for every x′ ∈ C ∩B(x̄, δ),

〈‖x∗‖ x∗k
‖x∗k‖

, x′ − xk〉 ≤ ε‖x′ − xk‖,

which gives as k →∞

〈x∗, x′ − x〉 ≤ ε‖x′ − x‖,

hence the desired inequality is fulfilled with NF (C;x) ∩ BX∗ . Consequently,
the set C is subsmooth at x̄ according to the result recalled above.

The converse implication is obvious since NP (C; ·) ⊂ NF (C; ·). �
The concept of subsmooth sets has been introduced by Aussel, Daniili-

dis and Thibault in [5] as an adaptation of the hypomonotonicity property
fulfilled by the truncated normal cone of a prox-regular set. Recall that a
closed set C of a Hilbert space C is prox-regular at x ∈ C provided there
exists a neighbourhood of x over which the metric projection mapping PC
is single-valued and continuous. The hypomonotonicity characterization of
prox-regularity says that C is prox-regular at x if and only if (see [33]) there
exists a neighbourhood U of x and a real r > 0 such that

〈x∗1 − x∗2, x1 − x2〉 ≥ −
1

r
‖x1 − x2‖2 (2.3.2)

for all xi ∈ U ∩ C and x∗i ∈ NCl(C;xi) ∩ B for i = 1, 2. The closed set C is
called (uniformly) prox-regular when PC is single-valued and continuous over
some open r-enlargement

Er(C) := {x ∈ X : dist(x,C) < r};

it is proved in [33] (see also [14]) that C is uniformly prox-regular if and
only if, for some r > 0, the inequality (2.3.2) holds for all xi ∈ C and
x∗i ∈ NCl(C;xi) ∩ BX∗ for i = 1, 2.
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More generally, suppose that C is a closed set of a Banach space (X, ‖ · ‖)
and define, as above, the prox-regularity of C at x ∈ C (resp. the uniform
prox-regularity of C) by the single-valuedness and continuity of the metric
projection mapping PC on a neighbourhood of x (resp. on some r-enlargement
Er(C)). Assume that the norm ‖ · ‖ is both uniformly convex and uniformly
smooth and that the moduli of convexity and of smoothness of the norm ‖ ·‖
are of power type, that is, there are constants c, c′ > 0, p > 0 and q > 1
such that δ‖ ‖(ε) ≥ cεp for all ε ∈]0, 2] and ρ‖ ‖(τ) ≤ c′τ q for all τ ≥ 0 (see
the preliminary section for the definitions of δ‖ ‖(·) and ρ‖ ‖(·)) ; under those
assumptions it is proved in [8, Theorem 4.9] and [9, Theorem 3.2] that the
set C is prox-regular at x if and only if there exist some real r > 0 and some
neighbourhood U of x such that

〈J [J∗(x∗1)− (x2 − x1)]− J [J∗(x∗2)− (x1 − x2)], x2 − x1〉 ≤ 0 (2.3.3)

for all xi ∈ C ∩U and x∗i ∈ NCl(C;xi)∩ rBX∗ (resp. x∗i ∈ NP (C;xi)∩ rBX∗)
for i = 1, 2. Similarly, the set C is uniformly prox-regular if and only if (see
[8, Proposition 5.6] and [9, Theorem 3.2]) for some r > 0 the latter inequality
holds for all xi ∈ C and x∗i ∈ NCl(C;xi)∩rBX∗ (resp. x∗i ∈ NP (C;xi)∩rBX∗).
Further, if the modulus of smoothness ρ‖ ‖ of ‖ ‖ is of power type 2 (that is,
ρ‖ ‖(τ) ≤ c′τ 2 for all τ ≥ 0), then C is prox-regular at x ∈ C (resp. uniformly
prox-regular) if and only if (see [9, Proposition 5.2]) for some σ > 0

〈x∗2, x1 − x2〉 ≤ σ‖x1 − x2‖2 (2.3.4)

for all x1, x2 ∈ C ∩ U (resp. x1, x2 ∈ C) and x∗2 ∈ NCl(C;x2) ∩ BX∗ (resp.
x∗2 ∈ NP (C;x2) ∩ BX∗) ; further, when C is r-prox-regular the constant σ
depends only on r and the norm ‖ · ‖.

Definition 2.3.11 Let {Cn}n∈N be a sequence of closed sets of a Banach
space X. Then we say that the sequence {Cn}n∈N is subsmooth at x̄ ∈ Lim inf

n→∞
Cn

with respect to the proximal normal cone with compatible indexation by n ∈ N,
if for any ε > 0 there exist δ > 0 and N ∈ N such that for each n ≥ N

〈x∗, x′ − x〉 ≤ ε‖x′ − xn‖,

for all x, x′ ∈ Cn ∩B(x̄, δ) and x∗ ∈ NP
Cn

(x) ∩ BX∗.
One defines in an obvious way the similar concept with respect to any

normal cone. When the proximal normal cone is used, we will omit its name,
that is, we will just say that the sequance Cnn∈N is subsmooth at x̄ with
compatible indexation.
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Obviously the sequence {Cn}n∈N is subsmooth at any x̄ ∈ Lim inf
n→∞

Cn with

compatible indexation by n ∈ N whenever it is equi-uniformly submooth in
the following sense. A family {Ct}t∈T is called equi-uniformly subsmooth if
for every ε > 0 there exists δ > 0 such that for each t ∈ T

〈x∗, x′ − x〉 ≤ ε‖x′ − x‖

for all x′, x ∈ Ct with ‖x′ − x‖ ≤ δ and all x∗ ∈ NCl(Ct;x) ∩ BX∗ .

Similarly, if (X, ‖ ‖) is a Banach space whose modulus of uniform convexity
of the norm is of power type and modulus of uniform smoothness is of power
type 2, one sees from (2.3.4) that the sequence is subsmooth at any x̄ ∈
Lim inf
n→∞

Cn with compatible indexation by n ∈ N whenever for some real r > 0

all the closed sets Cn are r-prox-regular. In fact, in such a case the sequence
of sets {Cn}n∈N is, according to (2.3.4), even equi-uniformly subsmooth.

It is worth noting the following equivalent property.

Proposition 2.3.12 Let X be a Banach space and N be a normal cone. A
sequence of closed sets {Cn}n∈N of X is subsmooth at x̄ ∈ Lim inf

n→∞
Cn with

respect to N with compatible indexation by n ∈ N, if and only if for any
ε > 0 there exists δ > 0 such that for any sequence {xn}n∈N converging to x
with xn ∈ Cn for large n there is some N ∈ N satisfying for each n ≥ N

〈x∗, x′ − xn〉 ≤ ε‖x′ − xn‖,

for all x′ ∈ Cn ∩B(x, δ) and x∗ ∈ NCn(xn) ∩ BX∗.

Proof. The property is obviously implied by the statement of Definition
2.3.11. Suppose now that the statement of that definition fails. Then there
exists some ε0 > 0 such that for each integer n ∈ N there are an in-
teger k(n) ≥ n with k(n + 1) > k(n), un, x

′
n ∈ Ck(n) ∩ B(x̄, 1/n) and

x∗n ∈ N (Ck(n);un) ∩ BX∗ such that

〈x∗n, x′n − un〉 > ε0‖x′n − un‖.

From the inclusion x̄ ∈ ‖ ‖ Lim inf
n→∞

Cn there exits a sequence {vn}n∈N conver-

ging strongly to x̄ with vn ∈ Cn for large n. Putting xn := vn for every integer
n 6∈ k(N) and xk(m) := um for all m ∈ N, we see that the whole sequence
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{xn}n∈N converges srongly to x̄ with xn ∈ Cn for all n large enough. Fix
any real δ > 0. There exists some integer K such that xn, x

′
n ∈ B(x̄, δ) and

xn ∈ Cn for all n ≥ K. So, for the constructed sequence {xn}n∈N, we see
that it converges to x̄ with xn ∈ Cn for large n and for each integer N ≥ K
we have k(N) ≥ N with the point x′N ∈ Ck(N) ∩ B(x̄, δ) and the vector
x∗N ∈ N (Ck(N);xk(N)) ∩ BX∗ , but

〈x∗N , x′N − xk(N)〉 > ε0‖x′N − xk(N)‖.

This means that the property of the proposition is not satisfied at x̄ and the
proof is completed. �

The next theorem shows that the inclusion of Theorem 2.3.7 is an equality
whenever the sequence of sets {Cn}n∈N is subsmooth.

Theorem 2.3.13 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{Cn}n∈N be a sequence of closed subsets of X converging in the sense of Mosco
to a nonempty closed subset C of X. Assume that the sequence {Cn}n∈N is
subsmooth at any point of C with a compatible indexation. Then

gphNL
C = gphNF

C = ‖ ‖,∗ Lim sup
n→∞

gphNP
Cn .

Proof. The theorem is a consequence of Theorem 2.3.7 and Proposition
2.3.14 below since the Mosco convergence implies the Painlevé-Kuratowski
convergence of sets. �

Proposition 2.3.14 Let (X, ‖ · ‖) is a Banach space and N be a normal
cone. Let {Cn}n∈N be a sequence of closed subsets of X converging in the
sense of Painlevé-Kuratowski to a nonempty closed subset C of X. Assume
that the sequence {Cn}n∈N is subsmooth at any point of C with respect to N
with compatible indexation. Then

‖ ‖,∗ Lim sup
n→∞

gphNCn ⊂ gphNF
C .

Proof. We follow the main ideas of the proof of Theorem 3.3 by X.Y. Zheng
and Z. Wei [39].
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Fix any (x̄, x∗) ∈ ‖ ‖,∗ Lim sup
n→∞

gphNCn . By the definition of that limit

superior there exist a sequence {(xn, x∗n)}n∈N in X × X∗ and an increasing
sequence {k(n)}n∈N in N such that

xn ∈ Ck(n) and x∗n ∈ NCk(n)(xn) for all n ∈ N,

and such that {xn}n∈N and {x∗n}n∈N converge to x̄ and x∗ with respect to the
norm topology in X and the weak∗ topology in X∗ respectively. This implies
in particular that x̄ ∈ Lim sup

n→∞
Cn, hence x̄ ∈ Lim inf

n→∞
Cn according to the

convergence assumption. Choose a real β > 0 such that

‖x∗n‖ ≤ β for all n ∈ N.

Take any real ε > 0. For ε′ := β−1ε, the inclusion x̄ ∈ Lim inf
n→∞

Cn and the

subsmoothness property of the sequence {Cn}n∈N furnishes some real δ > 0
and some N ∈ N such that for each n ≥ N

〈x∗, x′ − x〉 ≤ ε′‖x′ − x‖

for all x, x′ ∈ Cn ∩ B(x̄, δ) and x∗ ∈ N (Cn;x) ∩ BX∗ . Taking N0 ≥ N such
that xn ∈ B(x̄, δ) for all n ≥ N0, we see in particular that, for each n ≥ N0,
we have for all x′ ∈ Ck(n) ∩B(x̄, δ)

〈β−1x∗n, x
′ − xn〉 ≤ ε′‖x′ − xn‖

or equivalently
〈x∗n, x′ − xn〉 ≤ ε‖x′ − xn‖. (2.3.5)

Consider any x ∈ C ∩B(x̄, δ). Since C = Lim inf
n→∞

Cn, there exists a sequence

{yn}n∈N in B(x̄, δ) such that

‖yn − x‖ → 0 and yn ∈ Cn for all n large enough.

This and (2.3.5) imply for all n large enough that

〈x∗n, yk(n) − xn〉 ≤ ε‖yk(n) − xn‖,

hence letting n→∞, we obtain

〈x∗, x− x̄〉 ≤ ε‖x− x̄‖ for all x ∈ C ∩B(x̄, δ),
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which translates that (x̄, x∗) ∈ gphNF
C . The proof is completed. �

In the case of a general reflexive Banach space, the limit superior needs
to involve the cones of Fréchet normal functionals instead of the cones of
proximal normal functionals.

Theorem 2.3.15 Let X be a reflexive Banach space and let {Cn}n∈N be a
sequence of closed subsets of X converging in the sense of Mosco to a no-
nempty closed subset C of X. Assume that the sequence {Cn}n∈N is subsmooth
with respect to the Fréchet normal cone at any point of C with a compatible
indexation. Then

gphNL
C = gphNF

C = ‖ ‖,∗ Lim sup
n→∞

gphNF
Cn .

Proof. The theorem follows from Theorem 2.3.8 and Proposition 2.3.14. �

The Painlevé-Kuratowski convergence of the graphs of NP
Cn

can be deduced
as follows.

Corollary 2.3.16 Assume that (X, ‖ · ‖) is a reflexive locally uniformly
convex Banach space and that the norm ‖·‖ is Fréchet differentiable off zero.
Let {Cn}n∈N be a sequence of closed subsets of X converging in the sense of
Mosco to a nonempty closed subset C of X satisfying NP

C (x) = NF
C (x) for

all x ∈ C. Assume that the sequence {Cn}n∈N is subsmooth at any point of C
with a compatible indexation. Then the sequence {gphNP

Cn
}n∈N of graphs of

the functional proximal normal cones of Cn Painlevé-Kuratowski converges
(with respect to the norm of X ×X∗) to the graph gphNP

C of the functional
proximal normal cone of C.

Proof. By Corollary 2.3.5 we have

gphNP
C ⊂ ‖ ‖ Lim inf

n→∞
gphNP

Cn ⊂
‖ ‖ Lim sup

n→∞
gphNP

Cn ,

and by Theorem 2.3.13 and the normal regularity assumption on the set C
we have

‖ ‖ Lim sup
n→∞

gphNP
Cn ⊂

‖ ‖,∗ Lim sup
n→∞

gphNP
Cn = gphNF

C = gphNP
C .
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We deduce that

gphNP
C = ‖ ‖ Lim inf

n→∞
gphNP

Cn = ‖ ‖ Lim sup
n→∞

gphNP
Cn ,

and this translates the desired Painlevé-Kuratowski convergence. �

It is worth recalling that the assumptionNP
C (·) = NFC(·) used in the above

corollary is fulfilled whenever the set C is prox-regular at any of its points
(see [33] for Hilbert spaces and [9] for uniformly convex Banach spaces).

Theorem 2.3.17 Let (X, ‖ · ‖) be a uniformly convex Banach space whose
moduli of convexity and smoothness of the norm are of power type. Let
{Cn}n∈N be a sequence of r-prox-regular closed sets of X which converges
in the sense of Mosco to a nonempty closed set C of X. The following hold :
(a) The set C is r-prox-regular.
(b) If in addition the modulus of the norm ‖ · ‖ is of power type 2, then the
sequence {gphNP

Cn
}n∈N of graphs of the functional proximal normal cones of

Cn Painlevé-Kuratowski converges (with respect to the norm of X ×X∗) to
the graph gphNP

C of the functional proximal normal cone of C.

Proof. (a) Let xi ∈ C and x∗i ∈ NP (C;xi)∩rBX∗ with i = 1, 2. By Corollary
2.3.5 there exist sequences xi,n ∈ C and x∗i,n ∈ NP (Cn;xi,n) (for large n) with
xi,n → xi and x∗i,n → x∗i strongly as n→∞. From (2.3.3) we have for large n

〈J [J∗(x∗1,n)− (x2,n − x1,n)]− J [J∗(x∗2,n)− (x1,n − x2,n)], x2,n − x1,n〉 ≤ 0,

so using the continuity of J and J∗ and taking the limit as n→∞ give

〈J [J∗(x∗1)− (x2 − x1)]− J [J∗(x∗2)− (x1 − x2)], x2 − x1〉 ≤ 0.

This translates, according to (2.3.3) again, the prox-regularity of the set C.
(b) The set C being prox-regular, we have NP (C; ·) = NF (C; ·) (see [8, 9]).
Further, from (2.3.4) we see that the sequence {Cn}n∈N is subsmooth at
any point with compatible indexation. The assertion (b) then follows from
Corollary 2.3.16. �
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2.4 Normal cones of Attouch-Wets convergent

sequences of sets

Although the Mosco convergence is generally easy to be checked, the Mosco
convergence of a sequence of sets {Cn}n∈N to a closed set C requires that the
closed set C need to be sequentially weakly closed (as it has been seen in the
previous section). Such a sequential weak closedness is not required by the
Attouch-Wets convergence of sequences of sets. Recall (see [4, 6, 34]) that the
sequence of sets {Cn}n∈N of the normed space (X, ‖·‖) converges in the sense

of Attouch-Wets or (AW) converges to a set C of X, denoted by Cn
AW−−→ C,

if for all reals ρ > 0 big enough

Hausρ(Cn, C) −−−→
n→∞

0,

where Hausρ(Cn, C) denotes the Hausdorff ρ-semidistance between Cn and
C, that is,

Hausρ(Cn, C) := max{e(Cn ∩ ρBX , C), e(C ∩ ρBX , Cn)},

where e(A,A′) := supa∈A d(a,A′) is the excess of the set A over the set A′.

The Attouch-Wets convergence implies the Painlevé-Kuratowski conver-
gence (as easily seen), but the converse does not hold in infinite dimensional
normed space even for closed convex sets.

One of the properties of Attouch-Wets convergence that we will use is the
following.

Lemma 2.4.1 Let X be a Banach space. Let {Cn}n∈N be a sequence of closed
subsets of X Attouch-Wets converging to a nonempty closed subset C of X
and let x ∈ X. Then for every ε > 0 there is N ∈ N (depending only on x
and ε) such that

dCn(z)− dC(x) ≤ ε for all z ∈ B(x,
ε

3
) and n ≥ N.

Proof. Let ε > 0. Choose v ∈ C such that

dC(x) = inf
y∈C
‖x− y‖ ≥ ‖x− v‖ − ε

3
.
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Then by Attouch-Wets convergence (taking ρ big enough so that v ∈ C∩ρBX
and Hausρ(Cn, C)→ 0) there exists N ∈ N (depending only on x and ε) such
that, for each integer n ≥ N , we can select some wn ∈ Cn satisfying

‖v − wn‖ ≤
ε

3
.

Therefore, for all n ≥ N and z ∈ B(x, ε
3
), we have

dCn(z)− dC(x) ≤ dCn(x)− dC(x) + ‖x− z‖
≤ inf

y∈Cn
‖x− y‖ − ‖x− v‖+

ε

3
+
ε

3

≤ ‖x− wn‖ − ‖x− v‖+
2ε

3

≤ ‖v − wn‖+
2ε

3
≤ ε.

The proof is completed. �

The next lemma will be crucial in the analysis, as n → ∞, of PCn(xn)
under the Attouch-Wets convergence of the sequence of sets {Cn}n∈N. It will
be convenient below to write for x 6= y in the vector space X

]x, y[:= {ty + (1− t)x : t ∈]0, 1[}.

Lemma 2.4.2 Let (X, ‖ · ‖) be a locally uniformly convex Banach space and
C be a closed set of X. Suppose that
(i) x /∈ C and y ∈ PC(x) ;
(ii) x′ ∈]y, x[ and yn ∈ C with ‖x′ − yn‖ −−−→

n→∞
dC(x′).

Then
yn −−−→

n→∞
y.

Proof. As y ∈ PC(x) and x′ ∈]x, y[, we have on one hand dC(x′) = ‖x′ − y‖
and on the other hand

0 < ‖x− x′‖ < ‖x− y‖ ≤ ‖x− yn‖ for all n ∈ N.

So we can choose zn ∈]yn, x[ in such a way that

‖x− zn‖ = ‖x− x′‖. (2.4.1)
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Our aim is to show that zn → x′. Let us proceed by contradiction and suppose
there exist ε > 0 such that

‖zn − x′‖ > ε, (2.4.2)

for some subsequence that we do not relabel. Put ε′ := ε/‖x − x′‖ > 0 and
put also wn := 1

2
(x′ + zn) for all n ∈ N. By the local uniform convexity of

the norm ‖ ‖ at the point ū := (x − x′)/‖x − x′‖ there exists δ′ > 0 such
that ‖(u+ ū)/2‖ ≤ 1− δ′ for all u ∈ X with ‖u‖ = 1 and ‖u− ū‖ ≥ ε′. For
each n ∈ N, observe that un := (x− zn)/‖x− x′‖ is a unit vector because of
(2.4.1), and observe also that

‖un − ū‖ =
1

‖x− x′‖
‖x′ − zn‖ > ε′,

where the last inequality is due to (2.4.2). Substituting un for u in the above
inequality of local uniform convexity gives ‖x−wn‖ ≤ (1−δ′)‖x−x′‖, hence
for δ := δ′‖x− x′‖ > 0 we have

‖x− wn‖ ≤ ‖x− x′‖ − δ. (2.4.3)

From (2.4.1) again and from the inclusion zn ∈]yn, x[ we have

‖x− x′‖+ ‖zn − yn‖ = ‖x− zn‖+ ‖zn − yn‖ = ‖x− yn‖
≤ ‖x− x′‖+ ‖x′ − yn‖

so ‖zn − yn‖ ≤ ‖x′ − yn‖. We deduce

‖wn − yn‖ = ‖1

2

(
(zn − yn) + (x′ − yn)

)
‖ ≤ 1

2
(‖zn − yn‖+ ‖x′ − yn‖)

≤ 1

2
(‖x′ − yn‖+ ‖x′ − yn‖) = ‖x′ − yn‖,

therefore
‖wn − yn‖ ≤ ‖x′ − yn‖. (2.4.4)

It follows from (2.4.3) and (2.4.4) that

‖x− y‖ ≤ ‖x− yn‖ ≤ ‖x− wn‖+ ‖wn − yn‖
≤ ‖x− x′‖ − δ + ‖x′ − yn‖,
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thus according to the assumption (ii)

‖x− y‖ ≤ lim
n→∞

(‖x− x′‖ − δ + ‖x′ − yn‖) = ‖x− x′‖ − δ + dC(x′)

≤ ‖x− x′‖ − δ + ‖x′ − y‖ = ‖x− y‖ − δ,

where the last equality is due to the inclusion x′ ∈]x, y[. The contradiction
‖x− y‖ ≤ ‖x− y‖ − δ justifies the convergence zn → x′ as n→∞.

To complete the proof we observe on the one hand that

yn = x+
zn − x
‖zn − x‖

‖yn − x‖ (2.4.5)

according to the inclusion zn ∈]yn, x[. On the other hand, from the assump-
tion (i) and the inclusion yn ∈ C we have

‖y − x‖ = dC(x) ≤ ‖yn − x‖ ≤ ‖yn − x′‖+ ‖x′ − x‖

and (since dC(x′) = ‖x′ − y‖ by the inclusions y ∈ PC(x) and x′ ∈]x, y[) we
also have from the assumption (ii)

‖yn − x′‖+ ‖x′ − x‖ → ‖y − x′‖+ ‖x′ − x‖ = ‖y − x‖ as n→∞,

where the equality is due to the inclusion x′ ∈]x, y[. Consequently, we obtain
‖yn − x‖ → ‖y − x‖ and hence (2.4.5) yields

yn −−−→
n→∞

x+
x′ − x
‖x′ − x‖

‖y − x‖ = x+
y − x
‖y − x‖

‖y − x‖ = x+ y − x = y,

where the first equality is due to the inclusion x′ ∈]x, y[. The proof is com-
pleted. �

Remark. The proof of the lemma provided above is direct and self-contained.
The lemma can also be proved through the following result of Fitzpatrick
(see [21]) : A Banach space (X, ‖ ‖) is locally uniformly convex at a point
z ∈ X with ‖z‖ = 1 if and only if for each closed set C and x /∈ C, if
lim sup
t→0+

(
dC(x+ tz)−dC(x)

)
/t = 1 then every minimizing sequence for x and

dC(x) converges to x− dC(x)z and PC is continuous at x.
Proof. Let x, y and x′ as in the statement of the lemma, that is, x /∈ C,
y ∈ PC(x), x′ ∈]y, x[ .
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Putting z =
x′ − y
dC(x′)

we obviously have ‖z‖ = 1. If 0 < t < (dC(x)−dC(x′))

hence x′ + t
x′ − y
dC(x′)

∈]x′, x[. Indeed if t = dC(x)− dC(x′) then

x′+t
x′ − y
dC(x′)

= x′+(dC(x)−dC(x′))
x′ − y
dC(x′)

= x′+dC(x)
x′ − y
dC(x′)

−dC(x′)
x′ − y
dC(x′)

=

x′ + dC(x)
x′ − y
dC(x′)

− x′ + y = y + dC(x)
x′ − y
dC(x′)

= y + dC(x)
x− y
dC(x)

= x.

Therefore for any real t with 0 < t < (dC(x)−dC(x′)), it results that PC(x′+
t x
′−y

dC(x′)
) = {y} and

dC
(
x′ + t

x′ − y
dC(x′)

)
= ‖x′ + t

x′ − y
dC(x′)

− y‖ =
(
1 +

t

dC(x′)

)
‖x′ − y‖

=
(
1 +

t

dC(x′)

)
dC(x′) = dC(x′) + t.

It then follows that

lim sup
t→0+

(
dC(x′ + t

x′ − y
dC(x′)

)− dC(x′)
)
/t = 1,

so applying Fitzpatrick’s result we obtain that every minimizing sequence for
x′ and dC(x′) converges to x′ − dC(x′) x′−y

dC(x′)
= y as desired. �

We can now prove the following theorem concerning the behaviour of the
metric projection PCn when the sets {Cn}n Attouch-Wets converge as n →
∞.

Theorem 2.4.3 Assume that (X, ‖ ·‖) is a locally uniformly convex Banach

space. Let C and {Cn}n∈N be closed subsets of X such that Cn
AW−−→ C and

let x /∈ C. Suppose that
(i) y ∈ PC(x), x′ ∈]y, x[ ;
(ii) xn → x′ and yn ∈ PCn(xn).

Then one has
yn −−−→

n→∞
y.
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Proof. We first show that the sequence {yn}n∈N is bounded. Indeed take
z ∈ C such that

‖x′ − z‖ ≤ 2dC(x′).

By Attouch-Wets convergence there is zn ∈ Cn such that {zn}n converges
strongly to z. This and the inclusions yn ∈ PCn(xn) and zn ∈ Cn entail

lim sup
n→∞

‖x′ − yn‖ ≤ lim sup
n→∞

(‖xn − yn‖+ ‖x′ − xn‖) = lim sup
n→∞

dCn(xn)

≤ lim sup
n→∞

‖xn − zn‖ = lim sup
n→∞

‖x′ − zn‖ = ‖x′ − z‖ ≤ 2dC(x′)

This justifies the boundedness of the sequence {yn}n∈N. So, considering the
real ρ := supn∈N ‖yn‖ (for which yn ∈ Cn ∩ ρBX for all n ∈ N), the Attouch-
Wets convergence furnishes vn ∈ C such that

‖yn − vn‖ −−−→
n→∞

0. (2.4.6)

Let ε > 0. By Lemma 2.4.1 there is N0 ∈ N (depending only on x′ and ε)
such that

dCn(z) ≤ dC(x′) + ε

for all z ∈ B(x′, ε
3
) and all n ≥ N0. Since (by assumption) xn → x′ there is

an integer N ≥ N0 such that for all n ≥ N we have xn ∈ B(x′, ε
3
), hence

dCn(xn) ≤ dC(x′) + ε.

From the inclusion yn ∈ PCn(xn) in the assumption (ii) and from the latter
inequality we deduce for every n ≥ N

‖x′ − vn‖ ≤ ‖x′ − xn‖+ ‖xn − yn‖+ ‖yn − vn‖
= ‖x′ − xn‖+ ‖yn − vn‖+ dCn(xn)

≤ ‖x′ − xn‖+ ‖yn − vn‖+ dC(x′) + ε,

which implies by (2.4.6) and by the convergence xn → x′ in the assumption
(ii)

lim sup
n→∞

‖x′ − vn‖ ≤ dC(x′) + ε.

Therefore
lim sup
n→∞

‖x′ − vn‖ ≤ dC(x′).
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Since vn ∈ C, it follows that

lim
n→∞

‖x′ − vn‖ = dC(x′).

From Lemma 2.4.2 we obtain that vn → y as n→∞, which combined with
(2.4.6) justifies the convergence yn −−−→

n→∞
y of the theorem. �

For a sequence of sets {Cn}n∈N Attouch-Wets converging to C, the next
theorem charaterizes proximal normal functionals of C through the metric
projection to Cn for a large class of Banach spaces.

Theorem 2.4.4 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{Cn}n∈N be a sequence of closed subsets of X Attouch-Wets converging to a
nonempty closed subset C of X. Then the following assertions are equivalent :
(a) one has x∗ ∈ NP

C (x) ;
(b) there exist r > 0, n0 ∈ N and {xn}n∈N strongly converging to x, {x∗n}n∈N
strongly converging to x∗ such that

PCn(xn + rJ∗(x∗n)) = {xn} for all n ≥ n0.

Proof. We follow several ideas from the proof of Theorem 2.3.4. Assume first
that for x∗ the assertion (b) is satisfied, that is, there are r > 0, n0 ∈ N and
{xn}n strongly converging to x, {x∗n}n∈N strongly converging to x∗ such that

PCn(xn + rJ∗(x∗n)) = {xn} for all n ≥ n0.

The continuity of J∗ (see the section of preliminaries) entails

lim
n→∞

(xn + rJ∗(x∗n)) = x+ rJ∗(x∗),

and by Lemma 2.3.3
x ∈ PC(x+ rJ∗(x∗)),

which ensures x∗ ∈ NP
C (x).

Now we assume that x∗ ∈ NP
C (x). If x∗ = 0, it suffices to take any r > 0,

any sequence {xn}n∈N strongly converging to x with xn ∈ Cn for large n
(thanks to the convergence assumption of {Cn}n) and x∗n = 0, and to note
that for such choices PCn(xn + rJ∗(x∗n)) = {xn}. So suppose that x∗ 6= 0. By
definition there is σ > 0 such that

PC(x+ σJ∗(x∗)) = {x}.
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Note that x+σJ∗(x∗) 6∈ C since x+σJ∗(x∗) 6= x. Take a positive real σ′ < σ.
The non-emptiness of C and the Attouch-Wets convergence of {Cn}n∈N to
C ensures that Cn 6= ∅ for large n, say n ≥ N . By Theorem 2.2.3, for each
integer n ≥ N , there are zn ∈ B(x + σ′J∗(x∗), 1/n) and xn ∈ Cn such
that PCn(zn) = {xn}. Obviously zn → x + σ′J∗(x∗) and x + σ′J∗(x∗) ∈
]x, x + σJ∗(x∗)[. Theorem 2.4.3 then guarantess that the sequence {xn}n∈N
converges strongly to x. Putting x∗n = J( 1

σ′
(zn − xn)) ensures x∗n ∈ NP

Cn
(xn)

(since zn − xn ∈ PNCn(xn)), and by the continuity of J we also have

x∗n = J(
1

σ′
(zn − xn)) −−−→

n→∞
J(

1

σ′
(x+ σ′J∗(x∗)− x)) = J(J∗(x∗)) = x∗.

Further, since zn − xn = σ′J∗(x∗n) we see that

{xn} = PCn(zn) = PCn(xn + σ′J∗(x∗n)),

so the sequences {xn}n∈N and {x∗n}n∈N fulfill the properties of the assertion
(b) with r = σ′. �

The next two corollaries follow directly from Theorem 3.4 (as it has been
above the case for Corollaries 2.3.5 and 2.3.6).

Corollary 2.4.5 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{Cn}n∈N be a sequence of closed subsets of X which converges in the sense
of Attouch-Wets to a nonempty closed subset C of X. Then,

(a) gphNP
C =

⋃
r>0

‖ ‖ Lim inf
n→∞

gph Λr
Cn ; (b) gphNP

C ⊂ ‖ ‖ Lim inf
n→∞

gphNP
Cn ;

(c) gphNF
C ⊂ ‖ ‖ Lim sup

n→∞
gphNP

Cn.

Corollary 2.4.6 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{Cn}n∈N be a sequence of closed subsets of X which converges in the sense
of Attouch-Wets to a nonempty closed subset C of X and let x ∈ C. Then,

(a) NP
C (x) =

⋃
r>0

‖ ‖ Lim inf
Cn3x′→x,
n→∞

Λr
Cn(x′) ; (b) NP

C (x) ⊂ ‖ ‖ Lim inf
Cn3x′→x,
n→∞

NP
Cn(x′) ;

(c) NF
C (x) ⊂ ‖ ‖ Lim sup

Cn3x′→x,
n→∞

NP
Cn(x′).
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The proof of the next theorem is obtained with the same arguments as
those used in the proof of Theorem 2.3.7 in refering to Corollary 2.4.5 in
place of Corollary 2.3.5.

Theorem 2.4.7 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{Cn}n∈N be a sequence of closed subsets of X Attouch-Wets convergent to a
nonempty closed subset C of X. Then,

gphNL
C ⊂ ‖ ‖,∗ lim sup

n→∞
gphNP

Cn .

As for Theorem 2.3.8, in the general reflexive Banach setting we have :

Theorem 2.4.8 Let X be a reflexive Banach space and {Cn}n∈N be a se-
quence of closed subsets of X Attouch-Wets convergent to a nonempty closed
subset C of X. Then
(a) NF

C (x) ⊂ ‖ ‖ Lim sup
Cn3x′→x,
n→∞

NF
Cn(x′) ; (b) gphNL

C ⊂ ‖ ‖,∗ Lim sup
n→∞

gphNF
Cn.

When, in addition to the assumptions in Theorem 2.4.7, the sequence
{Cn}n is subsmooth with a compatible indexation, the inclusion in Theorem
2.4.7 is an equality.

Theorem 2.4.9 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{Cn}n∈N be a sequence of closed subsets of X converging in the sense of
Attouch-Wets to a nonempty closed subset C of X. Assume that the sequence
{Cn}n∈N is subsmooth at any point of C with a compatible indexation. Then

gphNL
C = gphNF

C = ‖ ‖,∗ Lim sup
n→∞

gphNP
Cn .

Proof. The theorem is a direct consequence of Theorem 2.4.7 and Proposi-
tion 2.3.14. �

A similar equality holds true in general reflexive Banach spaces for the
limit superior of the graphs of Fréchet normal cones.
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Theorem 2.4.10 Let X be a reflexive Banach space and let {Cn}n∈N be a se-
quence of closed subsets of X Attouch-Wets convergent to a nonempty closed
subset C of X. Assume that the sequence {Cn}n∈N is subsmooth with respect
to the Fréchet normal cone at any point of C with a compatible indexation.
Then

gphNL
C = gphNF

C = ‖ ‖,∗ Lim sup
n→∞

gphNF
Cn .

The Painlevé-Kuratowski convergence of the graphs of NP
Cn

follows from
Corollary 2.4.5 and Theorem 2.4.9 exactly as we deduced Corollary 2.3.16
from Corollary 2.3.5 and Theorem 2.3.13. We state that in the following
corollary :

Corollary 2.4.11 Assume that (X, ‖ · ‖) is a reflexive locally uniformly
convex Banach space and that the norm ‖·‖ is Fréchet differentiable off zero.
Let {Cn}n∈N be a sequence of closed subsets of X converging in the sense of
Attouch-Wets to a nonempty closed subset C of X satisfying NP

C (x) = NF
C (x)

for all x ∈ C. Assume that the sequence {Cn}n∈N is subsmooth at any point of
C with a compatible indexation. Then the sequence {gphNP

Cn
}n∈N of graphs

of the proximal normal cones of Cn Painlevé-Kuratowski converges (with res-
pect to the norm of X × X∗) to the graph gphNP

C of the proximal normal
cone of C.

2.5 Subdifferentials of Mosco and Attouch-

Wets convergent sequences of functions

Let X be a normed space. Consider the topology τ on X × R, product
of the norm topology of X and the usual topology of R. Let f, fn : X →
R ∪ {+∞} be extended real-valued lower semicontinuous functions with
n ∈ N. One says that the sequence of functions {fn}n∈N (sequentially) epi-
converges or Γ-converges to the function f if the sequence of sets {epi fn}n∈N
τ -sequentially Painlevé-Kuratowski converges to epi f in X × R. Similarly,
one says that {fn}n∈N converges in the sense of Mosco to f if the sequence
of sets {epi fn}n∈N converges in the sense of Mosco to epi f in X × R. In
fact, the Painlevé-Kuratowski limit inferior (resp. superior) of the epigraphs
{epi fn}n is the epigraph of an extended real-valued function called the Γ-
limit or epi -limit superior (resp. inferior) of {fn}n ; this function is denoted
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by
Γ− lim sup

n→∞
fn (resp. Γ− lim inf

n→∞
fn).

There is an analytic description of sequential Γ-convergence and Mosco
convergence. Indeed {fn}n∈N (sequentially) Γ-converges (resp. Mosco converges)
to f if and only if, for every sequence {xn}n∈N in X strongly (resp. weakly)
converging to x, we have (see [1, 17])

f(x) ≤ lim inf
n→∞

fn(xn),

and, for every x ∈ X, there is a sequence {xn}n∈N strongly converging to x
such that

f(x) ≥ lim sup
n→∞

fn(xn).

Theorem 2.5.1 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{fn}n∈N be a sequence of proper lower semicontinuous functions from X into
R ∪ {+∞} which converges in the sense of Mosco to a function f . Then,

(a) gph ∂Pf ⊂ ‖ ‖ Lim inf
n→∞

gph ∂Pfn;

(b) gph ∂Ff ⊂ ‖ ‖ Lim sup
n→∞

gph ∂Pfn.

Proof. Endow X ×R with the norm ‖ · ‖ given by ‖(x, s)‖ = (‖x‖2 + |s|2)1/2

and note that this norm is locally uniformly convex and Fréchet differentiable
off zero, and that X × R is reflexive. Fix any (x, x∗) ∈ gph ∂Pf hence(

(x, f(x)), (x∗,−1)
)
∈ gphNP

epi f .

Since the sequence of functions {fn}n∈N converges in the sense of Mosco to
f , the sequence of sets {epi fn}n∈N converges in the sense of Mosco to epi f ,
then by the assertion (b) of Corollary 2.3.5(

(x, f(x)), (x∗,−1)
)
∈ gphNP

epi f ⊂ ‖ ‖ Lim inf
n→∞

gphNP
epi fn .

Thus there exists
(
(xn, sn), (x∗n,−rn)

)
∈ gphNP

epi fn
such that

(xn, sn)→ (x, f(x)) and (x∗n,−rn)→ (x∗,−1).
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Choose some integer N ∈ N such that, for all n ≥ N , we have rn > 0 hence
sn = fn(xn) according to Lemma 2.2.5. Putting u∗n := r−1

n x∗n for all n ≥ N
and u∗n := 0 for all n < N we see that

(xn, u
∗
n)→ (x, x∗) strongly in X ×X∗ (2.5.1)

and (
(xn, f(xn)), (u∗n,−1)

)
∈ gphNP

epi fn for all n ≥ N.

The latter inclusion is equivalent to

(xn, u
∗
n) ∈ gph ∂Pfn for all n ≥ N,

which combined with (2.5.1) completes the proof of (a). The proof of (b) is
similar with the use of the assertion (c) of Corollary 2.3.5. �

In the theorem below we use the notation ‖ ‖,∗ Lim sup
n→∞,fn

gph ∂Pfn to de-

note the set of all pairs (x, x∗) in X × X∗ for which there exists an increa-
sing sequence {k(n)}n∈N in N and a sequence {(xn, x∗n)}n∈N with (xn, x

∗
n) ∈

gph ∂Pfk(n) and such that

xn
‖ ‖−→ x, x∗n

w∗−→ x∗, fk(n)(xn)→ f(x).

Theorem 2.5.2 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{fn}n∈N be a sequence of proper lower semicontinuous functions from X into
R ∪ {+∞} which converges in the sense of Mosco to a function f . Then,

gph ∂Lf ⊂ ‖ ‖,∗ Lim sup
n→∞, fn

gph ∂Pfn.

Proof. The arguments are quite similar to those of the proof of the previous
theorem. As above, endow X×R with the locally uniformly convex norm ‖·‖
given by ‖(x, s)‖ = (‖x‖2 + |s|2)1/2 and note that this norm is also Fréchet
differentiable off zero. Assume that (x, x∗) ∈ gph ∂Lf , or equivalently(

(x, f(x)), (x∗,−1)
)
∈ gphNL

epi f .

By the definition of Mosco convergence of the sequence {fn}n∈N, the sequence
of sets {epi fn}n∈N converges in the sense of Mosco to epi f in X × R. From
Theorem 2.3.7 we deduce(

(x, f(x)), (x∗,−1)
)
∈ gphNL

epi f ⊂ ‖ ‖,∗ Lim sup
n→∞

gphNP
epi fn .
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This furnishes an increasing sequence {k(n)}n∈N in N, a sequence {(xn, sn)}n∈N
in X × R with (xn, sn) ∈ epi fk(n), and a sequence {(x∗n, rn)}n∈N in X∗ × R
such that

(xn, sn)→ (x, f(x)) and (x∗n,−rn)
w∗−→ (x∗,−1),

and
(
(xn, sn), (x∗n, rn)

)
∈ gphNP

epi fk(n)
. There exists some N ∈ N such that,

for all n ≥ N , we have rn > 0 thus sn = fk(n)(xn) according to Lemma 2.2.5.
Putting u∗n := r−1

n x∗n for all n ≥ N and u∗n := 0 for all n < N , we obtain for
every n ≥ N (

(xn, fn(xn)), (u∗n,−1)
)
∈ gphNP

epi fk(n)

or equivalently (xn, u
∗
n) ∈ gph ∂Pfk(n). Observing that the sequence {u∗n}n∈N

converges weakly star to x∗, we see that

(x, x∗) ∈ ‖ ‖,∗ Lim sup
n→∞, fn

gph ∂Pfn,

as required. �

From the previous theorem and Theorem 2.5.1(b) we deduce, for general
reflexive Banach spaces, as in Theorem 2.3.8 the following :

Theorem 2.5.3 Let X be a reflexive Banach space and let {fn}n∈N be a
sequence of proper lower semicontinuous functions from X into R ∪ {+∞}
which converges in the sense of Mosco to a function f . Then,

gph ∂Lf ⊂ ‖ ‖,∗ Lim sup
n→∞, fn

gph ∂Ffn.

The next theorem provides an inclusion in the opposite sense of that of
the previous theorem for the limit superior of subdifferentials of a sequence
of functions. The desired inclusion requires the introduction of a form of
equi-subsmoothness property for sequences of functions.

Definition 2.5.4 Assume that X is a reflexive Banach space endowed with
a stricly convex norm ‖ · ‖ satisfying the (sequential) Kadec-Klee property.
Let fn : X → R∪{+∞} be proper lower semicontinuous functions. Then we
say that the sequence {fn}n∈N is subsmooth at x̄ ∈ dom (Γ−Lim sup

n→∞
fn) with
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compatible indexation by n ∈ N, if for any ε > 0 there exist some real δ > 0
and some N ∈ N satisfying for each integer n ≥ N

〈x∗, x′ − x〉 ≤ fn(x′)− fn(x) + ε(1 + ‖x∗‖)‖x′ − x‖

for all x′ ∈ B(x̄, δ), x ∈ B(x̄, δ) ∩Dom ∂Pfn and x∗ ∈ ∂Pfn(x).
When, in place of ∂Pfn, another subdifferential is involved over a general

Banach space, we will say that the sequence is subsmooth at x̄ with respect to
this subdifferential with compatible indexation by n ∈ N.

Among examples of such sequences we have of course any sequence of
convex functions. Another one is any sequence of extended real-valued func-
tions which are equi-subsmooth in the following sense.

Definition 2.5.5 Let X be a Banach space. A family {ft}t∈T of functions
from X into R ∪ {+∞} is called equi-subsmooth at x̄ ∈ X whenever for any
real ε > 0 there exists some real δ > 0 such that for each t ∈ T

〈x∗, x′ − x〉 ≤ ft(x
′)− ft(x) + ε(1 + ‖x∗‖)‖x′ − x‖

for all x′ ∈ B(x̄, δ), x ∈ B(x̄, δ) ∩Dom ∂Clft and x∗ ∈ ∂Clft(x).

An important example of equi-subsmooth family of functions is that of
equi-primal lower regular functions ; such functions have been introduced by
R.A. Poliquin [30] under the name of primal lower nice functions. Recall that
a family {ft}t∈T of functions from the Banach space X into R ∪ {+∞} is
equi-primal lower regular at x̄ ∈ X (see [35]) provided there exists some reals
δ > 0 and c ≥ 0 such that for each t ∈ T

〈x∗, x′ − x〉 ≤ ft(x
′)− ft(x) + c(1 + ‖x∗‖)‖x′ − x‖2

for all x′ ∈ B(x̄, δ), x ∈ B(x̄, δ) ∩Dom ∂Clft and x∗ ∈ ∂Clft(x).

Lemma 2.5.6 Assume that X is a reflexive Banach space endowed with a
locally uniformly convex norm ‖ · ‖ which is Fréchet differentiable off zero.
Let {fn}n∈N be a sequence of proper lower semicontinuous functions from
X into R ∪ {+∞} which Γ-converges to a proper function f from X into
R∪ {+∞}. If {fn}n∈N is subsmooth at x̄ ∈ domf with compatible indexation
by n ∈ N, then the sequence of sets {epi fn}n∈N is subsmooth at (x̄, f(x̄)) with
compatible indexation by n ∈ N.
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Proof. We endow the reflexive Banach space X×R with the norm ‖·‖ given
by ‖(x, s)‖ = (‖x‖2 + |s|2)1/2. Assume that the sequence of functions {fn}n∈N
is subsmooth at x ∈ dom f with compatible indexation by n ∈ N. Fix any
real ε > 0 and take δ > 0 and N ∈ N given by Definition 2.5.4 above, so for
each integer n ≥ N

〈x∗, x′ − x〉 ≤ fn(x′)− fn(x) + ε(1 + ‖x∗‖)‖x′ − x‖ (2.5.2)

for all x′ ∈ B(x̄, δ), x ∈ B(x̄, δ)∩Dom ∂Pfn and x∗ ∈ ∂Pfn(x). Fix any integer
n ≥ N and consider any (x′, s′) ∈ B

(
(x̄, f(x̄)), δ) with (x′, s′) ∈ epi fn,

that is, s′ ≥ f(x′), any (x, s) ∈ B
(
(x̄, f(x̄)), δ

)
with (x, s) ∈ epi fn, any

(x∗,−r) ∈ NP
epi fn

(
(x, s)

)
with (x∗,−r) ∈ BX∗×R. We know from Lemma

2.2.5 that r ≥ 0. We will distinguish two cases : r > 0 and r = 0.
Case I : r > 0. In this case we have s = fn(x) (see Lemma 2.2.5) hence

(x∗,−r) ∈ NP
epi fn

(
(x, fn(x))

)
, that is, (r−1x∗,−1) ∈ NP

epi fn

(
(x, fn(x))

)
.

This means r−1x∗ ∈ ∂Pfn(x), thus we have by (2.5.2)

〈r−1x∗, x′ − x〉+ (−1)(fn(x′)− fn(x)) ≤ ε(1 + r−1‖x∗‖)‖x′ − x‖,

and according to the inequality s′ ≥ fn(x′)

〈r−1x∗, x′ − x〉+ (−1)(s′ − fn(x)) ≤ ε(1 + r−1‖x∗‖)‖x′ − x‖

or equivalently

〈(r−1x∗,−1), (x′, s′)− (x, fn(x))〉 ≤ ε(1 + r−1‖x∗‖)‖x′ − x‖.

Multiplying by r > 0 and taking the inclusion (x∗,−r) ∈ BX∗×R into account,
we obtain

〈(x∗,−r), (x′, s′)− (x, s)〉 ≤ ε(r + ‖x∗‖)‖x′ − x‖ ≤ 2ε‖x′ − x‖.

Case II : r = 0. We know in this case by Lemma 2.2.5 that we also have
(x∗, 0) ∈ NP

epi fn

(
(x, fn(x))

)
. Then by Proposition 2.2.6 there exist a sequence

{(xk,n, fn(xk,n))}k in epi fn converging to (x, fn(x)) as k →∞ and a sequence
{(x∗k,n,−rk,n)}k in X∗×R converging strongly to (x∗, 0) as k →∞ such that

(x∗k,n,−rk,n) ∈ NP
epi fn

(
(xk,n, fn(xk,n))

)
and rk,n > 0 for all k ∈ N. From the

latter inclusion into the normal cone we see that r−1
k,nx

∗
k,n ∈ ∂Pfn(xk,n). Since
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x ∈ B(x̄, δ), there exists some integer Kn such that xk,n ∈ B(x̄, δ) for all
integers k ≥ Kn. Then for any k ≥ Kn, the inequality (2.5.2) yields

〈r−1
k,nx

∗
k,n, x

′ − xk,n〉 ≤ fn(x′)− fn(xk,n) + ε(1 + r−1
k,n‖x

∗
k,n‖)‖x′ − xk,n‖,

so as above we obtain

〈(x∗k,n,−rk,n), (x′, s′)− (xk,n, fn(xk,n))〉 ≤ ε(rk,n + ‖x∗k,n‖)‖x′ − xk,n‖.

Taking the limit as k →∞ gives

〈(x∗, 0), (x′, s′)− (x, fn(x))〉 ≤ ε‖x∗‖‖x′ − x‖ ≤ ε‖x′ − x‖

thus
〈(x∗, 0), (x′, s′)− (x, s)〉 ≤ ε‖x′ − x‖

Consequenty both cases furnish

〈(x∗,−r), (x′, s′)− (x, s)〉 ≤ 2ε(‖x′ − x‖+ |s′ − s|)

for all (x′, s′) ∈ epi fn with (x′, s′) ∈ B
(
(x̄, f(x̄)), δ), (x, s) ∈ epi fn with

(x, s) ∈ B
(
(x̄, f(x̄)), δ) and (x∗,−r) ∈ NP

epi fn

(
(x, s)

)
with (x∗,−r) ∈ BX∗×R.

We then conclude that the sequence of sets {epi fn}n is subsmooth at (x̄, f(x̄))
with compatible indexation. �

Remark 2.5.7 It is not difficult to see that the lemma still holds if the se-
quence is assumed to be subsmooth with respect to any other of subdifferentials
∂F , ∂L, ∂Cl. �

Theorem 2.5.8 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space. Let {fn}n∈N be a sequence of proper lower semicontinuous
functions from X into R ∪ {+∞} which Γ-converges to a proper function f .
Assume that the sequence {fn}n∈N is subsmooth at every point of dom f with
a compatible indexation. Then,

‖ ‖,∗ Lim sup
n→∞, fn

gph ∂Pfn ⊂ gph ∂Ff.

Proof. Consider any (x, x∗) ∈ ‖ ‖,∗ Lim sup
n→∞, fn

gph ∂Pfn. There exist a sequence

({xn, x∗n)} in X × X∗ and a strictly increasing sequence {k(n)} in N such
that

(xn, x
∗
n) ∈ gph ∂Pfk(n) and (xn, fk(n)(xn))→ (x, f(x))
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and such that {x∗n} converges to x∗ with respect to the weak star topology
in X∗. Therefore (

(xn, fk(n)(xn)), (x∗n,−1)
)
∈ gphNP

epi fk(n)
,

so by Lemma 2.5.6 and Proposition 2.3.14(
(x, f(x)), (x∗,−1)

)
∈ ‖ ‖,∗ Lim sup

n→∞
gphNP

epi fn ⊂ gphNF
epi f .

We then obtain
(x, x∗) ∈ gph ∂Ff.

and the proof is completed. �

Theorems 2.5.2 and 2.5.8 directly yield :

Theorem 2.5.9 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ ‖ is Fréchet differentiable off zero. Let
{fn}n∈N be a sequence of proper lower semicontinuous functions from X into
R ∪ {+∞} which converges in the sense of Mosco to a proper function f .
Assume that the sequence {fn} is subsmooth at every point of dom f with a
compatible indexation. Then,

gph ∂Lf = gph ∂Ff = ‖ ‖,∗ Lim sup
n→∞, fn

gph ∂Pfn.

Concerning the limit superior of the graphs of Fréchet subdifferentials (ins-
tead of proximal subdifferentials), the following results hold in a general re-
flexive Banach space :

Theorem 2.5.10 Let X is a reflexive Banach space and let {fn}n∈N be a
sequence of proper lower semicontinuous functions from X into R ∪ {+∞}
which Γ-converges to a proper function f . Assume that the sequence {fn}n∈N
is subsmooth at every point of dom f with respect to the Fréchet subdifferential
with a compatible indexation. Then,

‖ ‖,∗ Lim sup
n→∞, fn

gph ∂Ffn ⊂ gph ∂Ff.

If in addition to the above subsmoothness property, the sequence {fn}n
satisfies the stronger assumption of Mosco convergence to f instead of the
Γ-convergence, then one has the equalities

gph ∂Lf = gph ∂Ff = ‖ ‖,∗ Lim sup
n→∞, fn

gph ∂Ffn.
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Proof. Concerning the assertion (a) it is enough to apply the arguments of
Theorem 2.5.8 using Remark 2.5.7 in place of Lemma 2.5.6. The assertion
(b) follows from (a) above and Theorem 2.5.3. �

Now we turn on the case of Attouch-Wets convergence. Recall that the
sequence of extended real-valued functions {fn}n∈N on X is said to converge
in the sense of Attouch-Wets to an extended real-valued function f provided
that the sequence of sets {epi fn}n∈N in X × R converges in the sense of
Attouch-Wets to the set epi f . All the theorems that we have established
in the previous part of this section for the Mosco convergence can be also
obtained for the Attouch-Wets convergence and the proofs are similar and
omitted. Theorems 2.5.11 and 2.5.13 are concerned with locally unformly
convex Banach spaces and the limit superior of proximal subdifferentials,
while Theorems 2.5.12 and 2.5.14 are stated for general reflexive Banach
spaces but with the limit superior of Fréchet subdifferentials.

Theorem 2.5.11 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{fn}n∈N be a sequence of proper lower semicontinuous functions from X into
R∪{+∞} which converges in the sense of Attouch-Wets to a proper function
f . Then,

(a) gph ∂Pf ⊂ ‖ ‖ Lim inf
n→∞

gph ∂Pfn;

(b) gph ∂Ff ⊂ ‖ ‖ Lim sup
n→∞

gph ∂Pfn.

Theorem 2.5.12 Let X be a reflexive Banach space and let {fn}n∈N be a
sequence of proper lower semicontinuous functions from X into R ∪ {+∞}
which converges in the sense of Attouch-Wets to a proper function f . Then

(a) gph ∂Ff ⊂ ‖ ‖ Lim sup
n→∞

gph ∂Ffn;

(b) gph ∂Lf ⊂ ‖ ‖,∗ Lim sup
n→∞,fn

gph ∂Ffn.
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Theorem 2.5.13 Assume that (X, ‖·‖) is a reflexive locally uniformly convex
Banach space and that the norm ‖ · ‖ is Fréchet differentiable off zero. Let
{fn}n∈N be a sequence of proper lower semicontinuous functions from X into
R∪{+∞} which converges in the sense of Attouch-Wets to a proper function
f . Assume that the sequence {fn}n∈N is subsmooth at every point of dom f
with a compatible indexation. Then one has

gph ∂Lf = gph ∂Ff = ‖ ‖,∗ Lim sup
n→∞, fn

gph ∂Pfn.

Theorem 2.5.14 Let X is a reflexive Banach space and let {fn}n∈N be a
sequence of proper lower semicontinuous functions from X into R ∪ {+∞}
which converges in the sense of Attouch-Wets to a proper function f . Assume
that the sequence {fn}n∈N is subsmooth at every point of dom f with respect
to the Fréchet subdifferential with a compatible indexation. Then one has

gph ∂Lf = gph ∂Ff = ‖ ‖,∗ Lim sup
n→∞, fn

gph ∂Ffn.
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Chapitre 3

The validity of the “lim inf”
formula and a characterization
of Asplund spaces

A. Jourani and T. Zakaryan

Abstract. We show that for a given bornology β on a Banach space X the
following “lim inf” formula

lim inf
x′
C→x

Tβ(C;x′) ⊂ Tc(C;x)

holds true for every closed set C ⊂ X and any x ∈ C, provided that the
space X ×X is ∂β-trusted. Here Tβ(C;x) and Tc(C;x) denote the β-tangent
cone and the Clarke tangent cone to C at x. The trustworthiness includes
spaces with an equivalent β-differentiable norm or more generally with a
Lipschitz β-differentiable bump function. As a consequence, we show that
for the Fréchet bornology, this “lim inf” formula characterizes in fact the
Asplund property of X. We use our results to obtain new characterizations
of Tβ-pseudoconvexity of X.

3.1 Introduction

Let X be a real Banach space and X∗ be its topological dual with pairing
〈·, ·〉. A bornology β on X is a family of bounded and centrally symmetric
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subsets of X whose union is X, which is closed under multiplication by po-
sitive scalars and is directed upwards (i.e., the union of any two members of
β is contained in some member of β). The most important bornologies are
Gâteaux bornology consisting of all finite symetric subset of X, Hadamard
bornology consisting of all norm compact symetric sets, weak Hadamard bor-
nology consisting of all weakly compact symetric sets and Fréchet bornology
consisting of all bounded symetric sets.
Each bornology β generates a β-subdifferential which in turn gives rise to
the β-normal cone, and hence by making polars to the β-tangent cone.
In this paper, we are concerned with sufficient conditions on a Banach space
X satisfying the following “lim inf” formula

lim inf
x′
C→x

Tβ(C;x′) ⊂ Tc(C;x) (3.1.1)

for each closed set C ⊂ X, and for each x ∈ C. Here Tβ(C;x) and Tc(C;x)
denote the β-tangent cone and the Clarke tangent cones to C at x and for
a multivalued mapping F : C ⇒ X h ∈ lim inf

u
C−→x

F (u) iff for each sequence

(xn) ⊂ C converging in norm to x there exists a sequence hn → h, such that
for all sufficiently large n, hn ∈ F (xn).
This kind of formulas has been studied by many authors in special situations.
They started with the work by Cornet [6] who found a topological connection
between the Clarke tangent cone and the contingent cone K(C;x) to C at
x. He has shown that if C ⊂ Rm, then

Tc(C;x) = lim inf
x′

C−→x
K(C;x′).

Using his new characterization of Clarke tangent cone, Treiman [20, 21](see
also [8] for an independent proof) showed that the inclusion

lim inf
x′

C−→x
K(C;x′) ⊂ Tc(C;x)

is true in any Banach space and equality holds whenever C is epi-Lipschitzian
at x in the sense of Rockafellar [19]. In [4, 5], Borwein and Strojwas introduced
the concept of compactly epi-Lipschitz sets to show that the previous equality
holds for C in this class unifying the finite and infinite dimensional situations.
In the case when the space in question is reflexive, these authors obtained
the following equality

Tc(C, x) = lim inf
x′

C−→x
WK(C, x′)

66



whereWK(C, x) denotes the weak-contingent cone to C at x. They generalize
the results of Penot [16] for finite dimensional and reflexive Banach spaces and
of Cornet [6] for finite dimensional spaces. Aubin-Frankowska [2] obtained the
following formula

Tc(C;x) = lim inf
x′
C→x

WK(C;x′) = lim inf
x′

C−→x
co(WK(C;x′))

in the case when the space X is uniformly smooth and the norm of X∗ is
Fréchet differentiable off the origin.

The validity of the “lim inf” formula (3.1.1) has been accomplished in Bor-
wein and Ioffe [3] in the case when the space X admits a β-differentiable
equivalent norm.
Our aim in this paper is to show that if the space X × X is ∂β-trusted or
equivalently basic fuzzy principle is satisfied on X ×X (this includes spaces
with equivalent β-differentiable norm or more generaly spaces with Lipschitz
β-differentiable bump function) then the “lim inf” formula (3.1.1) holds. As
a consequence, we show that for the Fréchet bornology, the formula (3.1.1)
characterizes in fact the Asplund property of X. We then use our results to
obtain new characterizations of β-pseudoconvexity.
The plan of the present paper is as follows : After recalling some tools of
nonsmooth analysis in the second section, we establish in the third one a
connection between Gâteaux (Fréchet) differentiability of the norm and the
regularity of the set D = Bc = {x ∈ X : ‖x‖ ≥ 1}. For x̄ ∈ D, with ‖x̄‖ = 1,
Borwein and Strojwas [5] showed that Gâteaux differentiability of the norm
at x̄ is equivalent to coK(C; x̄) 6= X. We prove that Gâteaux differentiabi-
lity of the norm at x̄ is equivalent to K(D; x̄) equal to a half space which
in turn is equivalent to the Clarke tangential regularity of D at x̄. Similar
results are obtained for Fréchet differentiability by means of the Fréchet nor-
mal cone to D. In the fourth section, we prove our main theorem and some
of its consequences. In the fifth section, we give some corollaries, namely a
new characterization of Asplund spaces : A Banach space is Asplund space
if and only if the “lim inf” formula holds true with the Fréchet bornology
for any closed set C ⊂ X. The last section concerns characterizations of
Tβ-pseudoconvex sets.
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3.2 Notation and Preliminaries

Let X be a Banach space with a given norm ‖ · ‖, X∗ be its topological
dual space and 〈·, ·〉 be the duality pairing between X and X∗. The sphere
of X and the open ball in X centered at x and of radius δ are defined by
SX = {h ∈ X : ‖h‖ = 1} and B(x, δ) = {h ∈ X : ‖h− x‖ < δ}.

Let C be a closed subset of X. The contingent cone K(C;x) (resp. weak-
contingent cone WK(C;x)) to C at x is the set of all h ∈ X for which
there are a sequence (hn) in X converging strongly (resp. weakly) to h and
a sequence of positive numbers (tn) converging to zero such that

x+ tnhn ∈ C,

for all n ∈ N. A vector h ∈ X belongs to the Clarke tangent cone Tc(C;x)
of C at x provided that for any ε > 0 there exists δ > 0 such that(

u+ tB(h, ε)
)
∩ C 6= ∅,

for all u ∈ C ∩B(x, δ) and t ∈]0, δ[. It is known that h ∈ Tc(C;x) if and only
if for any sequences (xn) ⊂ C converging to x and every sequence (tn) of
positive numbers converging to zero there is a sequence (hn) in X converging
to h such that

xn + tnhn ∈ C, ∀n ∈ N.

It is obvious that Tc(C;x) ⊂ K(C;x). The Clarke normal cone is defined as
the negative polar cone of the Clarke tangent cone, that is,

Nc(C;x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 for all h ∈ Tc(C;x)}.

Let us recall that the (negative) polar cone of a convex cone K is given by

K◦ = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 ∀h ∈ K}.

Definition 3.2.1 Let f : X → R∪ {±∞} be a function finite at x and β be
a bornology on X.
(a) f is said to be β-differentiable at x if there is x∗ ∈ X∗ such that for each
set S ∈ β

lim
t→0+

t−1 sup
h∈S
|f(x+ th)− f(x)− 〈x∗, th〉 | = 0,
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(b) x∗ ∈ X∗ is called a β-subgradient of f at x, if for each ε > 0 and each
set S ∈ β there is δ > 0 such that for all 0 < t < δ and all h ∈ S

t−1
(
f(x+ th)− f(x)

)
− 〈x∗, h〉 ≥ −ε.

We denote by ∂βf(x) the set of all β-subgradients of f at x.

It follows from this definition that if β1 ⊂ β2, then ∂β2f(x) ⊂ ∂β1f(x).

Applying Definition 3.2.1(a) to the bounded bornology and Gâteaux borno-
logy, we obtain the following classical definitions of :

• Fréchet differentiability : There is x∗ ∈ X∗ such that

lim
h→0
‖h‖−1(f(x+ h)− f(x)− 〈x∗, h〉) = 0.

• Gâteaux differentiability : There is x∗ ∈ X∗ such that

∀h ∈ X, lim
t→0+

t−1(f(x+ th)− f(x)) = 〈x∗, h〉.

While Definition 3.2.1(b) leads ([14]) in the case of the bounded bornology
(e.g. β = F ) to the following classical definition of Fréchet-subdifferential of
f at x :

∂Ff(x) =

{
x∗ ∈ X∗ : lim inf

y→x

f(y)− f(x)− 〈x∗, y − x〉
‖y − x‖

≥ 0

}
.

We denote by ∂ the Fenchel (or Moreau-Rockafeller) subdifferential that
is

∂f(x) = {x∗ ∈ X∗ : f(x+ h)− f(x) ≥ 〈x, h〉 ,∀h ∈ X}.
It is important to note that in case of lower semicontinuous convex function
f , we have

∂βf(x) = ∂f(x).

We will denote by Nβ(C;x) the β-normal cone of C at x which is defined
by

Nβ(C;x) = ∂βψC(x)

where ψC is the indicator fonction of C, that is,

ψC(x) =

{
0 if x ∈ C,
+∞ if x /∈ C
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and by Tβ(C;x) the β-tangent cone which is defined as the negative polar
cone of the β-normal cone intersected with X, that is

Tβ(C, x) = (Nβ(C, x))◦ ∩X.

Clearly, for an bornology β the following inclusions hold :

NF (C;x) ⊂ Nβ(C;x) ⊂ NG(C;x), TG(C;x) ⊂ Tβ(C;x) ⊂ TF (C;x).

When β is the Fréchet bornology, then ([1],[17]) we obtain that

NF (C; x̄) =
{
x∗ ∈ X∗ : lim sup

u
C−→x

〈x∗, u− x〉
‖u− x‖

≤ 0
}
.

Definition 3.2.2 Let X be a Banach space and let β be a bornology on it.
We say that X is ∂β trusted, if the following fuzzy minimization rule holds :
let f be a lower semicontinuous function on X finite at x̄ ∈ X, and let g
be a Lipschitz continuous function on X. Assume that f + g attains a local
minimum at x. Then for any ε > 0 there are x, u ∈ X and x∗ ∈ ∂βf(x),
u∗ ∈ ∂βg(u) such that

‖x− x̄‖ < ε, ‖u− x̄‖ < ε, |f(x)− f(x̄)| < ε, and ‖x∗ + y∗‖ < ε.

We recall that a bump function on X is a real-valued function φ which has
bounded nonempty support supp(φ) = {x ∈ X : φ(x) 6= 0}.

Proposition 3.2.3 [14] If there is on X a β-differentiable Lipschitz bump
function, then X is ∂β−trusted,

Proposition 3.2.4 [9] A Banach space is trusted for the Fréchet subdiffe-
rential if and only if it is Asplund.

3.3 Characterizations of Gâteaux and Fréchet

differentiability of the norm

In this section, we study the connection between differentiability of the norm
‖ · ‖ on X and some property of the subset D := Bc = {x ∈ X : ‖x‖ ≥
1}. In [5] Borwein and Srojwas showed several properties of D in various
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Banach spaces. In particular they showed that if ‖x̄‖ = 1 then Gâteaux
differentiability of the norm at x̄ is equivalent to the P-properness of D et
x̄, i.e., coK(D;x) 6= X. In this section we will show furthur properties for
various norms. We denote by PC(x) the set of projections of x on a subset C
of X, i.e.,

PC(x) = {y ∈ C : ‖x− y‖ = dC(x)}.

Proposition 3.3.1 Assume that X is a Banach space with a given norm
‖ · ‖. Let x̄ ∈ X with ‖x̄‖ = 1. Then

(a) K(D; x̄) contains at least one closed half space,

(b) x̄+K(D; x̄) ⊂ D,

(c) K(D; x̄) 6= X,

(d) ∀λ ∈]0, 1[, D ∩B(x̄, 1− λ) + tB(x̄, λ) ⊂ D, for all t > 0,

(e) B(x̄, 1) ⊂ Tc(D; x̄),

(f)
x

‖x‖
∈ PD(x) and dD(x) = 1− ‖x‖ for all x ∈ B\{0}.

Proof. (a) By Hahn-Banach theorem, find x∗ ∈ X∗ such that

‖x∗‖ = 〈x∗, x〉 = 1

Then, clearly, the closed half space x + {h ∈ X : 〈x∗, h〉 ≥ 0} lies in D.
Therefore K(D; x̄) contains at least a one half space.

(b) Take any h in K(D, x) and let sequences (hn) and (tn) witness for that.
The convexity of ‖ · ‖ implies that for all large n ∈ N we have

‖x+h‖−1 ≥ ‖x+ tnh‖ − ‖x‖
tn

≥ ‖x+ tnhn‖ − ‖x‖
tn

−‖h−hn‖ ≥ −‖h−hn‖.

Hence, letting n go to ∞ here, we get the desired inclusion
(c) It is a direct consequence of (b).
(d) For any x ∈ D, z ∈ X and t > 0

‖z − (1 + t)x‖ ≤ t =⇒ (1 + t)‖x‖ − ‖z‖ ≤ t =⇒ 1 ≤ ‖z‖.
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Therefore B
(
(1 + t)x, t

)
⊂ D or equivalently x+ tB(x, 1) ⊂ D. Let λ ∈]0, 1[

and pick x ∈ B(x̄, 1−λ)∩D. Then B(x̄, λ) ⊂ B(x, 1) and hence x+tB(x̄, λ) ⊂
D. Finally we receive that

D ∩B(x̄, 1− λ) + tB(x̄, λ) ⊂ D.

(e) Take any h ∈ B(x, 1). Consider any sequence (xn) ⊂ C converging to
x and any tn ↓ 0. For n ∈ N put hn := h+ xn − x ; then hn → h, and as

‖xn + tnhn‖ = ‖(1 + tn)xn + tn(h− x)‖ ≥ 1 + tn − tn = 1

for every n ∈ N, we can conclude that h ∈ Tc(C, x).
(f) Suppose that x ∈ BX and z ∈ D, then

‖x− z‖ ≥ ‖z‖ − ‖x‖ ≥ 1− ‖x‖ =
∥∥∥x− x

‖x‖

∥∥∥
therefore

x

‖x‖
∈ PD(x). �

The following proposition contains several characterizations of the Gâteaux
differentiability of the norm.

Proposition 3.3.2 Let X be a Banach space with a given norm ‖·‖. Assume
that ‖x̄‖ = 1. Then the following assertions are equivalent :

(a) ‖ · ‖ is Gâteaux differentiable at x̄,

(b) there is x∗ ∈ X∗, ‖x∗‖ = 1 such that K(D; x̄) = {h ∈ X : 〈x∗, h〉 ≥ 0},

(c) Tc(D; x̄) = K(D; x̄).

Proof. (a) ⇒ (b). Suppose that ‖ · ‖ is Gâteaux differentiable at x̄ with
derivative x∗. By (a) of Proposition 4.4.1 the cone K(D; x̄) contains at least
one closed half space. If we show that K(D; x̄) ⊂ {h ∈ X : 〈x∗, h〉 ≥ 0} then
this inclusion will become equality. Take h ∈ K(D; x̄) and find (hn) in X
converging strongly to h and a sequence (tn)n of positive numbers converging
to zero such that for all n ∈ N large enough

x̄+ tnhn ∈ D.
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Thus, as ‖x̄+ tnhn‖ ≥ 1,

‖x̄+ tnh‖ − ‖x̄‖
tn

− 〈x∗, h〉 ≥ ‖x̄+ tnhn‖ − ‖x̄‖
tn

− 〈x∗, h〉 − ‖h− hn‖

≥ − 〈x∗, h〉 − ‖h− hn‖.

Therefore

lim
n→∞

‖x̄+ tnh‖ − ‖x̄‖
tn

− 〈x∗, h〉 ≥ − 〈x∗, h〉 ,

0 ≥ −〈x∗, h〉 ,
〈x∗, h〉 ≥ 0.

(b)⇒(a) Assume that K(D; x̄) = {h : 〈x∗, h〉 ≥ 0} for some x∗ ∈ X∗, with
‖x∗‖ = 1. Let z∗ ∈ ∂‖ · ‖(x̄). Then ‖z∗‖ = 1 and

‖x+ v‖ − ‖x‖ ≥ 〈z∗, v〉 for every v ∈ X.

Hence, if h ∈ X is such that 〈z∗, h〉 ≥ 0, then we have for all t > 0 that
‖x+ th‖ ≥ 1, and so x+ th ∈ D, which means that h ∈ K(D, x). By Farkas
Lemma ([11]), we conclude that z∗ = λx∗ with λ > 0. Thus

λ =
‖z∗‖
‖x∗‖

= 1 and z∗ = x∗.

This asserts that ∂‖ · ‖(x̄) = {x∗} or equivalently the norm ‖ · ‖ is Gâteaux
differentiable at x̄.

(a) ⇒ (c) Suppose that the norm ‖ · ‖ is Gâteaux differentiable at x̄. It
suffices to show that there exists a unique x∗ ∈ X∗, with ‖x∗‖ = 1 such that

Tc(D; x̄) = {h ∈ X : 〈x∗, h〉 ≥ 0}.

Assertions (c) and (d) of Proposition 4.4.1 ensure that 0 is a boundary point
of Tc(D; x̄) and intTc(D, x̄) 6= ∅. So the separation theorem produces x∗ ∈ X∗,
with ‖x∗‖ = 1 such that

Tc(D; x̄) ⊂ {h ∈ X : 〈x∗, h〉 ≥ 0}

and as B(x̄, 1) ⊂ Tc(D; x̄) (by (d) of Proposition 4.4.1), the assumption (a)
implies that x∗ is exactly the Gâteaux derivative of the norm ‖ · ‖ at x̄. It
remains to establish the reverse inclusion

Tc(D; x̄) ⊃ {h ∈ X : 〈x∗, h〉 ≥ 0}.
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Suppose that there exists v ∈ X satisfying 〈x∗, v〉 ≥ 0 and v /∈ Tc(D; x̄).
Once again, the separation theorem yields u∗ ∈ X∗, with ‖u∗‖ = 1, such that

Tc(D; x̄) ⊂ {h ∈ X : 〈u∗, h〉 ≥ 0} and 〈u∗, v〉 < 0.

As before we show that u∗ is also a Gâteaux derivative of the norm ‖ · ‖ at
x̄, and by (a), x∗ = u∗ and this contradicts the relations

〈x∗, v〉 ≥ 0 and 〈u∗, v〉 < 0.

(c)⇒ (b) Suppose that Tc(D; x̄) = K(D; x̄). Then Tc(D; x̄) contains at least
one half space. By Proposition 4.4.1, Tc(D, x̄) 6= X and by the separation
Theorem (recall that the Clarke cone is convex and closed) there is x∗ ∈ X∗,
‖x∗‖ = 1 such that

Tc(D;x) ⊂ {h ∈ X : 〈x∗, h〉 ≥ 0}.

By the Farkas lemma we have

Tc(D;x) = {h ∈ X : 〈x∗, h〉 ≥ 0}.

�
The following corollary on the density of points of Gâteaux differentiability
of the norm is a consequence of Propositions 4.4.1 and 3.3.2.

Corollary 3.3.3 Let (X, ‖ · ‖) be a Banach space and put D = {u ∈ X :
‖u‖ ≥ 1}. The following assertions are equivalent :

(1) For each x ∈ SX , lim inf
x′
D→x

coK(D;x′) 6= X.

(2) The norm ‖ · ‖ is Gâteaux differentiable at the points of a dense subset
of X.

Proof. First, we remark that

lim inf
x′
D→x

coK(D;x′) 6= X ⇐⇒ lim inf
x′
SX→ x

coK(D;x′) 6= X

(1) ⇒ (2) : It suffices to show that ‖ · ‖ is Gâteaux differentiable on dense
subset of SX . Let x ∈ SX . Then

lim inf
x′
D→x

coK(D;x′) 6= X.
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Therefore for any ε > 0 there is z ∈ B(x, ε) ∩D such that

coK(D; z) 6= X.

That is the convex cone coK(D; z) belongs to a half space, thus K(D; z)
also belongs to a half space. Since by (a) of Proposition 4.4.1 we know that
K(D; z) contains at least one half space, then by Farkas Lemma we deduce
that K(D; z) is equal to the half space and ‖ · ‖ is Gâteaux differentiable at
z according to Proposition 3.3.2.

(2) ⇒ (1) : Let x ∈ SX and consider a sequence (xn) in SX converging
to x, such that ‖ · ‖ is Gâteaux differentiable at each xn. Proposition 3.3.2
asserts that there exists x∗n ∈ X∗, ‖x∗n‖ = 1, such that K(D, xn) = {h ∈ X :
〈x∗n, h ≤ 0 }, and hence coK(D;xn) = K(D;xn). Applying Proposition 4.4.1
(b), we get coK(D;xn) ⊂ D− xn. Thus lim inf

x′
D→x

coK(D;x′) ⊂ D− x, and
the proof is completed. �

Proposition 3.3.4 Let X be a Banach space with a given norm ‖·‖. Consi-
der x ∈ SX . Then the following assertions are equivalent :

(a) ‖ · ‖ is Fréchet differentiable at x̄,

(b) NF (D; x̄) 6= {0},

Proof. (a) ⇒ (b) If (a) holds then there is some x∗ ∈ X∗, ‖x∗‖ = 1 which is
the Fréchet derivative of ‖ · ‖ at x̄, that is, for any ε > 0 there is δ > 0 such
that

−ε ≤ ‖y‖ − ‖x̄‖ − 〈x
∗, y − x̄〉

‖y − x̄‖
≤ ε,

for all y ∈ B(x̄, δ). If y ∈ D ∩B(x̄, δ) then ‖y‖ ≥ 1 = ‖x̄‖ and so

〈−x∗, y − x̄〉
‖y − x̄‖

≤ ε.

This implies that −x∗ ∈ NF (D; x̄).
(b) ⇒ (a) Suppose that x∗ ∈ NF (D; x̄) with ‖x∗‖ = 1. Since NF (D; x̄) ⊂(
K(D;x)

)◦
then x∗ ∈

(
K(D;x)

)◦
or equivalently

〈x∗, h〉 ≤ 0 ∀h ∈ K(D, x)
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and hence
K(D; x̄) ⊂ {h ∈ X : 〈x∗, h〉 ≤ 0}.

As K(D; x̄)◦ contains at least one half space, we deduce by Farkas Lemma
that K(D; x̄) is a half space and therefore Proposition 3.3.2 asserts that −x∗
is a Gâteaux derivative of ‖ · ‖ at x̄ and 〈−x∗, x̄〉 = 1. By the definition of
NF (D; x̄), for any ε > 0 there is δ > 0 (with δ ≤ 1) such that

〈x∗, x− x̄〉 ≤ ε‖x− x̄‖ (3.3.1)

for all x ∈ D ∩B(x̄, δ). We note that∥∥∥ x

‖x‖
− x̄
∥∥∥ =

1

‖x‖

∥∥∥x− ‖x‖x̄∥∥∥ ≤ 1

‖x‖

[∥∥∥x− ‖x‖x∥∥∥+
∥∥∥‖x‖x− ‖x‖x̄∥∥∥]

=
∣∣‖x‖ − 1

∣∣+ ‖x− x̄‖
≤ 2‖x− x̄‖.

Thus if x ∈ B(x̄, δ/2), then
x

‖x‖
∈ B(x̄, δ) ∩ D and therefore by inequality

(3.3.1) 〈
x∗,

x

‖x‖
− x̄
〉
≤ ε
∥∥∥ x

‖x‖
− x̄
∥∥∥,

1 +

〈
x∗,

x

‖x‖

〉
≤ 2ε

∥∥x− x̄∥∥,
‖x‖+ 〈x∗, x〉 ≤ 2ε‖x‖‖x− x̄‖,
‖x‖ − 1 + 〈x∗, x− x̄〉 ≤ 4ε‖x− x̄‖,
‖x‖ − ‖x̄‖+ 〈x∗, x− x̄〉 ≤ 4ε‖x− x̄‖.

As −x∗ is the Gâteaux derivative of ‖ · ‖ at x̄ we receive finally that

0 ≤ ‖x‖ − ‖x̄‖+ 〈x∗, x− x̄〉 ≤ 4ε‖x− x̄‖,

for all x ∈ B(x̄, δ/2). Therefore ‖ · ‖ is Fréchet differentiable at x̄. �

The following corollary on the density of points of Fréchet differentiability of
the norm is a consequence of Propositions 4.4.1 and 3.3.4. Its proof is similar
to that of Corollary 3.3.3.

Corollary 3.3.5 Let (X, ‖ · ‖) be a Banach space and put D = {u ∈ X :
‖u‖ ≥ 1}. The following assertions are equivalent :
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(1) For each x ∈ SX , lim inf
x′
D→x

TF (D;x′) 6= X.

(2) The norm ‖ · ‖ is Fréchet differentiable at the points of a dense subset
of X.

3.4 The validity of the “lim inf” formula

Theorem 3.4.1 Let (X, ‖ · ‖) be a Banach space and β a bornology on X
such that X×X is ∂β-trusted. Then for any closed subset C of X and x̄ ∈ C

lim inf
x
C→x̄

Tβ(C;x) ⊂ Tc(C; x̄).

Proof. We follow the proof in [15]. Pick w ∈ lim inf
x
C→x̄

Tβ(C, x). We want to

show that w ∈ Tc(C;x). Suppose that w /∈ Tc(C, x). Then by Lemma 1.2.1
in [20] there are a sequence (xn) in C converging to x, a sequence (λn) in
(0,+∞) converging to zero and ε > 0 such that(

xn+]0, λn]B(w, ε)
)
∩ C = ∅, ∀n ∈ N.

Let us fix an integer n ∈ N and put D := xn +
[
0, λn

2

]
B(w, ε). Then

(
D +

λ4
nw
)
∩ C = ∅. Define the function f by

f(x, y) = ‖x− y − λ4
nw‖, ∀(x, y) ∈ X ×X.

Thus f(xn, xn) = λ4
n and

λ4
n + inf

(x,y)∈C×D
f(x, y) ≥ f(xn, xn).

The Ekeland’s variational principle provides (un, vn) ∈ C ×D satisfying

‖un − xn‖+ ‖vn − xn‖ < λ2
n,

and

∀u ∈ C, ∀v ∈ D, f(un, vn) ≤ f(u, v) + λ2
n(‖u− un‖+ ‖v − vn‖).

Thus

f(un, vn) ≤ f(u, v) + λ2
n(‖u− un‖+ ‖v − vn‖) + ψC(u) + ψD(v), (3.4.1)
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for all u, v ∈ X. Since
(
D + λ4

nw
)
∩ C = ∅, we get

‖un − vn − λ4
nw‖ > 0

and so there is δn > 0 such that

‖t− τ − λ4
nw‖ > 0,

for all t ∈ B(un, δn) and τ ∈ B(vn, δn).

Since X ×X is ∂β-trusted, 3.4.1 provides there are u1
n, u

2
n, v

1
n, v

2
n ∈ X and

u∗1n , u
∗2
n , v

∗1
n , v

∗2
n ∈ X∗ such that

‖u1
n − un‖+ ‖u2

n − un‖+ ‖v1
n − vn‖+ ‖v2

n − vn‖ < αn = min{δn, λ4
n},

‖u∗1n + u∗2n ‖+ ‖v∗1n + v∗2n ‖ ≤ αn = min{δn, λ4
n} (3.4.2)

and
(u∗1n , v

∗1
n ) ∈ ∂β

(
f + λ2

n

(
‖ · −un‖+ ‖ · −vn‖

))
(u1

n, v
1
n),

(u∗2n , v
∗2
n ) ∈ ∂β

(
ψC(·) + ψD(·)

)
(u2

n, v
2
n).

By the convexity and the continuity of separate summands

∂β

(
f + λ2

n

(
‖ · −un‖+ ‖ · −vn‖

))
(u1

n, v
1
n)

= ∂
(
f + λ2

n

(
‖ · −un‖+ ‖ · −vn‖

))
(u1

n, v
1
n)

⊂ ∂f(u1
n, v

1
n) + λ2

n(BX∗ ×BX∗).

Since ‖u1
n−v1

n−λ4
nw‖ 6= 0 we receive that ∂f(u1

n, v
1
n) is included in {(x∗,−x∗) :

‖x∗‖ = 1}. That is there is x∗n ∈ X∗ with ‖x∗n‖ = 1 such that

‖u∗1n − x∗n‖ ≤ λ2
n and ‖v∗1n + x∗n‖ ≤ λ2

n.

By the inequality (3.4.2) we receive that

‖x∗n + u∗2n ‖ ≤ λ2
n + λ4

n and ‖v∗2n − x∗n‖ ≤ λ2
n + λ4

n (3.4.3)

and thus

‖u∗2n + v∗2n ‖ ≤ 2(λ2
n + λ4

n) (3.4.4)
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It is evident that

∂β(ψC(·) + ψD(·))(u2
n, v

2
n) = ∂βψC(u2

n)× ∂βψD(v2
n).

Thus 〈
v∗2n , u− v2

n

〉
≤ 0 ∀u ∈ D,〈

v∗2n , xn +
λn
2

(w + b)− v2
n

〉
≤ 0 ∀b ∈ B(0, ε),

ε‖v∗2n ‖
λn
2

+

〈
v∗2n , xn − v2

n +
λn
2
w

〉
≤ 0,

ελn
2

(1− λ2
n − λ4

n) ≤
〈
v∗2n , v

2
n − xn −

λn
2
w

〉
.

Using (3.4.3) and (3.4.4), we get

ελn
2

(1− λ2
n − λ4

n) ≤
〈
v∗2n + u∗2n , v

2
n − xn −

λn
2
w

〉
+

〈
−u∗2n , v2

n − xn −
λn
2
w

〉
≤ 2(λ2

n + λ4
n)‖v2

n − xn −
λn
2
w‖+

〈
−u∗2n , v2

n − xn
〉

+
λn
2

〈
u∗2n , w

〉
,

ελn
2

(1−λ2
n−λ4

n)+
〈
u∗2n , v

2
n − xn

〉
≤ 2(λ2

n+λ4
n)‖v2

n−xn−
λ

2
w‖+

λn
2

〈
u∗2n , w

〉
,

ελn
2

(1−λ2
n−λ4

n)−‖u∗2n ‖‖v2
n−xn‖ ≤ 2(λ2

n+λ4
n)‖v2

n−xn−
λ

2
w‖+

λn
2

〈
u∗2n , w

〉
,

ελn
2

(1−λ2
n−λ4

n)−(1+λ2
n+λ4

n)(λ2
n+λ4

n) ≤ 2(λ2
n+λ4

n)‖v2
n−xn−

λn
2
w‖+λn

2

〈
u∗2n , w

〉
,

ε(1−λ2
n−λ4

n)−2(1+λ2
n+λ4

n)(λn+λ3
n) ≤ 4(λn+λ3

n)‖v2
n−xn−

λn
2
w‖+

〈
u∗2n , w

〉
.

Now remember that u∗2n ∈ ∂βψC(u2
n) = Nβ(C, u2

n), {u2
n}n converges to x̄,

(λn)n converges to zero and w ∈ lim inf
x
C→x̄

Tβ(C;x). Therefore, there are wn ∈

Tβ(C, u2
n) converging to w. Thus we receive that

ε− (2ε+ 8)λn ≤ 4(λn + λ3
n)‖v2

n − xn −
λn
2
w‖+

〈
u∗2n , w − wn

〉
+
〈
u∗2n , wn

〉
≤ 4(λn + λ3

n)‖v2
n − xn −

λn
2
w‖+ ‖u∗2n ‖‖w − wn‖.
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as u∗2 ∈ Nβ(C;u2
n). Passing to the limit on n and taking into account that

‖u∗2n ‖ ≤ 1 +λ2
n+λ4

n and v2
n−xn− λn

2
w converges to 0 we receive ε ≤ 0 which

is contradiction. �

We know that if there is on X a β-differentiable Lipschitz bump function
then there is also on X × X a β-differentiable Lipschitz bump function,
therefore according to Proposition 3.2.3, X×X is ∂β-trusted. So the following
corollary is a direct consequence of Theorem 3.4.1.

Corollary 3.4.2 Assume that there is on X a β-differentiable Lipschitz
bump function. Then for any closed subset C of X containing x

lim inf
x′
C→x

Tβ(C;x′) ⊂ Tc(C;x).

We recall that if X admits an equivalent β-differentiable norm (at all
nonzero points), then there is onX a β-differentiable Lipschitz bump function
[18]. Note that the reverse is not true. Haydon [12] constructed a nonseparable
Banach space that has Fréchet differentiable Lipschitz bump function but
does not admit an equivalent Gâteaux differentiable norm.

Corollary 3.4.3 ([3]) Let X be a Banach space with a norm which is β-
differentiable away from the origin. Let C be a closed subset of X. Then for
any x ∈ C we have

lim inf
x′
C→x

Tβ(C;x′) ⊂ Tc(C;x).

The following corollary is an extention of Theorem 3.4 in [4] from spaces
with equivalent Fréchet differentiable norm away from the origin to Asplund
spaces and without the weak compcatness assumption on the set C. We recall
that WK(C;x) denotes the weak-contingent cone to C at x.

Corollary 3.4.4 ([15]) Let X be Asplund space and C be a closed subset of
X. Then for any x ∈ C we have

lim inf
x′
C→x

co(WK(C;x′)) ⊂ Tc(C;x).

Proof. Borwein and Strojwas [4] proved that for any closed subset C of X
and x ∈ C

NF (C;x) ⊂ (WK(C;x))◦.
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Therefore
co(WK(C;x)) ⊂ TF (C;x).

On the other hand since X is Asplund, X ×X is also Asplund and therefore
according to the Proposition 3.2.3 trusted for the Fréchet subdifferetnial. By
Theorem 3.4.1 we receive that

lim inf
x′
C→x

TF (C;x) ⊂ Tc(C;x),

and therefore
lim inf
x′
C→x

co(WK(C;x)) ⊂ Tc(C;x).

The proof is completed. �

To end up this section, we give an extention of Theorem 5.4 in [5] where
lower semicontinuity (LSC) of a multivalued mapping is involved. A multi-
valued mapping F : C ⇒ X is said to be lower semicontinuous at x ∈ C
if

F (x) ⊂ lim inf
x′
C→x

F (x′)

and is LSC on C if it is LSC at each point x in C.

Theorem 3.4.5 Let (X, ‖ · ‖) be a Banach space, β be a bornology on X
containing the Hadamard bornology such that X × X is ∂β-trusted and C
be a closed subset of X. Suppose that F : C ⇒ X is LSC on C. Then the
following statements are equivalent :

(i) F (x) ⊂ Tc(C;x), for all x ∈ C,

(ii) F (x) ⊂ Tβ(C;x), for all x ∈ C.

Proof (ii) ⇒ (i) follows from the lower semicontinuity of F and Theorem
3.4.1.
(i) ⇒ (ii) : Since Tc(C;x) ⊂ coK(C;x), our hypothesis on the bornology β
ensures that Tc(C;x) ⊂ coK(C;x) ⊂ Tβ(C;x) and so (i) implies (ii). �

Remark 3.4.6

• Statement (2) in Theorem 5.4 in [5] is extended from refelexive Banach
spaces to Asplund spaces.
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• The weak compactness assumptions and the Gâteaux smoothness of
an equivalent norm (resp. the Fréchet differentiability of an equivalent
norm) off zero assumed in the statement (4) (resp. (5)) of Theorem
5.4 in [5] are weakened by assuming that the space admits a Gâteaux
differentiable lipschitz bump function (resp. the space is Asplund) and
the set is closed.

3.5 The ”lim inf” formula as a characteriza-

tion of Asplund spaces

We begin by recalling that X is an Asplund space if every continuous convex
function on any open convex subset U of X is Fréchet differentiable at the
points of a dense Gδ subset of U .
A well known theorem of Fabian and Mordukhovich [10] affirms that the
space X is Asplund if and only if for every closed set C ⊂ X and every
x̄ ∈ C one has the limiting representation

N(C; x̄) = lim sup
x→x̄

NF (C;x)

where N(x̄;C) denotes the limiting normal cone of C at x̄. Here, we give a
characterization of Asplund spaces by mean of the ”liminf” formula.

Theorem 3.5.1 A Banach space X is Asplund if and only if for every closed
set C in it and every x ∈ C, the following inclusion holds

lim inf
x′
C→x

TF (C;x′) ⊂ Tc(C;x).

Proof. (a) ⇒ (b) : We know that if X is an Asplund space then X ×X is
also an Asplund space. According to (c) of Proposition 3.2.4 X×X is trusted
for Fréchet subdifferential. Theorem 3.4.1 asserts that

lim inf
x′
C→x

TF (C;x′) ⊂ Tc(C;x),

for any set C ⊂ X and x ∈ C.

(b) ⇒ (a) : Suppose that X is not an Asplund space. Then it is known [7,
p. 27] (see also [18, p. 33]) that there is an equivalent norm on X which is
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nowhere Fréchet differentiable. Therefore by Proposition 3.3.4 NF (C1;x) =
{0} for all x ∈ C1, where C1 = {z ∈ X : ‖z‖ ≥ 1}. Thus TF (C1;x) = X for
all x ∈ C1 and

X = lim inf
x′
C1→x

TF (C1;x′) ⊂ Tc(C1;x).

This is in contradiction with Tc(C1;x) ⊂ K(C1, x) 6= X (see Proposition
4.4.1 (c)). �

3.6 Convexity of Pseudoconvex sets

Let C be a set in a Banach space X and let x ∈ C. Let R(C;x) denotes one of
the cones Tc(C;x), Tβ(C;x), K(C;x), . . .. We say that C is R-pseudoconvex
at x if

C − x ⊂ R(C;x).

We say that C is R-pseudoconvex if the last inclusion holds for every x ∈ C.
Concerning this notion, Borwein and Strojwas [5] established the following
result on the equivalence between convexity and R-pseudoconvexity.

Theorem 3.6.1 [5] For a closed set C in a Banach space X TFAE : (i) C
is convex ; (ii) C is K-pseudoconvex ; (iii) C is Tc-pseudoconvex.

Proof. (i)⇒ (ii) and (ii)⇒ (iii) are obvious.
(iii)⇒ (i) : By Treiman Theorem ([20]-[21]) we receive that Tc-pseudoconvexity
coincide with K-pseudoconvexity. Suppose that C is Tc-pseudoconvex, that
is C−x ⊂ Tc(C;x) for all x ∈ C. If C is not convex, then there exist distinct
u, v ∈ C such that ]u, v[∩C = ∅. Let w ∈]u, v[ and consider the function
f(x) = ‖x− w‖. For every n ∈ N find un ∈ C such that

‖un − w‖ ≤ inf
x∈C
‖x− w‖+

1

n2
. (3.6.1)

By Ekeland’s variational principle, there exists xn ∈ C such that

‖xn − un‖ ≤
1

n
(3.6.2)

and

f(xn) ≤ f(x) +
1

n
‖x− xn‖ ∀x ∈ C.
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This later one ensures that xn is a local minimum of the function

x 7→ (1 +
1

n
)dC(x) + ‖x− w‖+

1

n
‖x− xn‖

and hence

0 ∈ (1 +
1

n
)∂dC(xn) + ∂‖ · −w‖(xn) +

1

n
∂‖ · −xn‖(xn).

Since xn 6= w, there exists x∗n ∈ ∂‖ · −w‖(xn) and b∗n ∈ 1
n
∂‖ · −xn‖(xn) such

that

‖x∗n‖ = 1, 〈x∗n, xn − w〉 = ‖xn − w‖, −x
∗
n + b∗n
1 + 1

n

∈ ∂dC(xn) = Nc(C;xn).

By Tc-pseudoconvexity, we get

〈−x
∗
n + b∗n
1 + 1

n

, x− xn〉 ≤ 0 ∀x ∈ C

or equivalently

〈−x
∗
n + b∗n
1 + 1

n

, w − xn〉 ≤ 〈
x∗n + b∗n
1 + 1

n

, x− w〉 ∀x ∈ C. (3.6.3)

Remark that

〈−x
∗
n + b∗n
1 + 1

n

, w − xn〉 =
1

1 + 1
n

[〈−x∗n, w − xn〉+ 〈−b∗n, w − xn〉]

=
1

1 + 1
n

‖xn − w‖+
1

1 + 1
n

〈−b∗n, w − xn〉

≥ 1

1 + 1
n

dC(w) +
1

1 + 1
n

〈−b∗n, w − xn〉

and, by (3.6.1) and (3.6.2), 〈−b∗n, w − xn〉 → 0. Thus extracting subnet, we

may assume that x∗n
w∗→x∗, with ‖x∗‖ ≤ 1, and, by relation (3.6.3), we obtain

dC(w) ≤ 〈x∗, x− w〉 ∀x ∈ C.

In particular this later one holds for x = u and x = v, and hence on all the
segment [u, v] and particularly for x = w. Thus dC(w) ≤ 0 and the closeness
of C ensures that w ∈ C and this is in contradiction with ]u,w[∩C = ∅.�
Here we give another result in terms of the Tβ-pseudoconvexity.
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Theorem 3.6.2 Let X be a Banach space and β be a bornology on X. If
X ×X is ∂β-trusted then

a closed set C ⊂ X is Tβ-pseudoconvex (if and) only if it is convex.

Proof. If C is Tβ-pseudoconvex then

C − x ⊂ Tβ(C;x), ∀x ∈ C,

and hence by Theorem 3.4.1

C − x = lim
x′→x

(C − x′) ⊂ lim inf
x′
C→x

Tβ(C;x′) ⊂ Tc(C;x),

and therefore by Theorem 3.6.1 C is convex. �

Using Propositions 3.2.3 and 3.2.4, we obtain the following corollaries.

Corollary 3.6.3 Let X be a Banach space and β be a bornology on X. If
there is on X a β-differentiable Lipschitz bump function, then

C is Tβ-pseudoconvex (if and) only if C is convex.

Corollary 3.6.4 Assume that X is an Asplund space and C is a closed
subset of X. Then

C is coWK-pseudoconvex (if and) only if C is convex.

Proof. It follows from Theorem 3.6.2 and Proposition 3.2.3. �
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Chapitre 4

New conditions ensuring the
convexity of Chebyshev sets

T. Zakaryan

Abstract. We investigate the convexity of Chebyshev sets. It is well known
that in a smooth reflexive Banach space with the Kadec-Klee property every
weakly closed Chebyshev subset is convex. We prove that the condition of
the weak closedness can be replaced by the local weak closedness, that is,
for any x ∈ C there is ε > 0 such that C ∩ B(x, ε) is weakly closed. We also
prove that the Kadec-Klee property is not required when the Chebyshev set
is represented by a finite union of closed convex sets.

4.1 Introduction

Let C be a nonempty subset of a Banach space (X, ‖ ‖). The metric pro-
jection (or set of nearest points) of x onto C is defined by :

PC(x) = {y ∈ C : ‖x− y‖ = dC(x)},

where dC(·) is the distance function, i.e., dC(x) = inf{‖x−y‖ : y ∈ C}. We say
that C is Chebyshev if PC(x) is a singleton for all x ∈ X. It is easy to see that
Chebyshev sets are strongly closed. The first positive result for the convexity
of Chebyshev sets was established, in Euclidean finite dimensional spaces,
independently by Blunt [4] and Motzkin [11]. Later, in [10, 13] it was shown
that every Chebyshev subset of a smooth, finite-dimensional normed linear
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space is convex. One of the most famous unsolved problems in approximation
theory is : whether in a smooth reflexive Banach space (or even in a Hilbert
space) every Chebyshev set is convex ? Although this problem is open (see
[3] and [2] a recent survey), several sufficient conditions for a Chebyshev set
to be convex have been obtained, until now. Here is a first important result :

Theorem 4.1.1 (Vlasov [15]) Let X be a Banach space with rotund dual.
Then any Chebyshev subset of X with continuous metric projection is convex.

This theorem was previously obtained by Asplund [1] in Hilbert spaces.

Assume now that C is a weakly closed Chebyshev set of a reflexive Banach
space X. Consider any x ∈ X and any sequence (xn)n in X converging to x
and note that

‖xn − PC(xn)‖ = dC(xn)→ dC(x) = ‖x− PC(x)‖. (4.1.1)

This tells us in particular that the sequence (PC(xn))n is bounded, hence it
admits a subsequence (that we do not relabel) converging weakly to some
y ∈ C according to the reflexivity of X and to the weak closedness of C. Using
(4.1.1) and the weak lower semicontinuity of ‖·‖, we see that ‖x−y‖ ≤ dC(x),
and hence y = PC(x). This yields the following result (see also [5, p. 193]) :

Theorem 4.1.2 Let X be a reflexive Banach space with the Kadec-Klee pro-
perty. Then any weakly closed Chebyshev subset of X has continuous metric
projection.

In this paper we consider two sufficient conditions for Chebyshev set to be
convex. First, we look at the local weak closedness, in the sense that for any
x ∈ C there is ε > 0 such that C ∩ B(x, ε) is weakly closed, B(x, ε) denotes
the closed ball centered at x with radius ε. We prove that any locally weakly
closed Chebyshev subset of a reflexive Banach space with the Kadec-Klee
property has continuous metric projection. As a corollary we derive that any
locally weakly closed Chebyshev subset of a smooth reflexive Banach space
with the Kadec-Klee property is convex. Second, we look at the Chebyshev
sets which can be represented as a finite union of closed convex sets. We
proved that they are convex in a smooth reflexive Banach space. The interest
of the latter result is that the Kadec-Klee property is not required.
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4.2 Notation and Preliminaries

Let X be a normed space with a given norm ‖·‖, X∗ be its topological dual
and 〈·, ·〉 be the duality pairing between X and X∗. A real-valued function f
on X is Gâteaux differentiable at x if there is x∗ ∈ X∗ such that

∀h ∈ X, lim
t→0+

t−1
(
f(x+ th)− f(x)

)
= 〈x∗, h〉 .

If the limit in the definition of Gâteaux differentiability exists uniformly in
h on the unit sphere of X, we say that f is Fréchet differentiable at x.

The normed space (X, ‖ · ‖)
(i) is rotund or strictly convex whenever for all x, y ∈ X with x 6= y and
‖x‖ = ‖y‖ = 1 one has ‖x+y

2
‖ < 1,

(ii) has the (sequential) Kadec-Klee property provided the weak convergence
of a sequence of the unit sphere of the space is equivalent to the norm conver-
gence of this sequence,
(iii) is smooth (or has Gâteaux differentiable norm) if the norm ‖·‖ is Gâteaux
differentiable off zero (or equivalently, on the unit sphere of X),
(iv) has Fréchet differentiable norm if the norm ‖ · ‖ is Fréchet differentiable
off zero.

Let C be a closed subset of the normed space X. The set C is connected
if there are no disjoint nonempty open sets A, B such that C ⊂ A ∪ B and
A ∩ C 6= ∅, B ∩ C 6= ∅.
Recall that a sequence (yn)n from C is a minimizing sequence for x if

‖x− yn‖ → dC(x).

Recall also that the metric projection PC is said to be continuous at x ∈ X
provided PC is single-valued at x and yn → PC(x) whenever xn → x and
yn ∈ PC(xn). If X is strictly convex, then y ∈ PC(x) and z ∈]y, x[ ensure
PC(z) = {y}. The set C is a sun if, for each point x ∈ X and y ∈ PC(x),
every point on the ray y + R+(x − y) has y as a nearest point in C, where
R+ := [0,+∞). This notion was introduced by Klee [8, 9] and studied by
Efimov, Steckin and Vlasov [7, 13, 14]. It is not difficult to see that every
convex set is a sun. Indeed, let x ∈ X, y ∈ PC(x) and λ > 0, then for all
z ∈ C

‖y + λ(x− y)− y‖ = λ‖x− y‖

≤ λ‖x−
(

1

λ
z + (1− 1

λ
)y

)
‖ = ‖y + λ(x− y)− z‖,
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thus y ∈ PC
(
y + λ(x− y)

)
.

Klee [8] proved that in a finite-dimensional Euclidean space, sun sets are
convex. There are some generalizations of this result to infinite dimensional
spaces. The following Vlasov [14] result is the most general one.

Theorem 4.2.1 Let X be a smooth Banach space. Then every proximinal
sun subset of X is convex.

Recall that the set C is proximinal if for every x /∈ C the set PC(x) is not
empty.

To end up this section, we denote by xn
w−−−→

n→∞
x the weak convergence of

the sequence (xn)n ⊂ X to x ∈ X.

4.3 The case of locally weakly closed Cheby-

shev set

We announce our main result of this section :

Theorem 4.3.1 Let X be a reflexive Banach space with the Kadec-Klee pro-
perty. Let C be a locally weakly closed Chebyshev subset of X. Then PC is
continuous.

To study the relationship between properties of a Chebyshev set C of X
and its metric projection, Wulbert [17] introduced the notion of bounded
connectedness : a subset of X is called boundedly connected if its intersection
with every open ball in X is a connected set. To prove Theorem 4.3.1 we will
use the following result on bounded connectedness of a Chebyshev subset.

Theorem 4.3.2 (Tsarkov [12]) Let X be a reflexive Banach space with the
Kadec-Klee property. Then every Chebyshev subset of X is boundedly connec-
ted.

Proof of Theorem 4.3.1 Let x ∈ X\C and PC(x) = {y}. From the local
weak closedness there is ε > 0 such that B(y, ε) ∩ C is weakly closed or
equivalently weakly compact. Let (xn)n be any sequence of X \C converging
to x, and put yn := PC(xn) ; note that

‖x− yn‖ → dC(x) since ‖xn − yn‖ = dC(xn)→ dC(x).
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We want to show that the sequence (yn)n converges to y. Suppose the contrary,
that is, without loss of generality there is some real δ ∈]0, ε[ such that

‖yn − y‖ > δ, ∀n ∈ N.

Put

αn := 2
(
‖x− yn‖ − dC(x)

)
> 0 and An := int

(
B
(
x, dC(x) + αn

))
∩ C,

(where int(K) denote the interior of a set K). By Theorem 4.3.2 the set An
is connected and obviously y, yn ∈ An. We define two open disjoint sets B1

and B2 as follows :

B1 =
{
z ∈ X : ‖z − y‖ < δ

2

}
and B2 =

{
z ∈ X : ‖z − y‖ > δ

}
.

It is evident that y ∈ B1 ∩ An and yn ∈ B2 ∩ An. Therefore by the connec-
tedness of An there is zn ∈ An such that

zn /∈ B1 ∪B2

and thus
δ

2
≤ ‖y − zn‖ ≤ δ < ε. (4.3.1)

We deduce that zn ∈ B(y, ε) ∩ C for every n ∈ N. By weak compactness of
B(y, ε) ∩ C there is z̄ ∈ C such that some subsequence of (zn)n (that we do
not relabel) converges weakly to z̄. Therefore

dC(x) ≤ ‖x− z̄‖ ≤ lim inf
n→∞

‖x− zn‖ ≤ lim sup
n→∞

‖x− zn‖

≤ lim sup
n→∞

(
dC(x) + αn

)
= dC(x).

Finally we obtain that z̄ ∈ PC(x) and thus z̄ = y (since C is Chebyshev) and

x− zn
w−−−→

n→∞
x− y and ‖x− zn‖ −−−→

n→∞
‖x− y‖,

which by the Kadec-Klee property implies that zn → y. This is in contradic-
tion with (4.3.1) and the proof is completed. �

Theorem 4.3.3 Let X be a smooth reflexive Banach space with the Kadec-
Klee property. Then every locally weakly closed Chebyshev set is convex.
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Proof. It is well known that every smooth reflexive Banach space has rotund
dual. Then Theorem 4.1.1 and Theorem 4.3.1 together imply the convexity
of any locally weakly closed Chebyshev set of X. �

Remark. After I have completed this work, I received a very interesting
paper by D. Zagrodny [16] dealing with the convexity of Chebyshev sets by
using the local approximate weak compactness notion. A set C ⊂ X is called
locally approximately weakly compact if for every u /∈ C and s ∈ clC there
is δ > 0 such that we have the following implication

(sn)n ⊂
(
B(s, δ) ∩ C

)
,

‖sn − u‖ → dC(u) and sn
w−−−→

n→∞
s ∈ X

}
=⇒ s ∈ C. (4.3.2)

This notion is slightly weaker than the local weak closedness. Nevertheless
Theorem 4.3.1 and Theorem 4.3.3 remain true if we replace condition of the
local weak closedness by the local approximate weak compactness condition.
Indeed within the proof of Theorem 4.3.1 we use the local weak closedness
to ensure that the weak limit of the sequence (zn)n belongs to C. This will
be provided by assuming C is locally approximately weakly compact since
(zn)n, x and y satisfy the assumptions on the left-hand side of the implication
(4.3.2). In the framework of Hilbert spaces, Zagrodny’s proof is completely
different from the present one.

4.4 The case of the finite union of closed convex

sets

The union of finitely many closed convex sets being weakly closed, we see
in a smooth reflexive Banach space X with the Kadec-Klee property that a

subset C of X is convex whenever C =
n⋃
i=1

Ci where Ci are closed convex

sets. Our aim in this section is to remove for such a set C the Kadec-Klee
assumption of the norm.

We start with some properties of sets which can be represented as a finite
union of closed convex sets.

Proposition 4.4.1 Let X be a normed space and let C =
m⋃
i=1

Ci be a union

of finitely many closed subsets of X. Then for any x ∈ X,
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(a) PC(x) =
⋃
i∈J

PCi(x), where J = {i : 1 ≤ i ≤ m, dC(x) = dCi(x)},

(b) there is δ > 0 such that for all u ∈ B(x, δ)

max
i∈J

dCi(u) < min
i∈Jc

dCi(u),

where J c = {1, 2, ...,m}\J .

Proof. (a) It is evident that dC(x) = min
1≤i≤m

dCi(x) and therefore J 6= ∅. Let

j ∈ J and z ∈ PCj(x). By the definition of J and C we have

dC(x) = dCj(x) = ‖x− z‖ and z ∈ C,

which means that z ∈ PC(x). Now let z ∈ PC(x), then z ∈ C =
m⋃
i=1

Ci and

consequently z ∈ Cj for some j, 1 ≤ j ≤ m. We deduce that

dC(x) = min
1≤i≤m

dCi(x) ≤ dCj(x) ≤ ‖x− z‖ = dC(x),

and thus j ∈ J and z ∈ PCj(x).

(b) By the definition of J we have that

max
i∈J

dCi(x) = dC(x) < min
i∈Jc

dCi(x). (4.4.1)

The continuity of u 7→ max
i∈J

dCi(u) and u 7→ min
i∈Jc

dCi(u) and (4.4.1) ensure

the existence of δ > 0 satisfying

max
i∈J

dCi(u) < min
i∈Jc

dCi(u), ∀u ∈ B(x, δ).

�

Theorem 4.4.2 Let X be a smooth reflexive Banach space. Let C be a Che-

byshev subset of X with C =
m⋃
i=1

Ci where Ci are closed convex sets. Then C

is convex.
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Proof. By Theorem 4.2.1 it is sufficient to show that C is sun. Let us prove
the sun property of C. Suppose that x /∈ C and PC(x) = y. Put

σ = sup{t ≥ 0 : y = PC(qt)},

where qt = y + t(x − y). We want to show that σ = +∞. Suppose that
σ < +∞. Then we have

dC(qσ) = lim
t↗σ

dC(y + t(x− y)) = lim
t↗σ
‖y + t(x− y)− y‖ = ‖qσ − y‖,

that is y ∈ PC(qσ) and therefore PC(qσ) = y. Let J and J c denote as in Propo-
sition 4.4.1, J = {i : 1 ≤ i ≤ m, dC(qσ) = dCi(qσ)} and J c = {1, 2, ...,m}\J .
Then, by Proposition 4.4.1, we have

PC(qσ) =
⋃
i∈J

PCi(qσ) (4.4.2)

and there is δ > 0 such that for all u ∈ B(qσ, δ)

max
i∈J

dCi(u) < min
i∈Jc

dCi(u). (4.4.3)

By the non-vacuity of PCi(x) we get from (4.4.2) that

PCi(qσ) = y for all i ∈ J. (4.4.4)

Let σ′ > σ such that y + σ′(x− y) = qσ′ ∈ B(qσ, δ), (4.4.3) provides

dC(qσ′) = min
1≤i≤m

dCi(qσ′) = min
i∈J

dCi(qσ′). (4.4.5)

As Ci is a convex and hence a sun, (4.4.4) ensures

dCi(qσ′) = ‖qσ′ − y‖ for all i ∈ J.

Finally we get that

dC(qσ′) = min
i∈J

dCi(qσ′) = ‖qσ′ − y‖,

or equivalently y = PC(qσ′). This contradicts the definition of σ and the proof
is completed. �
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