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Abstract

Prostate cancer (CaP) is the second most diagnosed cancer in men all over

the world. CaP growth is characterized by two main types of evolution: (i)

the slow-growing tumours progress slowly and usually remain confined to

the prostate gland; (ii) the fast-growing tumours metastasize from prostate

gland to other organs, which might lead to incurable diseases. Therefore,

early diagnosis and risk assessment play major roles in patient treatment and

follow-up. In the last decades, new imaging techniques based on Magnetic

Resonance Imaging (MRI) have been developed improving diagnosis. In prac-

tise, diagnosis can be affected by multiple factors such as observer variability

and visibility and complexity of the lesions. In this regard, computer-aided

detection and computer-aided diagnosis systems are being designed to help

radiologists in their clinical practice.

Our research extensively analyzes the current state-of-the-art in the devel-

opment of computer-aided diagnosis and detection systems for prostate can-

cer detection. Currently, no computer-aided system using all available MRI

modalities has been proposed and tested on a common dataset. Therefore, we

propose a new computer-aided system taking advantage of all MRI modalities

(i.e., T2-W-MRI, DCE-MRI, DW-MRI, MRSI). Particular attention is paid

to the normalization of the MRI modalities prior to develop our computer-

aided system. This system has been extensively tested on a dataset which

has been made publicly available.

xxvii



Resum

El càncer de pròstata (CaP) és el segon càncer més diagnosticat en homes a

tot el món. El creixement del CaP es caracteritza per dos tipus principals

d’evolució: (i) els tumors de creixement lent que progressen lentament i en

general romanen confinats en la glàndula de la pròstata; (ii) els tumors de

creixement ràpid que desenvolupen metàstasi de la pròstata a altres òrgans,

el que podria conduir a malalties incurables. Conseqüentment, el diagnòstic

precoç i l’avaluació del risc exerceixen un paper important en el tractament

del pacient i el seguiment. En les últimes dècades s’han desenvolupat noves

tècniques d’imatge basades en imatge de ressonància magnètica (RM, o MRI

de l’anglès) per millorar el diagnòstic. A la pràctica, el diagnòstic pot ser

afectat per diversos factors com ara la variabilitat de l’observador i la visibil-

itat i la complexitat de les lesions. En aquest sentit, s’estan desenvolupant

sistemes per a l’ajuda a la detecció i diagnòstic per ordinador per ajudar els

radiòlegs en la seva pràctica cĺınica.

La nostra recerca analitza àmpliament l’estat de l’art en el desenvolupament

de sistemes per a l’ajuda a la detecció i diagnòstic per ordinador per a la

detecció del càncer de pròstata. En l’actualitat, no hi ha cap sistema d’ajuda

al diagnòstic que utilitzi totes les modalitats de MRI disponibles i que hagi

estat avaluat en un conjunt de dades comú. Per tant, proposem un nou

sistema d’ajuda al diagnòstic per ordinador aprofitant totes les modalitats

de ressonància magnètica (és a dir T2-W-MRI, DCE-MRI, DW-MRI, MRSI).

Com a etapa prèvia al desenvolupament del sistema, es presta especial atenció

a la normalització de les modalitats de ressonància magnètica. El sistema

desenvolupat ha estat avaluat extensivament en un conjunt de dades que

s’han posat a disposició pública.
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Resumen

El cáncer de próstata (CaP) es el segundo cáncer más diagnósticado en

hombres en todo el mundo. El crecimiento del CaP se caracteriza por

dos tipos principales de evolución: (i) los tumores de crecimiento lento

que progresan lentamente y por lo general permanecen confinados en la

glándula de la próstata; (ii) los tumores de crecimiento rápido que desar-

rollan metástasis de la próstata a otros órganos, lo que podŕıa conducir a

enfermedades incurables. Consecuentemente, el diagnóstico precoz y la eval-

uación del riesgo desempeñan un papel importante en el tratamiento del

paciente y el seguimiento. En las últimas décadas se han desarrollado nuevas

técnicas de imagen basadas en imagen de resonancia magnética (RM, o MRI

del inglés) para mejorar el diagnóstico. En la práctica, el diagnóstico puede

ser afectado por varios factores tales como la variabilidad del observador y la

visibilidad y la complejidad de las lesiones. En este sentido, se están desar-

rollando sistemas para la ayuda a la detección y diagnóstico por ordenador

para ayudar a los radiólogos en su práctica cĺınica.

Nuestra investigación analiza ampliamente el estado del arte en el desar-

rollo de sistemas para la ayuda a la detección y diagnóstico por ordenador

para la detección del càncer de próstata. En la actualidad, no existe ningún

sistema de ayuda al diagnóstico que utilice todas las modalidades de MRI

disponibles y que haya sido evaluado en un conjunto de datos común. Por

lo tanto, proponemos un nuevo sistema de ayuda al diagnóstico por orde-

nador aprovechando todas las modalidades de resonancia magnética (es decir

T2W-MRI, DCE-MRI, DW-MRI, MRSI). Como etapa previa al desarrollo

del sistema, se presta especial atención a la normalización de las modalidades

de resonancia magnética. El sistema desarrollado ha sido evaluado extensi-

vamente en un conjunto de datos que se han puesto a disposición pública.
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Résumé

Le cancer de la prostate est le second type de cancer le plus diagnostiqué

au monde. Il est caractérisé par deux evolutions distinctes : (i) les tumeurs

à croissances lentes progressent lentement et restent généralement confinées

dans la glande prostatique; (ii) les tumeurs à croissances rapides se métastasent

de la prostate à d’autres organes périphériques, pouvant causer le dévelopement

de maladies incurables. C’est pour cela qu’un diagnostic précoce et une

évaluation du risque jouent des rôles majeurs dans le traitement et le suivi

du patient. Durant la dernière décénie, de nouvelles méthodes d’imagerie

basées sur l’Imagerie par Résonance Magnétique (IRM) ont été dévelopées.

En pratique, le diagnostic clinique peut être affecté par de multiples fac-

teurs comme la variabilité entre observateurs et la complexité des lésions

lues. Pour ce faire, des systèmes de détection et de diagnostic assisté par

ordinateur (DAO) ont été dévelopés pour aider les radiologistes durant leurs

tâches cliniques.

Notre recherche analyse extensivement l’état de l’art actuel concernant le

dévelopement des systèmes de DAO pour la détection du cancer de la prostate.

Actuellement, il n’éxiste aucun système de DAO utilisant toutes les modalités

IRM disponibles et qui plus est, testé sur une base de données commune.

Par conséquent, nous proposons un nouveau système de DAO tirant profit

de toutes les modalités IRM (i.e., T2W-MRI, DCE-MRI, DW-MRI, MRSI).

Une attention particulière est portée sur la normalisation de ces données

multi-paramétriques avant la conception du système de DAO. De plus, notre

système de DAO a été testé sur une base de données que nous rendons

publique.
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Chapter 1

Introduction

1.1 Prostate anatomy

The prostate is an exocrine gland of the male reproductive system having an inverted

pyramidal shape, which is located below the bladder and in front of the rectum as shown

in Fig. 1.1. It measures approximately 3 cm in height by 2.5 cm in depth and its weight is

estimated from 7 g to 16 g for an adult [144]. The prostate size increases at two distinct

stages during physical development: initially at puberty to reach its normal size, then

again after 60 years of age leading to benign prostatic hyperplasia (BPH) [208].

A zonal classification of the prostate has been suggested by McNeal [181], as de-

picted in Fig. 1.2. Subsequently, this categorization has been widely accepted in the

literature [48, 113, 208, 304] and is used during all medical examinations (e.g., biopsy,

Figure 1.1: Sagittal anatomy scheme of the male reproductive system (copyright by [83]).
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1. INTRODUCTION

(a) Transverse anatomy of the
prostate.

(b) Sagittal anatomy of the prostate.

Figure 1.2: Prostate anatomy with division in different zones. AFT: anterior fibromus-
cular tissue, CZ: central zone, ED: ejaculatory duct, NVB: neurovascular bundle, PUT:
periurethral tissue, PZ: peripheral zone, U: urethra, TZ: transitional zone, B: base, M:
median, A: apex (copyright by [45]).

magnetic resonance imaging (MRI) screening). The classification is based on dividing

the gland into 3 distinct regions: (i) the central zone (CZ) accounting for 20 % to 25 %

of the whole prostate gland, (ii) the transitional zone (TZ) standing for 5 %, and (iii) the

peripheral zone (PZ) representing the 70 %. In MRI images, tissues of CZ and TZ are

difficult to distinguish and are usually merged into a common region, denominated cen-

tral gland (CG). As part of this classification, the prostate is divided into 3 longitudinal

portions depicted in Fig. 1.2(b): (i) base, (ii) median gland, and (iii) apex.

1.2 Prostate carcinoma

Prostate cancer prostate cancer (CaP) has been reported on a worldwide scale to be the

second most frequently diagnosed cancer of men accounting for 13.6 % [73]. Statistically,

in 2008, the number of new diagnosed cases has been estimated to be 899, 000 with no

less than 258, 100 deaths [73]. In United States, aside from skin cancer, CaP is declared

to be the most commonly diagnosed cancer among men, implying that approximately

1 in 6 men will be diagnosed with CaP during their lifetime and 1 in 36 will die from

this disease, causing CaP to be the second most common cause of cancer death among

men [8, 256].

Despite active research to determine the causes of CaP, a fuzzy list of risk factors has

2



1.3 A CaP screening and imaging techniques

arisen [7]. The etiology has been linked to the following factors [7]: (i) family history [89,

268], (ii) genetic factors [1, 11, 76], (iii) race-ethnicity [89, 109], (iv) diet [5, 89, 171],

and (v) obesity [89, 237]. This list of risk factors alone cannot be used to diagnose CaP

and in this way, screening enables early detection and treatment.

CaP growth is characterized by two main types of evolution [270]: slow-growing

tumours, accounting for up to 85 % of all CaPs [169], progress slowly and usually stay

confined to the prostate gland. For such cases, treatment can be substituted with active

surveillance. In contrast, the second variant of CaPs develops rapidly and metastasises

from prostate gland to other organs, primarily the bones [202]. Bone metastases, being

an incurable disease, significantly affects the morbidity and mortality rate [323]. Hence,

the results of the surveillance have to be trustworthy in order to distinguish aggressive

from slow-growing CaP.

CaP is more likely to come into being in specific regions of the prostate. In that

respect, around 70 % to 80 % of CaPs originate in PZ whereas 10 % to 20 % in TZ [37,

182, 266]. Only about 5 % of CaPs occur in CZ [49, 182]. However, those cancers appear

to be more aggressive and more likely to invade other organs due to their locations [49].

1.3 CaP screening and imaging techniques

Current CaP screening consists of three different stages. First, prostate-specific antigen

(PSA) control is performed to distinguish between low- and high-risk CaP. To assert such

diagnosis, samples are taken during prostate biopsy and finally analyzed to evaluate the

prognosis and the stage of CaP. In this section, we present a detailed description of the

current screening as well as its drawbacks.

Since its introduction in mid-1980s, PSA is widely used for CaP screening [71]. A

higher-than-normal level of PSA can indicate an abnormality of the prostate either as a

BPH or a cancer [108]. However, other factors can lead to an increased PSA level such as

prostate infections, irritations, a recent ejaculation, or a recent rectal examination [208].

PSA is found in the bloodstream in two different forms: free PSA accounting for about

10 % and linked to another protein for the remaining 90 %. A level of PSA higher than

10 ng mL−1 is considered to be at risk [208]. If the PSA level is ranging from 4 ng mL−1

to 10 ng mL−1, the patient is considered as suspicious [17]. In that case, the ratio of free

3



1. INTRODUCTION

PSA to total PSA is computed; if the ratio is higher than 15 %, the case is considered

as pathological [208].

A transrectal ultrasound (TRUS) biopsy is carried out for cases which are considered

pathological. At least 6 different samples are taken randomly from the right and left

parts of the 3 different prostate zones: apex, median, and base. These samples are further

evaluated using the Gleason grading system [91]. The scoring scheme to characterize the

biopsy sample is composed of 5 different patterns which correspond to grades ranging

from 1 to 5. A higher grade is associated with a poorer prognosis [70]. Then, in the

Gleason system, 2 scores are assigned corresponding to (i) the grade of the most present

tumour pattern, and (ii) the grade of the second most present tumour pattern [70]. A

higher Gleason score (GS) indicates a more aggressive tumour [70]. Also, it should be

noted that biopsy is an invasive procedure which can result in serious infection or urine

retention [46, 101].

Although PSA screening has been shown to improve early detection of CaP [46], its

lack of reliability motivates further investigations using MRI-based computer-aided de-

tection and diagnosis (CAD). Two reliable studies — carried out in the United States [12]

and in Europe [115, 250] — have attempted to assess the impact of early detection of

CaP, with diverging outcomes [46, 105]. The study carried out in Europe1 concluded

that PSA screening reduces CaP-related mortality by 21 % to 44 % [115, 250], while the

American2 trial found no such effect [12]. However, both studies agree that PSA screen-

ing suffers from low specificity, with an estimated rate of 36 % [249]. Both studies also

agree that over-treatment is an issue: decision making regarding treatment is further

complicated by difficulties in evaluating the aggressiveness and progression of CaP [63].

Hence, new screening methods should be developed with improved specificity of

detection as well as more accurate risk assessment (i.e., aggressiveness and progres-

sion). Current research is focused on identifying new biological markers to replace PSA-

based screening [25, 28, 190]. Until such research comes to fruition, these needs can

be met through active-surveillance strategy using multiparametric MRI (mp-MRI) tech-

niques [108, 189]. An MRI-CAD system, which is an area of active research and forms

1The European randomized study of screening for prostate cancer (ERSSPC) started in the 1990s
in order to evaluate the effect of PSA screening on mortality rate.

2The prostate lung colorectal and ovarian (PLCO) cancer screening trial is carried out in the United
States and intends to ascertain the effects of screening on mortality rate.
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1.4 CAD systems for CaP

the focus of this thesis, can be incorporated into this screening strategy allowing a more

systematic and rigorous follow-up.

Another weakness of the current screening strategy lies in the fact that TRUS biopsy

does not provide trustworthy results. Due to its “blind” nature, there is a chance

of missing aggressive tumours or detecting microfocal “cancers”, which influences the

aggressiveness-assessment procedure [195]. As a consequence, over-diagnosis is esti-

mated at up to 30 % [96], while missing clinically significant CaP is estimated at up

35 % [275]. In an effort to solve both issues, alternative biopsy approaches have been

explored. MRI/ultrasound (UTS)-guided biopsy has been shown to outperform stan-

dard TRUS biopsy [62]. There, mp-MRI images are fused with UTS images in order

to improve localization and aggressiveness assessment to carry out biopsies. Human

interaction plays a major role in biopsy sampling which can lead to low repeatability;

by reducing potential human errors at this stage, the CAD framework can be used to

improve repeatability of examination. CaP detection and diagnosis can benefit from the

use of CAD and MRI techniques.

In an effort to improve the current stage of CaP diagnosis and detection, this thesis

is intended to develop the principles of a mp-MRI-CAD system. A description of the

different MRI modalities is presented in Chap. 2.

1.4 CAD systems for CaP

During the last century, physicists have focused on constantly innovating in terms of

imaging techniques assisting radiologists to improve cancer detection and diagnosis.

However, human diagnosis still suffers from low repeatability, synonymous with erro-

neous detection or interpretations of abnormalities throughout clinical decisions [88, 99].

These errors are driven by two majors causes [88]: observer limitations (e.g., constrained

human visual perception, fatigue or distraction) and the complexity of the clinical cases

themselves, for instance due to imbalanced data — the number of healthy cases is more

abundant than malignant cases — or overlapping structures.

Computer vision has given rise to many promising solutions, but, instead of focusing

on fully automatic computerized systems, researchers have aimed at providing computer

image analysis techniques to aid radiologists in their clinical decisions [88]. In fact,

these investigations brought about both concepts of computer-aided detection (CADe)

5
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and computer-aided diagnosis (CADx) grouped under the acronym CAD. Since those

first steps, evidence has shown that CAD systems enhance the diagnosis performance

of radiologists. Chan et al. reported a significant 4 % improvement in breast cancer

detection [39], which has been confirmed in later studies [61]. Similar conclusions have

been drawn in the case of lung nodule detection [151], colon cancer [216], or CaP as

well [99]. Chan et al. also hypothesized that CAD systems will be even more efficient

assisting inexperienced radiologists than senior radiologists [39]. That hypothesis has

been tested by Hambrock et al. and confirmed in case of CaP detection [99]. In this

particular study, inexperienced radiologists obtained equivalent performance to senior

radiologists, both using CAD whereas the accuracy of their diagnosis was significantly

poorer without CAD’s help.

In contradiction with the aforementioned statement, CAD for CaP is a young tech-

nology due to the fact that is based on a still young imaging technology: MRI [104].

Indeed, four distinct MRI modalities are employed in CaP diagnosis which have been

mainly developed after the mid-1990s: (i) T2 Weighted (T2-W)-MRI [112], (ii) dy-

namic contrast-enhanced (DCE)-MRI [114], (iii) magnetic resonance spectroscopy imag-

ing (MRSI) [135], and (iv) diffusion weighted (DW)-MRI [247]. In addition, the increase

of magnetic field strength in clinical settings, from 1.5 T to 3 T, and the development of

endorectal coils, both improved image spatial resolution [274] needed to perform more

accurate diagnosis. It is for this matter that the development of CAD for CaP is still

lagging behind the fields stated above.

The further chapters aim at first, to provide an overview of the current state-of-the-

art of CAD for CaP and later, according to the drawn conclusions, to propose a CAD

which takes advantages of mp-MRI modalities. A review of the current proposed CAD

for CaP is presented in Chap. 3.

1.5 Research objectives

From the previous section, it is obvious that CaP, as any type of cancers, is one of the

major societal challenges in health care. Until the causes of CaP are remaining unknown,

screening with the use of CAD systems is the only solution. Therefore, the main moti-

vation of this thesis is to design and investigate a CAD system for the detection of CaP.
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1.6 Thesis outline

Furthermore, MRI has been shown to offer promising modalities for prostate screening.

Subsequently, the developed CAD system has to be based on mp-MRI modalities.

To achieve this main objective, we propose to review the current state-of-the-art

of the mono- and multi-parametric CAD systems. From this review, the current sci-

entific barriers will be identified and our proposed mp-MRI CAD has addressed these

drawbacks.

1.6 Thesis outline

This thesis describes the research work which resulted in the development and valida-

tion of several crucial pre-processing steps and ultimately a mp-MRI-CAD system for

the detection of CaP. The different mp-MRI modalities are presented in Chap. 2. Lat-

ter towards the main objective of this thesis, an extensive study of the state-of-the-art

on mono- and multi-parametric MRI CAD systems for CaP detection is presented in

Chap. 3. Chapter 4 presents the materials used and produced along by this thesis.

Chapter 5 contains our first technical contribution regarding a crucial step of normal-

ization for T2-W-MRI and DCE-MRI modalities. Chapter 6 proposes a mp-MRI CAD

system along with extensive experiments and evaluations. Finally, Chap. 7 concludes

the thesis and presents avenues for future research.
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Chapter 2

MRI Imaging Techniques

Magnetic resonance imaging (MRI) provides promising imaging techniques to overcome

the drawbacks of current clinical screening techniques mentioned in Sect. 1. Unlike tran-

srectal ultrasound (TRUS) biopsy, MRI examination is a non-invasive protocol and has

been shown to be the most accurate and harmless technique currently available [294]. In

this section, we review different MRI imaging techniques developed for prostate cancer

(CaP) detection and diagnosis. Features strengthening each modality will receive partic-

ular attention together with their drawbacks. Commonly, these features form the basis

for developing analytic tools and automatic algorithms. However, we refer the reader to

Sect. 3.2.2 for more details on automatic feature detection methods since they are part

and parcel of the CAD framework.

2.1 T2-W-MRI

T2 Weighted (T2-W)-MRI has been the first MRI-modality used to perform CaP di-

agnosis using MRI [112]. Nowadays, radiologists make use of it for CaP detection,

localization, and staging purposes. This imaging technique is well suited to render zonal

anatomy of the prostate [17].

This modality relies on a sequence based on setting a long repetition time (TR),

reducing the T1 effect in nuclear magnetic resonance (NMR) signal measured, and fixing

the echo time (TE) to sufficiently large values in order to enhance the T2 effect of tissues.

Thus, peripheral zone (PZ) and central gland (CG) tissues are well perceptible in these

images. The former is characterized by an intermediate/high-signal intensity (SI) while

9



2. MRI IMAGING TECHNIQUES

(a) T2-W-MRI slice of a
healthy prostate acquire with
a 1.5 T MRI with an endorec-
tal coil. The blue contour
represents the CG while the
PZ corresponds to the green
contour.

(b) T2-W-MRI slice of a
prostate with a CaP high-
lighted in the PZ using a
3 T MRI scanner without an
endorectal coil.

(c) T2-W-MRI slice of a
prostate with a CaP high-
lighted in the CG using a
1.5 T MRI scanner with an
endorectal coil.

Figure 2.1: Rendering of T2-W-MRI prostate image with both 1.5 T and 3 T MRI scanner.

the latter is depicted by a low-SI [113]. An example of a healthy prostate is shown in

Fig. 2.1(a).

In PZ, round or ill-defined low-SI masses are synonymous with CaPs [112] as shown

in Fig. 2.1(b). Detecting CaP in CG is more challenging. In fact both normal CG tissue

and malignant tissue, have a low-SI in T2-W-MRI, reinforcing difficulties to distinguish

one among them. However, CaPs in CG appear often as homogeneous mass possessing

ill-defined edges with lenticular or “water-drop” shapes [4, 17] as depicted in Fig. 2.1(c).

CaP aggressiveness has been shown to be inversely correlated with SI. Indeed, CaPs

assessed with a Gleason score (GS) of 4-5 implied lower SI than the one with a GS of

2-3 [317].

In spite of the availability of these useful and encouraging features, the T2-W modal-

ity lacks reliability [108, 131]. Sensitivity is affected by the difficulties in detecting cancers

in CG [131] while specificity rate is highly affected by outliers [17]. In fact, various condi-

tions emulate patterns of CaP such as benign prostatic hyperplasia (BPH), post-biopsy

hemorrhage, atrophy, scars, and post-treatment [17, 56, 113, 227, 247]. These issues are

partly addressed using more innovative and advanced modalities.

10



2.2 T2 map

(a) T1-W-MRI image where the cancer is
delimited by the red contour. The green
area was still not invaded by the CaP
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(b) Enhancement curve computed during the
DCE-MRI analysis. The red curve is typical
from CaP cancer while the green curve is char-
acteristic of healthy tissue.

Figure 2.2: Illustration of typical enhancement signal observed in DCE-MRI analysis
collected with a 3 T MRI scanner.

2.2 T2 map

As previously mentioned, T2-W-MRI modality shows low sensitivity. Moreover, T2-W-

MRI images are a composite of multiple effects [104]. However, T2 values alone have been

shown to be more discriminative [166] and highly correlated with citrate concentration,

a biological marker in CaP [157, 158].

T2 values are computed using the characteristics of transverse relaxation which is

formalized as in Eq. (2.1).

Mxy(t) = Mxy(0) exp

(
− t

T2

)
, (2.1)

where Mxy(0) is the initial value of Mxy(t) and T2 is the relaxation time.

By rearranging Eq. (2.1), T2 map is computed by performing a linear fitting on the

model presented in Eq. (2.2) using several TE, t = {TE1,TE2, . . . ,TEm}.

ln

[
Mxy(t)

Mxy(0)

]
= − t

T2
. (2.2)

The Fast Spin-Echo (FSE) sequence has been shown to be particularly well suited in

order to build a T2 map and obtain accurate T2 values [156]. Similar to T2-W-MRI, T2

values associated with CaP are significantly lower than those of healthy tissues [87, 157].
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2. MRI IMAGING TECHNIQUES

2.3 DCE-MRI

dynamic contrast-enhanced (DCE)-MRI is an imaging technique which exploits the vas-

cularity characteristic of tissues. Contrast media, usually gadolinium-based, is injected

intravenously into the patient. The media extravasates from vessels to extravascular-

extracellular space (EES) and is released back into the vasculature before being elimi-

nated by the kidneys [94]. Furthermore, the diffusion speed of the contrast agent may

vary due to several parameters: (i) the permeability of the micro-vessels, (ii) their surface

area, and (iii) the blood flow [206].

Healthy PZ is mainly made up of glandular tissue, around 70 % [45], which implies

a reduced interstitial space restricting exchanges between vessels and EES [31, 296].

Normal CG has a more disorganized structure, composed of mainly fibrous tissue [45,

108], which facilitates the arrival of the contrast agent in EES [297]. To understand the

difference between contrast media kinetic in malignant tumours and the two previous

behaviours mentioned, one has to focus on the process known as angiogenesis [35]. In

order to ensure growth, malignant tumours produce and release angiogenic promoter

substances [35]. These molecules stimulate the creation of new vessels towards the

tumour [35]. However, the new vessel networks in tumours differ from those present

in healthy tissue [94]. They are more porous due to the fact that their capillary walls

have a large number of “openings” [45, 94]. In contrast to healthy cases, this increased

vascular permeability results in increased contrast agent exchanges between vessels and

EES [302].

By making use of the previous aspects, DCE-MRI is based on an acquisition of

a set of T1 Weighted (T1-W)-MRI images over time. The gadolinium-based contrast

agent shortens T1 relaxation time enhancing contrast in T1-W-MRI images. The aim is

to post-analyze the pharmacokinetic behaviour of the contrast media concentration in

prostate tissues [302]. The image analysis is carried out in two dimensions: (i) in the

spatial domain on a pixel-by-pixel basis and (ii) in the time domain corresponding to

the consecutive images acquired with the MRI. Thus, for each spatial location, a signal

linked to contrast media concentration is measured as shown in Fig. 2.2(b) [285].

By taking the above remarks into account, CaPs is characterized by a signal having

an earlier and faster enhancement and an earlier wash-out — i.e, the rate of the contrast

agent flowing out of the tissue — as shown in Fig. 2.2(b) [302]. Three different approaches
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2.4 DW-MRI

exist to analyze these signals with the aim of labelling them as corresponding to either

normal or malignant tissues.

Qualitative analysis is based on a qualitative assessment of the signal shape [108].

Quantitative approaches consist of inferring pharmocokinetic parameter values [285].

Those parameters are part of mathematical-pharmacokinetic models which are directly

based on physiological exchanges between vessels and EES. Several pharmacokinetic

models have been proposed such as the Kety model [128], the Tofts model [286], and

mixed models [139, 265]. The last family of methods mixed both approaches and are

grouped together under the heading of semi-quantitative methods. They rely on shape

characterization using mathematical modelling to extract a set of parameters such as

wash-in gradient, wash-out, integral under the curve, maximum signal intensity, time-to-

peak enhancement, and start of enhancement [108, 302]. These parameters are depicted

in Fig. 3.12. It has been shown that semi-quantitative and quantitative methods improve

localization of CaP when compared with qualitative methods [238]. Sect. 3.2.2.2 provides

a full description of quantitative and semi-quantitative approaches.

DCE-MRI combined with T2-W-MRI has shown to enhance sensitivity compared

to T2-W-MRI alone [121, 130, 248, 324]. Despite this fact, DCE-MRI possesses some

drawbacks. Due to its “dynamic” nature, patient motions during the image acquisition

lead to spatial mis-registration of the image set [302]. Furthermore, it has been suggested

that malignant tumours are difficult to distinguish from prostatitis located in PZ and

BPH located in CG [108, 302]. These pairs of tissues tend to have similar appearances.

Later studies have shown that CaPs in CG do not always manifest in homogeneous

fashion. Indeed, tumours in this zone can present both hypo-vascularization and hyper-

vascularization which illustrates the challenge of CaP detection in CG [297].

2.4 DW-MRI

As previously mentioned in the introduction, diffusion weighted (DW)-MRI is the most

recent MRI imaging technique aiming at CaP detection and diagnosis [247]. This modal-

ity exploits the variations in the motion of water molecules in different tissues [133, 142].

The distinction between healthy and CaP in DW-MRI is based on the following

physiological bases. On the one hand, PZ, as previously mentioned, is mainly a glandular

and tubular structure allowing water molecules to move freely [45, 108]. On the other

13



2. MRI IMAGING TECHNIQUES

(a) DW-MRI image ac-
quired with a 1.5 T MRI
scanner. The cancer cor-
responds to the high SI re-
gion highlighted in red.

(b) ADC map computer
after acquisition of DW-
MRI images with 1.5 T
MRI scanner. The cancer
corresponds to the low SI
region highlighted in red.

Figure 2.3: Illustration of of DW-MRI and ADC map. The signal intensity corresponding
to cancer are inversely correlated on these modalities.

hand, CG is made up of muscular or fibrous tissue causing the motion of the water

molecules to be more constrained and heterogeneous than in PZ [108]. Then, CaP

growth leads to the destruction of normal glandular structure and is associated with an

increase in cellular density [108, 133, 261]. Furthermore, these factors both have been

shown to be inversely correlated with water diffusion [133, 261]: higher cellular density

implies a restricted water diffusion. Thus, water diffusion in CaP will be more restricted

than both healthy PZ and CG [108, 133].

From the NMR principle side, DW-MRI sequence produces contrasted images due

to variation of water molecules motion. The method is based on the fact that the signal

in DW-MRI images is inversely correlated to the degree of random motion of water

molecules [118]. In fact, gradients are used in DW MRI modality to encode spatial

location of nuclei temporarily. Simplifying the problem in only one direction, a gradient

is applied in that direction, dephasing the spins of water nuclei. Hence, the spin phases

vary along the gradient direction depending of the gradient intensity at those locations.

Then, a second gradient is applied aiming at cancelling the spin dephasing. Thus, the

immobile water molecules will be subject to the same gradient intensity as the initial one

while moving water molecules will be subject to a different gradient intensity. Thus, spins

of moving water molecules will stay dephased whereas spins of immobile water molecules

will come back in phase. As a consequence, a higher degree of random motion results in
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2.5 ADC map

a more significant signal loss whereas a lower degree of random motion is synonymous

with lower signal loss [118]. Under these conditions, the MRI signal is measured as:

Mx,y (t, b) = Mx,y(0) exp

(
− t

T2

)
SADC(b) , (2.3)

SADC(b) = exp (−b×ADC) , (2.4)

where SADC refers to signal drop due to diffusion effect, ADC is the apparent diffusion

coefficient, and b is the attenuation coefficient depending only on the gradient pulses

parameters: (i) gradient intensity and (ii) gradient duration [141].

By using this formulation, image acquisition with a parameter b equal to 0 s mm−2

corresponds to a T2-W-MRI acquisition. Then, increasing the attenuation coefficient b

— i.e., increase gradient intensity and duration — enhances the contrast in DW-MRI

images.

To summarize, in DW-MRI images, CaPs are characterized by high-SI compared to

normal tissues in PZ and CG as shown in Fig. 2.3(a) [17]. However, some tissues in CG

can look similar to CaP with higher SI [17].

Diagnosis using DW-MRI combined with T2-W-MRI has shown a significant im-

provement compared with T2-W-MRI alone and provides highly contrasted images [45,

207, 254]. As drawbacks, this modality suffers from poor spatial resolution and speci-

ficity due to false positive detection [45]. With a view to eliminate these drawbacks,

radiologists use quantitative maps extracted from DW-MRI, which is presented in the

next section.

2.5 ADC map

The NMR signal measured for DW-MRI images is not only affected by diffusion as

shown in Eq. (2.3). However, the signal drop — Eq. (2.4) — is formulated such that the

only variable is the acquisition parameter b [141]. The ADC is considered as a “pure”

diffusion coefficient and is extracted to build a quantitative map known as the ADC

map. From Eq. (2.3), it is clear that performing multiple acquisitions only varying b will

not have any effect on the term Mx,y(0) exp
(
− t

T2

)
. Thus, Eq. (2.3) can be rewritten
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2. MRI IMAGING TECHNIQUES

as:

S(b) = S0 exp (−b×ADC) . (2.5)

To compute the ADC map, a minimum of two acquisitions are necessary: (i) for b

equal to 0 s mm−2 where the measured signal is equal to S0, and (ii) b1 greater than

0 s mm−2, typically 1000 s mm−2. Then, the ADC map can be computed as:

ADC = −
ln

(
S(b1)

S0

)
b1

. (2.6)

More accurate ADC maps are computed by acquiring a set of images with different

values for the parameter b and fitting linearly a semi-logarithm function using the model

presented in Eq. (2.5).

Regarding the appearance of the ADC maps, it has been previously stated that by

increasing the value of b, the signal of CaP tissue increases significantly. Considering

Eq. (2.6), the tissue appearance in the ADC map is the inverse of DW-MRI images.

Then, CaP tissue is associated with low-SI whereas healthy tissue appears brighter as

depicted in Fig. 2.3(b) [17].

Similar to the gain achieved by DW-MRI, diagnosis using ADC map combined with

T2-W-MRI significantly outperforms T2-W-MRI alone [45, 66]. Moreover, it has been

shown that ADC coefficient is correlated with GS [98, 120, 215].

However, some tissues of the CG mimic CaP with low-SI [131] and image distortion

can arise due to hemorrhage [45]. It has also been noted that a high variability of the

ADC occurs between different patients making it difficult to define a static threshold to

distinguish CaP from non-malignant tumours [45].

2.6 MRSI

CaP induces metabolic changes in the prostate compared with healthy tissue. Thus,

CaP detection can be carried out by tracking changes of metabolite concentration in

prostate tissue. magnetic resonance spectroscopy imaging (MRSI) is an NMR-based

technique which generates spectra of relative metabolite concentration in a region of

interest (ROI).
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2.6 MRSI

(a) Illustration of an MRSI spectrum of a
healthy voxel acquired with a 3 T MRI.

(b) Illustration of an MRSI spectrum of a can-
cerous voxel acquired with a 3 T MRI.

Figure 2.4: Illustration of an MRSI spectrum for both healthy and cancerous voxels with
a 3 T MRI. The highlighted areas correspond to the related concentration of the metabolites
which is computed by integrating the area under each peak. Acronyms: choline (Cho),
spermine (Spe), creatine (Cr) and citrate (Cit).

In order to track changes of metabolite concentration, it is important to know which

metabolites are associated with CaP. To address this question, clinical studies identified

three biological markers: (i) citrate, (ii) choline, and (iii) polyamines composed mainly

of spermine, and in less abundance of spermidine and putrescine [16, 55, 90].

Citrate is involved in the production and secretion of the prostatic fluid, and the

glandular prostate cells are associated with a high production of citrate enabled by zinc

accumulation by these same cells [55]. However, the metabolism allowing the accumula-

tion of citrate requires a large amount of energy [55]. In contrast, malignant cells do not

have high zinc levels leading to lower citrate levels due to citrate oxidization [55]. Fur-

thermore, this change results in a more energy-efficient metabolism enabling malignant

cells to grow and spread [55].

An increased concentration of choline is related to CaP [16]. Malignant cell de-

velopment requires epigenetic mechanisms resulting in metabolic changes and relies on

two mechanisms: deoxyribonucleic acid (DNA) methylation and phospholid metabolism

which both result in choline uptake, explaining its increased level in CaP tissue [16].

Spermine is also considered as a biological marker in CaP [90, 295]. In CaP, reduction

of the ductal volume due to shifts in polyamine homeostasis might lead to a reduced

spermine concentration [295].

To determine the concentration of these biological markers, one has to focus on

the MRSI modality. In theory, in presence of a homogeneous magnetic field, identical
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2. MRI IMAGING TECHNIQUES

nuclei precesses at the same operating frequency known as the Lamor frequency [95].

However, MRSI is based on the fact that identical nuclei will slightly precess at different

frequencies depending on the chemical environment in which they are immersed [95],

a phenomenon known as the chemical shift effect (CSE) [208]. Given this property,

metabolites are identified and their concentrations are determined. In this regard, the

Fourier transform is used to obtain the frequency spectrum of the NMR signal [95, 208].

In this spectrum, each peak is associated with a particular metabolite and the area under

each peak corresponds to the relative concentration of this metabolite, as illustrated in

Fig. 2.4 [208].

Two different quantitative approaches are used to decide whether or not the spectra

of a ROI is associated with CaP: (i) relative quantification or (ii) absolute quantifica-

tion [145]. In relative quantification, the ratio of choline-polyamines-creatine to citrate

is computed. The integral of the signal is computed from choline to creatine — i.e.,

from 3.21 ppm to 3.02 ppm — because the peaks in this region can be merged at clinical

magnetic field strengths [108, 295], as depicted in Fig. 2.4). Considering the previous

assumptions that choline concentration rises and citrate concentration decreases in the

presence of CaP, the ratio computed should be higher in malignant tissue than in healthy

tissue.

In contrast with relative quantification, absolute quantification measures molar con-

centrations by normalizing relative concentrations using water as reference [145]. In

this case, “true” concentrations are directly used to differentiate malignant from healthy

tissue. However, this method is not commonly used as it requires an additional step of

acquiring water signals, inducing time and cost acquisition constraints.

MRSI allows examination with high specificity and sensitivity compared to other

MRI modalities [45]. Furthermore, it has been shown that combining MRSI with MRI

improves detection and diagnosis performance [124, 246, 303]. Citrate and spermine

concentrations are inversely correlated with the GS allowing us to distinguish low- from

high- grade CaPs [90]. However, choline concentration does not provide the same prop-

erties [90].

Unfortunately, MRSI also presents several drawbacks. First, MRSI acquisition is time

consuming which prevents this modality from being used in daily clinical practise [17].

In addition, MRSI suffers from low spatial resolution due to the fact that signal-to-

noise (SNR) is linked to the voxel size. However, this issue is addressed by developing
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2.7 Summary and conclusions

new scanners with higher magnetic field strengths such as 7.5 T [90]. Finally, a high

variability of the relative concentrations between patients has been observed [45]. The

same observation has been made depending on the zones studied (ie., PZ, CG, base,

mid-gland, apex) [145, 316]. Due to this variability, it is difficult to use a fixed threshold

in order to differentiate CaP from healthy tissue.

2.7 Summary and conclusions

Table 2.1 provides an overview of the different modalities presented in the previous

section. Indeed, each MRI modality alone provides a different discriminative level to

distinguish CaP from healthy tissue. A recurrent statement in the literature is, how-

ever, the ability to combine these MRI modalities would lead to the best diagnosis

performance. In this regard, we will present in the next chapter automatic tools which

have been developed to design multiparametric MRI (mp-MRI) CAD systems for the

detection of CaP.
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Table 2.1: Overview of the features associated with each MRI modality used for medical diagnosis by radiologists. Acronyms:
prostate cancer (CaP) - signal intensity (SI) - Gleason score (GS).

Modality Significant features CaP Healthy tissue GS correlation

T2-W-MRI SI low-SI in PZ [113] intermediate to high-SI in PZ [113] + [317]
Shape round or ill-defined mass in PZ [112] 0
SI low-SI in CG [4, 17] low-SI in CG [4, 17] 0
Shape homogeneous mass with ill-defined

edges in CG [4, 17]
0

T2 map SI low-SI [87, 157] intermediate to high-SI [87, 157] + [157, 158, 166]

DCE MRI Semi-quantitative features [302]:
• wash-in faster slower 0
• wash-out faster slower 0
• integral under the curve higher lower 0
• maximum signal intensity higher lower 0
• time-to-peak enhancement faster slower 0

Quantitative features (Tofts’ parame-
ters [285]):
• kep higher lower 0
• Ktrans higher lower 0

DW MRI SI higher-SI [17, 118] lower-SI [17, 118] +

ADC map SI low-SI [17] high-SI [17] + [98, 120, 215]

MRSI Metabolites:
• citrate (2.64 ppm) [301] lower concentration [16, 55, 295] higher concentration [16, 55, 295] + [90]
• choline (3.21 ppm) [301] higher concentration [16, 55, 295] lower concentration [16, 55, 295] 0 [90]
• spermine (3.11 ppm) [301] lower concentration [16, 55, 295] higher concentration [16, 55, 295] + [90]

Notes:
+ = significantly correlated;
0 = no correlation.
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Chapter 3

Review of CAD sytems for CaP

As previously mentioned Sect. 1.4, computer-aided detection and diagnosiss (CADs) are

developed to advise and backup radiologists in their tasks of prostate cancer (CaP)

detection and diagnosis, but not to provide fully automatic decisions [88]. CADs can be

divided into two different sub-groups: either as computer-aided detection (CADe), with

the purpose to highlight probable lesions in magnetic resonance imaging (MRI) images,

or computer-aided diagnosis (CADx), which focuses on differentiating malignant from

non-malignant tumours [88]. Moreover, an intuitive approach, motivated by developing a

framework combining detection-diagnosis, is to mix both CADe and CADx by using the

output of the former mentioned as a input of the latter named. Although the outcomes

of these two systems should differ, the framework of both CAD systems is similar. A

general CAD work-flow is presented in Fig. 3.1.

MRI modalities mentioned in Chap. 2 are used as inputs of CAD for CaP. These im-

ages acquired from the different modalities show a large variability between patients: the

prostate organ can be located at different positions in images — due to patient motion,

variation of acquisition plan — and the signal intensity (SI) can be corrupted with noise

or artifacts during the acquisition process caused by the magnetic field non-homogeneity

or the use of endorectal coil. To address these issues, the first stage of CAD is to pre-

process multiparametric MRI (mp-MRI) images to reduce noise, remove artifacts, and

standardize the SI. Subsequently, most of the later processes are only focusing on the

prostate organ; therefore it is necessary to segment the prostate in each MRI modality

to define it as a region of interest (ROI). However, data may suffer from misalignment

due to patient motions or different acquisition parameters. Therefore, a registration
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Pre-processing

Segmentation

Registration

Image regularization

Features
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Features
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T2-W MRI
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DCE MRI

DW MRI

ADC

MRSI

Figure 3.1: Common CAD framework based on MRI images used to detect CaP.

step is usually performed so that all the previously segmented MRI images are in the

same reference frame. Registration and segmentation can be swapped depending on the

strategy chosen.

Some studies do not fully apply the methodology depicted in Fig. 3.1. Details about

those can be found in Table 3.1. Some studies bypass the pre-processing stages to proof

the robustness of their approaches to noise or other artifacts, by using directly the raw

data as inputs of their CAD systems. In some cases, prostate segmentation is performed

manually as well as registration. Sometimes, it is also assumed that no patient motions

occur during the acquisition procedure, removing the need of registering the mp-MRI

images.

Once the data are regularized, it becomes possible to extract features and classify the

data to obtain either the location of possible lesions (i.e., CADe) or/and the malignancy

nature of these lesions (i.e., CADx).

In a CADe framework, possible lesions are segmented automatically and further used

as input of a CADx. Nevertheless, some works also used a fusion of CADe-CADx frame-

work in which a voxel-based features are directly used, in which the location of the
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malignant lesions are obtained as results. On the other hand, manual lesions segmenta-

tion is not considered to be part of CADe.

CADx is composed of the processes allowing to distinguish malignant from non-

malignant tumours. Here, CaP malignancy is defined using the grade of the Gleason

score (GS) determined after post biopsy or prostatectomy. As presented in Fig. 3.1,

CADx is usually composed of the three common steps used in a classification framework:

(i) features detection, (ii) feature extraction/selection, and (iii) feature classification.

This chapter is organized using the methodology presented in Fig. 3.1. Methods em-

bedded in the image regularization framework are presented initially to subsequently

focus on the image classification framework, being divided into CADe and CADx. Fi-

nally, we present a summary of the results reported in the state-of-the-art as well as a

discussion that follows. Table 3.1 summarizes the 56 different CAD studies reviewed in

this section. The first set of information reported is linked to the data acquisition such

as the number of patients included in the study, the modalities acquired as well as the

strength of the field of the scanner used. Subsequently, information about the prostate

zones considered in the CAD analysis — i.e. peripheral zone (PZ) or central gland (CG)

— are reported since that detecting CaP in the CG is a more challenging problem and

has received particular attention only in the recent publications.

The papers have been selected by investigating referenced international peer-reviewed

journals as well as international peer-reviewed conferences. Additionally, a breadth-

search first (or snowball sampling) have been used to refine missing publications. Only

studies proposing CAD systems specifically for CaP have been reviewed.
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Table 3.1: Overview of the different studies reviewed with their main characteristics. Acronyms: number (#) - image regularization
(Reg.). Notes: 7: not used or not implemented; 3!: partially implemented; 3: used or implemented.

Index Study
# MRI-modality Strength of field Studied zones CAD stages

Cases T2-W DCE DW MRSI 1.5 T 3 T PZ CG Reg. CADe CADx

[9, 10] Ampeliotis et al. 25 3 3 7 7 3 7 3 7 3! 7 3

[13] Antic et al. 53 3 7 3 7 3 7 3 3 7 7 3

[14] Artan et al. 10 3 3 3 7 3 7 3 7 7 3 3

[15] Artan et al. 21 3 3 3 7 3 7 3 7 3! 3 3

[33, 34] Cameron et al. 5/13 3 7 3 7 7 3 3 3 7 3 3

[40] Chan et al. 15 3 7 3 7 3 7 3 7 7 7 3

[47] Chung et al. 20 3 7 3 7 7 3 3 3 7 3 3

[85, 86] Giannini et al. 10/56 3 3 3 7 3 7 3 7 3 3 3

[127] Kelm et al. 24 7 7 7 3 3 7 3 3 3! 3 3

[129] Khalvati et al. 20 3 7 3 7 7 3 3 3 7 3 3

[137] Langer et al. 25 3 3 3 7 3 7 3 7 3! 7 3

[143] Lehaire et al. 35 3 3 3 7 3 7 3 7 3! 7 3

[163] Litjens et al. 188 3 3 3 7 7 3 3 7 3! 3 3

[164] Litjens et al. 288 3 3 3 7 7 3 3 3 3! 3 3

[161] Litjens et al. 347 3 3 3 7 7 3 3 3 3! 3 3

[167] Liu et al. 11 3 3 3 7 3 7 3 7 3! 3 3

[165] Liu et al. 54 3 3 3 7 7 3 3 3 3! 7 3

[168] Lopes et al. 27 3 7 7 7 3 7 3 7 3! 3 3

[170] Lv et al. 55 3 7 7 7 3 7 3 7 3! 7 3

[179] Matulewicz et al. 18 7 7 7 3 7 3 3 3 7 3 3

[180] Mazzetti et al. 10 7 3 7 7 3 7 3 7 3! 3 3

[193, 194] Niaf et al. 23/30 3 3 3 7 3 7 3 7 3! 7 3
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[204, 205] Ozer et al. 20 3 3 3 7 3 7 3 7 3! 3 3

[209] Parfait et al. 22 7 7 7 3 7 3 3 3 3! 3 3

[215] Peng et al. 48 3 3 3 7 7 3 3 3 7 7 3

[223] Puech et al. 100 7 3 7 7 3 7 3 3 7 7 3

[229, 231] Rampun et al. 45 3 7 7 7 3 7 3 7 7 3 3

[229, 232, 233] Rampun et al. 45 3 7 7 7 3 7 3 7 7 3 3

[244] Samarasinghe et al. 40 7 3 7 7 7 3 3 7 3! 7 3

[273] Sung et al. 42 7 3 7 7 7 3 3 3 7 3 3

[278] Tiwari et al. 14 7 7 7 3 3 7 3 3 3! 3 3

[279] Tiwari et al. 18 7 7 7 3 3 7 3 3 3! 3 3

[280] Tiwari et al. 18 7 7 7 3 3 7 3 3 3! 3 3

[281] Tiwari et al. 15 3 7 7 3 3 7 3 3 3! 3 3

[282] Tiwari et al. 19 3 7 7 3 3 7 3 3 3! 3 3

[283] Tiwari et al. 36 3 7 7 3 3 7 3 3 7 3 3

[284] Tiwari et al. 29 3 7 7 3 3 7 3 3 3! 3 3

[290, 291] Trigui et al. 34 3 3 3 3 7 3 3 3 3! 3 3

[307] Viswanath et al. 16 3 7 7 3 3 7 3 3 7 3 3

[306] Viswanath et al. 6 3 3 7 7 7 3 3 3 3! 3 3

[308] Viswanath et al. 6 3 3 7 7 7 3 3 3 3 3 3

[309] Viswanath et al. 12 3 3 3 7 7 3 3 3 3! 3 3

[310] Viswanath et al. 22 3 7 7 7 7 3 3 3 3 3 3

[311] Vos et al. 29 3 3 7 7 3 7 3 7 3! 7 3

[312] Vos et al. 29 7 3 7 7 3 7 3 7 3! 7 3

[313] Vos et al. 29 3 3 7 7 3 7 3 7 3! 7 3

[314] Vos et al. NA 3 3 3 7 7 3 3 7 3! 3 3
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Figure 3.2: Illustration of a Gaussian and Rayleigh distribution. Although the mode of
these distributions are identical, it can be noted that the Rayleigh distribution (µ = 1.253)
is suffering of a bias term when compared with the Gaussian distribution (µ = 1).

3.1 Image regularization framework

This section provides a review of the methods used in CADs for CaP in order to regular-

ize the mp-MRI images. At first, we present the pre-processing methods in Sect. 3.1.1,

focusing mainly on the denoising and artefacts removal methods as well as standard-

ization of SI. Section 3.1.2 and Sect. 3.1.3 summarize the segmentation and registration

methods, which are processes allowing the CAD to only operate on the prostate organ

and ensuring that the mp-MRI images are aligned in the same reference frame.

3.1.1 Pre-processing

Three different groups of pre-processing methods are commonly applied to images as

initial stage in CADs for CaP. These methods are explained for both MRI and MRSI

modalities.

3.1.1.1 MRI modalities

Noise filtering The nuclear magnetic resonance (NMR) signal, measured and ac-

quired in the k-space, is affected by noise. This noise obeys a complex Gaussian white
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3.1 Image regularization framework

noise mainly due to thermal noises in the patient [196]. Furthermore, MRI images visual-

ized by radiologists are in fact the magnitude images resulting from the complex Fourier

transform of the k-space data. The complex Fourier transform does not affect the Gaus-

sian noise characteristics since this is a linear and orthogonal transform [196]. However,

the calculation of the magnitude is a non-linear transform — i.e., the square root of the

sum of squares of real and the imaginary parts — implying that the noise distribution

is no longer Gaussian; it indeed follows a Rician distribution making the denoising task

more challenging. Briefly, a Rician distribution is characterized as follows: in low-SI

region (low-signal-to-noise (SNR)), it can be approximated with a Rayleigh distribution

while in high-SI region (high-SNR), it is similar to a Gaussian distribution [178]. Refer

to Fig. 3.2 to observe the difference between a Gaussian and a Rayleigh distribution.

Comprehensive reviews regarding denoising methods can be found in [30, 188].

Median filtering is the simplest approach used to address the denoising issue in MRI

images [204, 205]. In both studies, Ozer et al. [204, 205] used a square-shaped kernel of

size 5 px× 5 px.

More recently, Rampun et al. used a combination of median and anisotropic diffusion

filter [229, 231, 232, 233], proposed in [159]. In low-SNR images, the gradient generated

by an edge and noise can be similar, making the denoising by diffusion more challenging.

In this condition, the threshold allowing to locally differentiate a noise gradient from

an edge gradient needs to be increased, at the cost of blurring edges after filtering.

Therefore, Ling and Bovik [159] proposed to apply a standard anisotropic diffusion filter

with a low threshold followed by a median filtering to remove large noise spikes.

Samarasinghe et al. filtered DCE-MRI images with a sliding 3D Gaussian filter [244].

However, from a theoretical point of view, this simple filtering method is not well for-

malized to address the noise distribution in MRI images. That is why more complex

approaches have been proposed to overcome this problem. Another common method

used to denoise MRI images is based on wavelet decomposition and shrinkage. This

filtering exploits the sparsity property of the wavelet decomposition. The projection of a

noisy signal from the spatial-domain to the wavelet-domain implies that only few wavelet

coefficients contribute to the “signal-free noise” while all wavelet coefficients contribute

to the noise [65]. Therefore, insignificant wavelet coefficients are thresholded/attenuated

to enforce the sparsity in the wavelet-domain, which results to a denoising process in the
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spatial domain. Investigations focus on the strategies to perform the most adequate coef-

ficient shrinkage (e.g., thresholding, singularity property, or Bayesian framework) [218].

Ampeliotis et al. denoised the magnitude MRI images [9, 10] — i.e., T2-W-MRI and

DCE-MRI — by wavelet shrinkage, using thresholding techniques [175]. However, since

the wavelet transform is an orthogonal transform, the Rician distribution of the noise

is preserved in the wavelet-domain. Hence, for low-SNR, the wavelet and scaling coef-

ficients still suffer from a bias due to this specific noise distribution [196]. That is why,

Lopes et al. filtered T2-W-MRI images [168], using the method proposed in [219] based

on joint detection and estimation theory. In this approach, the wavelet coefficients “free-

of-noise” are estimated from the noisy wavelet coefficients using a maximum a posteriori

(MAP) estimate. Furthermore, the designed estimator takes spatial context into account

by including both local and global information in the prior probabilities. The different

probabilities needed by the MAP are empirically estimated by using mask images, rep-

resenting the locations of the significant wavelet coefficients. These mask images are

computed by thresholding the detail images obtained from the wavelet decomposition.

To remove the bias from the wavelet and scaling coefficients, the squared magnitude

MRI image is computed instead of the magnitude MRI image as proposed in [196]. This

involves changing the Rician distribution to a scaled non-central Chi-squared distribu-

tion. It implies that the wavelet coefficients are also unbiased estimators and the scaling

coefficients are unbiased estimators but up to a constant C as defined in Eq. (3.1) which

needs to be subtracted from each scaling coefficient such as:

C = 2(J+1)σ̂2 , (3.1)

where J is the number of levels of the wavelet decomposition and σ̂ is an estimate of the

noise standard deviation.

Bias correction Besides being corrupted by noise, MRI images are also affected by

the inhomogeneity of the MRI field commonly referred to as bias field [272]. This bias

field results in a smooth variation of the SI through the image. When an endorectal

coil is used, a resulting artifact of an hyper-intense signal is observed around the coil

as depicted in Fig. 3.3. As a consequence, the SI of identical tissues varies depending

on their spatial location in the image making further processes such as segmentation,

28



3.1 Image regularization framework

Figure 3.3: Example of artifacts with high SI due to perturbation from the endorectal coil
which create non-homogeneity.

registration, or classification more challenging [123, 315]. A comprehensive review of

bias correction methods is proposed in [315].

The model of image formation is usually formalized as:

s(x) = o(x)b(x) + η(x) , (3.2)

where s(x) is the corrupted SI at the pixel for the image coordinates x = {x, y}, o(x)

is the “noise-free signal” , b(x) is the bias field function and η(x) is an additive white

Gaussian noise.

Hence, the task of bias correction involves estimating the bias function b(x) in order

to infer the “signal-free bias” o(x).

Viswanath et al. corrected this artifact on T2-W-MRI images [308], using the model

proposed in [272], in which Styner et al. model the bias field function by using a linear

combination of Legendre polynomials fi as:

b̂(x,p) =
m−1∑
i=0

pifi(x) (3.3)

=

l∑
i=0

l−i∑
j=0

pijPi(x)Pj(y) ,

where b̂(·) is the bias estimation with the image coordinates x = {x, y} and the m

coefficients of the linear combination p = p11, . . . , pij ; m can be defined as m = (l +

1) (l+2)
2 where l is the degree of Legendre polynomials chosen and Pi(·) denotes a Legendre
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polynomial of degree i.

This family of functions offers to model the bias function as a smooth inhomogeneous

function across the image. To estimate the set of parameters p, a cost function is defined

which relies on the following assumptions: (i) an image is composed of k regions with

a mean µk and a variance σ2
k for each particular class, and (ii) each noisy pixel belongs

to one of the k regions with its SI value close to the class mean µk. Hence, the cost

function is defined as:

C(p) =
∑
x

∏
k

ρk(s(x)− b̂(x,p)− µk) , (3.4)

ρk(x) =
x2

x2 + 3σ2
k

, (3.5)

where ρk(·) is a M-estimator allowing estimations to be less sensitive to outliers than

the usual squared distance [154].

Finally, the parameters p are estimated by finding the minimum of the cost func-

tion C(p), which was optimized using the non-linear (1 + 1) Evolution Strategy (ES)

optimizer [271].

In a later publication, Viswanath et al. [310] as well as Giannini et al. [86] corrected

T2-W-MRI using the well known N3 algorithm [258] in which Sled et al. infer the bias

function using the probability density functions (PDFs) of the signal and bias. Tak-

ing advantage of the logarithm property, the model in Eq. (3.2) becomes additive as

expressed in Eq. (3.6).

log s(x) = log b(x) + log

(
o(x) +

η(x)

b(x)

)
,

≈ log b(x) + log ô(x) , (3.6)

where ô(x) is the signal only degraded by noise. Sled et al. show that Eq. (3.6) is related

to PDFs such that:

S(s) = B(s) ∗O(s) , (3.7)

where S(·), B(·), and O(·) are the PDFs of s(·), b(·), and o(·), respectively.
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The corrupted signal s is restored by finding the multiplicative field b which max-

imizes the frequency content of the distribution O. Sled et al. [258] argued that a

brute-force search through all possible fields b and selecting the one which maximizes

the high frequency content of O is possible but far too complex. By assimilating the

bias field distribution to be a near Gaussian distribution as a priori, it is then possible

to infer the distribution O using the Wiener deconvolution given B and S and later

estimate the corresponding smooth field b.

Lv et al. corrected the non-homogeneity in T2-W-MRI images [170] by using the

method proposed in [173]. Madabhushi et al. [173] proposed to correct the MRI images

by detecting the image foreground via generalized scale (g-scale) in an iterative manner

and estimating a bias field function based on a 2nd order polynomial model. First, the

background of the MRI image is eliminated by thresholding, in which the threshold

value is commonly equal to the mean SI of the considered image. Then, a seeded region

growing algorithm is applied in the image foreground, considering every thresholded pixel

as a potential seed. However, pixels already assigned to a region are not considered any

more as a potential seed. As in seeded region growing algorithm [252], two criteria

are taken into account to expand a region. First, the region grows using a connected-

neighbourhood, initially defined by the user. Then, the homogeneity of SI is based on a

fuzzy membership function taking into account the absolute difference of two pixel SI.

Depending on the membership value — corresponding to a threshold which needs to be

defined — the pixel considered is merged or not to the region. Once this segmentation

is performed, the largest region R is used as a mask to select pixels of the original image

and the mean SI, µR, is computed. The background variation b(x) is estimated as:

b(x) =
s(x)

µR
, ∀x ∈ R , (3.8)

where s(x) is the original MRI image.

Finally, a 2nd order polynomial b̂Θ(x) is fitted in a least-squares sense as in Eq. (3.9),

Θ̂ = arg min
Θ

|b(x)− b̂Θ(x)|2, ∀x ∈ R . (3.9)

Finally, the whole original MRI image is corrected by dividing it by the estimated

bias field function b̂Θ(x). The convergence is reached when the number of pixels in the

largest region R does not change significantly between two iterations.
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SI normalization/standardization As discussed in the later section, segmentation

or classification tasks are usually composed of a learning stage using a set of training

patients. Hence, one can emphasize the desire to perform automatic diagnosis with a

high repeatability or in other words, one would ensure to obtain consistent SI of tissues

across patients of the same group — i.e., healthy patients vs. patients with CaP —

for each MRI modality. However, it is a known fact that variability between patients

occurs during the MRI examinations even using the same scanner, protocol or sequence

parameters [197]. Hence, the aim of normalization or standardization of the MRI data

is to remove the variability between patients and enforce the repeatability of the MRI

examinations. These standardization methods are categorized either as statistical-based

standardization or organ SI-based standardization

Artan et al. [14, 15], Ozer et al. [204, 205], and Rampun et al. [229, 230, 231, 232, 233]

standardized T2-W-MRI, DCE-MRI, and DW-MRI images by computing the standard

score (also called z-score) of the pixels of the PZ as:

Is(x) =
Ir(x)− µpz

σpz
, ∀x ∈ PZ , (3.10)

where Is(x) is the standardized SI with the image coordinates x = {x, y}, Ir(x) is the

raw SI, µpz is the mean SI of the PZ and σpz is the SI standard deviation in the PZ.

This transformation enforces the image PDF to have a zero mean and a unit standard

deviation. In a similar way, Liu et al. normalized T2-W-MRI by making use of the

median and inter-quartile range for all the pixels [165].

Lv et al. scaled the SI of T2-W-MRI images using the method proposed in [198]

based on PDF matching [170]. This approach is based on the assumption that MRI

images from the same sequence should share the same PDF appearance. Hence, one

can approach this issue by transforming and matching the PDFs using some statistical

landmarks such as quantiles. Using a training set, these statistical landmarks — such as

minimum, 25th percentile, median, 75th percentile, and maximum — are extracted for

N training images:
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Figure 3.4: Example of piecewise linear normalization as proposed in [198].

Φ0 = {φ1
0, φ

2
0, · · · , φN0 } ,

Φ25 = {φ1
25, φ

2
25, · · · , φN25} ,

Φ50 = {φ1
50, φ

2
50, · · · , φN50} , (3.11)

Φ75 = {φ1
75, φ

2
75, · · · , φN75} ,

Φ100 = {φ1
100, φ

2
100, · · · , φN100} ,

where φi
th

nth is the nth percentile of the ith training image.

Then, the mean of each statistical landmarks {Φ̄0, Φ̄25, Φ̄50, Φ̄75, Φ̄100} is also calcu-

lated. Once this training stage is performed, a piecewise linear transformation T(·) is

computed as in Eq. (3.12). For each test image t, this transformation maps each sta-

tistical landmark ϕ(·)
t of the image t to the pre-learned statistical landmarks Φ̄(·). An

example of such piecewise linear function is depicted in Fig. 3.4.

T(s(x)) =



dΦ̄0 + (s(x)− ϕt0)
(

Φ̄25−Φ̄0

ϕt
25−ϕt

0

)
e , if ϕt0 ≤ s(x) < ϕt25) ,

dΦ̄25 + (s(x)− ϕt25)
(

Φ̄50−Φ̄25

ϕt
50−ϕt

25

)
e , if ϕt25 ≤ s(x) < ϕt50) ,

dΦ̄50 + (s(x)− ϕt50)
(

Φ̄75−Φ̄50

ϕt
75−ϕt

50

)
e , if ϕt50 ≤ s(x) < ϕt75) ,

dΦ̄75 + (s(x)− ϕt75)
(

Φ̄100−Φ̄75

ϕt
100−ϕt

75

)
e , if ϕt75 ≤ s(x) ≤ ϕt100) ,

(3.12)
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(a) Illustration and location of
the bladder on a T2-W-MRI im-
age acquired with a 3 T MRI
scanner

(b) Illustration and location of
the femoral arteries on a T1-W-
MRI image acquired with a 3 T
MRI scanner

Figure 3.5: Illustration of the two organs used in [193, 194] to normalize T2-W-MRI and
T1-W-MRI images.

Viswanath et al. used a variant of the piecewise linear normalization presented

in [172], to standardize T2-W-MRI images [308, 309, 310]. Instead of computing the

PDF of an entire image, a pre-segmentation of the foreground is carried out via g-scale

which has been discussed in the bias correction section. Once the foreground is detected,

the largest region is extracted, and the regular piecewise linear normalization is applied.

The standardization problem can be tackled by normalizing the MRI images using

the SI of some known organs present in these images. Niaf et al. and Lehaire et al.

normalized T2-W-MRI images by dividing the original SI of the images by the mean

SI of the bladder [143, 193, 194], which is depicted in Fig. 3.5(a). Giannini et al. also

normalized the same modality but using the signal intensity of the obturator muscle [86].

Likewise, Niaf et al. standardized the T1-W-MRI images using the arterial input function

(AIF) [193]. They computed the AIF by taking the mean of the SI in the most enhanced

part of the common femoral arteries — refer to Fig. 3.5(b) — as proposed in [320]. Along

the same line, Samarasinghe et al. normalized the SI of lesion regions in T1-W-MRI using

the mean intensity of the prostate gland in the same modality [244].

3.1.1.2 MRSI modality

As presented in Sect. 2.6, MRSI is a modality related to a one dimensional signal. Hence,

specific pre-processing steps for this type of signals have been applied instead of standard

signal processing methods.
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Figure 3.6: Illustration of phase misalignment in an MRSI spectra acquired with a 3 T
MRSI scanner. Note the distortion of the signal specially visible for the water and citrate
peaks visible at 5 ppm and 3 ppm, respectively

Phase correction Acquired MRSI spectra suffer from zero-order and first-order phase

misalignment [44, 201] as depicted in Fig. 3.6. Parfait et al. and Trigui et al. used a

method proposed by Chen et al. where the phase of MRSI signal is corrected based

on entropy minimization in the frequency domain [209, 290, 291]. The corrected MRSI

signal o(ξ) can be expressed as:

<(o(ξ)) = <(s(ξ)) cos(Φ(ξ))−=(ξ) sin(Φ(ξ)) ,

=(o(ξ)) = =(s(ξ)) cos(Φ(ξ)) + <(ξ) sin(Φ(ξ)) ,

Φ(ξ) = φ0 + φ1
ξ

N
, (3.13)

where <(·) and =(·) are the real and imaginary part of the complex signal, respectively,

s(ξ) is the corrupted MRSI signal, φ0 and φ1 are the zero-order and first-order phase

correction terms respectively and N is the total number of samples of the MRSI signal.

Chen et al. tackled this problem as an optimization in which φ0 and φ1 have to

be inferred. Hence, the simplex Nelder-Mead optimizer [192] is used to minimize the

following cost function based on the Shannon entropy formulation:

Φ̂ = arg min
Φ

[
−
∑
<(s′(ξ)) ln<(s′(ξ)) + λ‖<(s(ξ))‖2

]
, (3.14)
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Figure 3.7: Illustration of the residues of water and fat even after their suppression during
the acquisition protocol. The acquisition has been carried out with a 3 T MRI.

where s′(ξ) is the first derivative of the corrupted signal s(ξ) and λ is a regularization

parameter. Once the best parameter Φ vector is obtained, the MRSI signal is corrected

using Eq. (3.13).

Water and lipid residuals filtering The water and lipid metabolites occur in much

higher concentrations than the metabolites of interest, namely choline, creatine, and

citrate [201, 326]. Fortunately, specific MRSI sequences have been developed in order

to suppress water and lipid metabolites using pre-saturation techniques [326]. However,

these techniques do not perfectly remove water and lipids peaks and some residuals are

still present in the MRSI spectra as illustrated in Fig. 3.7. Therefore, different post-

processing methods have been proposed to enhance the quality of the MRSI spectra by

removing these residuals. For instance, Kelm et al. [127] used the HSVD algorithm pro-

posed by Pijnappel et al. [217] which models the MRSI signal by a sum of exponentially

damped sine waves in the time domain as Eq. (3.15).

s(t) =

K∑
k=1

ak exp(iφk) exp(−dk + i2πfk)t+ η(t) , (3.15)

where ak is the amplitude proportional to the metabolite concentration with a resonance
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frequency fk, dk represents the damping factor of the exponential, φk is the first-order

phase, and η(t) is a complex white noise.

The “noise-free signal” can be found using the singular value decomposition (SVD)

decomposition [217]. Therefore, the noisy signal is reorganized inside a Hankel matrix

H. It can be shown that the signal is considered as a “noise-free signal” if the rank of

H is equal to rank K. However, due to the presence of noise, H is in fact a full rank

matrix. Thus, to recover the “noise-free signal”, the rank of H is truncated to K using

its SVD decomposition. Hence, knowing the cut off frequencies of water — i.e., 4.65 ppm

— and lipid — i.e., 2.2 ppm — metabolites, their corresponding peaks are reconstructed

and subtracted from the original signal [140].

Baseline correction Sometimes, the problem discussed in the above section regarding

the lipid molecules is not addressed simultaneously with water residuals suppression.

Lipids and macro-molecules are known to affect the baseline of the MRSI spectra, causing

errors while quantifying metabolites, especially the citrate metabolite.

Parfait et al. made the comparison of two different methods to detect the baseline

and correct the MRSI spectra [209] which are based on [64, 155]. Lieber and Mahadevan-

Jansen corrected the baseline in the frequency domain by fitting a low degree polynomial

p(x) — e.g., 2nd or 3rd degree — to the MRSI signal s(x) in a least-squares sense [155].

Then, the values of the fitted polynomial are re-assigned as:

pf (x) =

p(x) , if p(x) ≤ s(x) ,

s(x) , if p(x) > s(x) .
(3.16)

Finally, this procedure of fitting and re-assignment is repeated on pf (x) until a

stopping criterion is reached. The final polynomial function is subtracted from the

original signal s(x) to correct it. Parfait et al. [209] modified this algorithm by convolving

a Gaussian kernel to smooth the MRSI signal instead of fitting a polynomial function,

keeping the rest of the algorithm identical. Unlike Lieber and Mahadevan-Jansen [155],

Devos et al. [64] corrected the baseline in the time domain by multiplying the MRSI

signal by a decreasing exponential function as:

c(t) = exp(−βt) , (3.17)
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Figure 3.8: Illustration of frequency misalignment in a MRSI spectra acquired with a 3 T
MRSI scanner. The water peak is known to be aligned at 4.65 ppm. However, it can be seen
that the peak on this spectra is aligned at around 5.1 ppm.

with a typical β value of 0.15. However, Parfait et al. concluded that the method

proposed in [155] outperformed the one in [64]. The later study of Trigui et al. used this

conclusion and adopted the same method [290, 291].

In the contemporary work of Tiwari et al. [283], the authors detected the baseline

using a local non-linear fitting method avoiding regions with significant peaks, which

have been detected using an experimentally parametric signal-to-noise ratio set to a

value larger than 5 dB.

Frequency alignment Due to variations of the experimental conditions, a frequency

shift is commonly observed in the MRSI spectra [44, 201] as depicted in Fig. 3.8. Tiwari

et al. [283] corrected this frequency shift by first detecting known metabolite peaks

such as choline, creatine, or citrate and minimizing the frequency error between the

experimental and theoretical values for each of these peaks [283].

Normalization The NMR spectra is subject to variations due to intra-patient varia-

tions and non homogeneity of the magnetic field. Parfait et al. as in [64] compared two

methods to normalize MRSI signal [209]. In each method, the original MRSI spectra

is divided by a normalization factor, similar to the intensity normalization described

earlier. The first approach consists in estimating the water concentration from an ad-
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Table 3.2: Overview of the pre-processing methods used in CAD systems.

Pre-processing operations References

MRI pre-processing:
Noise filtering:
• Anisotropic median-diffusion filtering [229, 230, 231, 232, 233]
• Gaussian filtering [244]
• Median filtering [204, 205]
• Wavelet-based filtering [9, 10, 168]

Bias correction:
• Parametric methods [86, 170, 308]
• Non-parametric methods [309]

Standardization:
• Statistical-based normalization: [14, 15, 170, 204, 205, 229, 230, 231, 232, 233, 308, 309, 310]
• Organ SI-based normalization [143, 193, 194, 244]

MRSI pre-processing:

Phase correction [209, 290, 291]
Water and lipid residuals filtering [127]
Baseline correction [209, 283, 290, 291]
Frequency alignment [283, 290, 291]
Normalization [209, 290, 291]

ditional MRSI sequence where the water has not been suppressed. The estimation is

performed using the previously HSVD algorithm. The second approach does not require

any additional acquisition and is based on the L2 norm of the MRSI spectra ‖s(ξ)‖2. It

should be noted that both Parfait et al. and Devos et al. concluded that the L2 normal-

ization is the most efficient method [209]. Lately, Trigui et al. used the L2 normalization

in their framework [290, 291].

3.1.1.3 Summary

The different pre-processing methods are summarized in Table 3.2.

3.1.2 Segmentation

The segmentation task consists in delineating the prostate boundaries in the MRI and is

of particular importance for focusing the posterior processing on the organ of interest [84].

In this section, only the segmentation methods used in CAD for CaP are presented. An

exhaustive review of prostate segmentation methods in MRI is available in [84].

Manual segmentation To highlight the importance of prostate segmentation task

in CAD systems, it is interesting to note the large number of studies which manually

segment the prostate organs [14, 15, 143, 179, 193, 194, 204, 205, 223, 290, 291, 311, 312].
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In all the cases, the boundaries of the prostate gland are manually defined in order to

limit further processing to only this area. This approach ensures the right delineation

of the organ, although is subjective and prone to the rater variability; nevertheless this

procedure is highly time consuming and should be performed by a radiologist.

Region-based segmentation Litjens et al. used a multi-atlas-based segmentation

using multi-modal images — i.e., T2-W-MRI and apparent diffusion coefficient (ADC)

map — to segment the prostate with an additional pattern recognition method to differ-

entiate CG and PZ [164], as proposed in [160]. This method consists in three different

steps: (i) the registration between each atlas and the multi-modal images, (ii) the atlas

selection, and finally (iii) the classification of the prostate voxels into either CG or PZ

classes. Each atlas and the MRI images are registered through two successive regis-

trations: a rigid registration to roughly align the atlases and the MRI images followed

by an elastic registration using a B-spline transformation. The cost function driving

the registration is defined as the weighted sum of the mutual information (MI) of both

T2-W-MRI and ADC map. The final atlas is selected using either a majority voting

or the simultaneous truth and performance level estimation (STAPLE) approach [319].

Subsequently, each voxel within the prostate is classified either as CG or PZ using a

linear discriminant analysis (LDA) classifier. Three types of features are considered to

characterize the voxels: (i) anatomy, (ii) intensity, and (iii) texture. The relative posi-

tion and the relative distance from the voxel to the border of the prostate encode the

anatomical information. The intensity features consist in the intensity of the voxel in

the ADC coefficient and the T2 map. The texture features are composed of 5 different

features: homogeneity, correlation [6], entropy, texture strength [152], and local binary

pattern (LBP) [199]. Finally, the final segmentation is obtained by removing artifacts

and smoothing the contour between the zones using the thin plate spline (TPS) [23].

Litjens et al. used an almost identical algorithm in [161], initially proposed for the

PROMISE12 challenge [162]. Their segmentation method is also based on multi-atlas

multi-modal images, but the SIMPLE method [138] is used instead, to combine labels

after the registration of the different atlas to obtain the final segmentation.

Finally, Rampun et al. recurrently used a method to segment the PZ [229, 230, 231,

232, 233], which is proposed in [228]. The PZ is modelled using a quadratic function
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driven by the centre of the prostate, the left-most, and the right-most coordinates of the

prostate boundaries.

Model-based segmentation Viswanath et al. [306, 308] used the MANTRA method [288].

Multi-attribute non-initializing texture reconstruction based active shape model (MANTRA)

[288] is closely related to the active shape model (ASM) from [53]. This algorithm con-

sists of two stages: (i) a training stage where a shape and an appearance model are

generated and (ii) the actual segmentation based on the learned model. For the train-

ing stage, a set of landmarks is defined and the shape model is generated as in the

original ASM method [53]. Then, to model the appearance, a set of K texture images

{I1, I2, · · · , Ik} based on first and second order statistical texture features is computed.

For a given landmark l with its given neighbourhood N(l), its feature matrix extracted

is expressed as:

fl = {I1(N(l)), I2(N(l)), · · · , Ik(N(l))} , (3.18)

where Ik(N(l)) represents a feature vector obtained by sampling the kth texture map us-

ing the neighbourhood N(l). Therefore, multiple landmarks are generated followed by a

decomposition using principal components analysis (PCA) [212] to learn the appearance

variations as in ASM.

For the segmentation stage, the mean shape learned previously is initialized in the

test image. The same associated texture images as in the training stage are computed.

For each landmark l, a neighbourhood of patches are used to sample the texture images

and a reconstruction is obtained using the appearance model previously trained. The

new landmark location will be defined as the position where the MI is maximal between

the reconstructed and original values. This scheme is performed in a multi-resolution

manner as in [53].

Subsequently, Viswanath et al. in [310], used the weighted ensemble of regional image

textures for active shape model segmentation (WERITAS) method also proposed in Toth

et al.. Similarly to MANTRA, WERITAS is also based on the ASM formulation [289].

It differs in the last stage of the algorithm in which the Mahalanobis distance is used

instead of the MI metric, to adapt the positions of new landmarks. In the training

stage, the Mahalanobis distance is computed between landmarks and neighbour patches
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for each of the features. Subsequently, a new metric is proposed as a linear weighted

combination of those Mahalanobis distances which maximizes the correlation with the

Euclidean distance between the patches and the true landmarks. In the segmentation

step, this metric is then computed between the initialized landmarks and neighbouring

patches in order to update landmark positions, in a similar fashion to other active contour

model (ACM) models.

Litjens et al. as well as Vos et al. used an approach proposed in [116] in which the

bladder, the prostate, and the rectum are segmented [163, 314]. The segmentation task is

performed as an optimization problem taking 3 parameters into account linked to organ

characteristics such as: (i) the shape (i.e., an ellipse), (ii) the location, and (iii) the

respective angles between them. Furthermore, Litjens et al. used only the ADC map to

encode the appearance [163] whereas Vos et al. used both ADC and T2 maps [314]. The

cost function, defined as the sum of the deviations, is minimized using a quasi-Newton

optimizer. This rough segmentation is then used inside a Bayesian framework to refine

the segmentation.

Giannini et al. segmented the prostate with a multi-Otsu thresholding [203] in ADC

images [86]. Further morphological operations are applied to improve the segmentation.

Only the work of Tiwari et al. used the MRSI modality to segment the prostate

organ [280]. The prostate is segmented based on an unsupervised hierarchical spectral

clustering. First, each MRSI spectrum is projected into a lower-dimensional space using

graph embedding [253]. To proceed, a similarity matrix W is computed using a Gaussian

similarity measure from Euclidean distance [18] such that:

W (x,y) =

exp
(
‖s(x)−s(y)‖22

σ2

)
, if ‖x− y‖2 < ε ,

0 , if ‖x− y‖2 > ε .
(3.19)

where s(x) and s(y) are the MRSI spectra for the voxels x and y, respectively, σ is the

standard deviation of the Gaussian similarity measure, and ε is the parameter to defined

an ε-neighbourhood.
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Table 3.3: Overview of the segmentation methods used in CAD systems.

Segmentation methods References

MRI-based segmentation:

Manual segmentation [14, 15, 143, 179, 193, 194, 204, 205, 223, 290, 291, 311, 312, 313, 314]
Region-based segmentation [161, 164, 229, 230, 231, 232, 233]
Model-based segmentation [86, 163, 306, 308, 309, 314]

MRSI-based segmentation:

Clustering [280]

The projection can be performed as a generalized eigenvector problem such that:

Lu = λDu ,

D(x,x) =
∑
y

W (x,y) , (3.20)

L = D −W ,

where D is the diagonal weight matrix, L is the Laplacian matrix, λ and u represent

the eigenvalues and eigenvectors. Once the MRSI spectra are projected into the lower-

dimensional space, a replicate k-means clustering method is used to define 2 clusters.

Subsequently, the data corresponding to the largest cluster is assumed to belong to the

non-prostate voxels and thus these voxels are eliminated from the processing. The full

procedure is repeated until the total number of voxels left is inferior to a given threshold

experimentally set.

3.1.2.1 Summary

The segmentation algorithms used in CAD system for the detection of CaP are summa-

rized in Table 3.3.

3.1.3 Registration

Image registration plays a vital role in CAD systems using mp-MRI images. As it will

be discussed in Sect. 3.2, the features detected in each modality are grouped depending

of their spatial location, requiring a perfect alignment of the mp-MRI ahead of the

classification.

Image registration is the procedure consisting of aligning an unregistered image —

also called moving image — into a template image — also called fixed image — via a
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Figure 3.9: Typical framework involved to solve the registration problem.

geometric transformation. This problem is usually addressed as depicted in Fig. 3.9. An

iterative procedure takes place to infer the geometric transformation, parametric or non-

parametric, via an optimizer which maximizes the similarity between the two images. In

the following, a review of the different components of a typical registration framework:

transformation model, similarity metric, optimizer, and interpolation are presented. To

conclude a summary is given focusing on the registration approaches applied in CAD for

CaP systems. Exhaustive reviews covering all registration methods in computer science

and medical fields can be found in [174, 328].

Geometric transformation models As previously mentioned, the registration pro-

cess is equivalent to find a geometric transformation which minimizes the difference

between two images. From all CAD systems reviewed, only parametric methods have

been implemented. Three different groups of parametric transformation models have

been used — i.e., rigid, affine, and elastic — each of them characterized by a specific

degree of freedom.

The simplest transformation used in terms of degrees of freedom is usually referred to

as rigid transformation. This type of transformation is only composed of a rotation and

a translation. Therefore, for the 2D case where x = (x, y) ∈ R2, a rigid transformation

TR is formalized as:
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TR(x) =

[
R t

0T 1

]
x ,

=

cos θ − sin θ tx

sin θ cos θ ty

0 0 1


xy

1

 , (3.21)

where θ is the rotation angle and {tx, ty} represents the translation along {x, y} re-

spectively. In the case of 3D registration using volume, an additional component z is

introduced such that x = (x, y, z). Thus, the rotation matrix R becomes of size 3 × 3

whereas the translation vector t consists of a vector of 3 variables. The geometric trans-

formation TR(·) is embedded into a matrix of size 4× 4.

The affine transformation provides additional degrees of freedom, providing rotation,

translation, — as with the rigid transformations — and also shearing and scaling. Hence,

for a 2D space where x = (x, y) ∈ R2, an affine transformation TA is formalized as:

TA(x) =

[
A t

0T 1

]
x ,

=

a11 a12 tx

a21 a22 ty

0 0 1


xy

1

 . (3.22)

where the 4 parameters {a11, a12, a21, a22} of the affine matrix and {tx, ty} of the trans-

lation encode the deformation. As in the rigid registration case, in 3D the affine trans-

formation TA(·) is of size 4× 4 but now with 12 parameters involved.

Finally, the last group of transformations is known as elastic transformations and

offers the advantage to handle local distortions. In the reviewed CAD systems, the

radial basis functions are used to formalize the local distortions such as:

TE(x) =
a11x− a12y + tx +

∑
i cig(‖x− pi‖)

a21x+ a22y + ty +
∑

i cig(‖x− pi‖)
, (3.23)

where x are the control points in both images and g(· · · ) is the actual radial basis

function.
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(a) Illustration of a
joint histogram be-
tween two aligned
image.

(b) Illustration of a
joint histogram be-
tween two misaligned
image.

Figure 3.10: Difference observed in joint histogram between aligned and misaligned images.
The joint measure will be more concentrated of the histogram in the case that the images are
aligned and more randomly distributed in the case that both images are more misaligned.

Two radial basis functions are used: (i) the TPS and (ii) the B-splines. Apart from

the formalism, these two approaches have a main difference: with B-splines, the control

points are usually uniformly and densely placed on a grid whereas with TPS, the control

points correspond to some detected or selected key points. By using TPS, Mitra et al.

obtained more accurate and time efficient results than with the B-splines strategy [187].

It is reasonable to point out that usually only rigid or affine registrations are used to

register mp-MRI from a same protocol. Elastic registration methods are more commonly

used to register multi-protocol images such as histopathology with MRI images [288, 289].

Similarity measure The most naive similarity measure used in reviewed registration

framework is the mean squared error (MSE) of the SI of MRI images. For a pair of

images I and J , the MSE is formalized as:

MSE =
1

N

∑
x

∑
y

[I(x, y)− J(x, y)]2 , (3.24)

where N is the total number of pixels. This metric is not well suited when mp-MRI im-

ages are involved due to the tissue appearance variations between the different modalities.

In this regard, MI was introduced as a similarity measure in registration framework

in the late 1990’s by Pluim et al. [220]. The MI measure finds its foundation in the

assumption that a homogeneous region in the first modality image should also appear as

a homogeneous region in the second modality, even if their SIs are not identical. Thus,
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those regions share information and the registration task is achieved by maximizing this

common information. Hence, MI of two images A and B is defined as:

MI(A;B) = S(A) + S(B)− S(A,B) , (3.25)

where S(A), S(B), and S(A,B) are the marginal entropies of A and B and the joint

entropy, respectively. Therefore, maximizing the MI is the equivalent of minimizing

the joint entropy. The joint entropy measure is related to the degree of uncertainty

or dispersion of the data in the joint histogram of the images A and B. As shown in

Fig. 3.10, the data in the joint histogram are concentrated in the case of aligned images

(see Fig. 3.10(a)) while it is more randomly distributed in the case of misaligned images

(see Fig. 3.10(b)). The entropy is computed based on an estimation of the PDF of the

images and thus histogram or Parzen window methods are a common way to estimate

these PDFs.

A generalized form of MI, combined mutual information (CMI), has been proposed

by Chappelow et al. [41]. CMI encompasses interdependent information such as texture

and gradient information into the metric. Hence, for both of images A and B, the image

ensembles εAn and εBm are generated and composed of n and m images based on the

texture and gradient. Then, the CMI is formulated such as:

CMI(εAn ; εBm) = S(εAn ) + S(εBm)− S(εAn , ε
B
m) . (3.26)

From Eq. (3.26), note that CMI is estimated from high-dimensional data and as a

consequence the histogram-based methods to estimate the PDFs are not suitable any-

more [41]. However, other alternative approaches are used such as the one employed

in [267] to compute the α-MI [107].

Optimization methods Registration is usually regarded as an optimization prob-

lem where the parameters of the geometric transformation model have to be inferred

by minimizing/maximizing the similarity measure. Iterative optimization methods are

commonly used, where the most common methods used are the L-BFGS-B quasi-Newton

method [32] and the gradient descent [305]. During our review, we noticed that authors

do not usually linger over optimizer choice.
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Table 3.4: Classification of the different registration methods used in the CAD systems re-
viewed. Acronyms: mean squared error (MSE), mutual information (MI), combined mutual
information (CMI), gradient descent (GD), limited-memory Broyden-Fletcher-Goldfarb-
Shannon box constraints (L-BFGS-B).

Study Modality
Type

Geometric model Similarity measure Optimizer

index registered Affine Elastic MSE MI CMI GD L-BFGS-B

[9, 10] T2-W - DCE 2D 3 − 3 − − − −
[85, 86] T2-W - DW 2D 3 3 − − − − −
[85, 86] T2-W - DCE 2D 3 3 − 3 − 3 −
[306, 308] T2-W - DCE 2D 3 − − 3 − − −
[309] T2-W - DCE - DW 3D 3 − − − 3 3 −
[311] T2-W - DCE 3D 3 − − 3 − − −
[313] T2-W - DCE 3D 3 3 − 3 − − 3

Notes:
−: not used or not mentioned.
3: used or implemented.

Interpolation The registration procedure involves transforming an image and pixels

mapped to non-integer points must be approximated using interpolation methods. As for

the optimization methods, we notice that little attention has been paid on the choice of

those interpolations methods. However, commonly used methods are bi-linear, nearest-

neighbour, bi-cubic, spline, and inverse-distance weighting method [185].

Registration methods used in CAD systems Table 3.4 summarizes the framework

used to register mp-MRI images in CAD for CaP.

Ampeliotis et al. in [9, 10] did not use the framework as presented in Fig. 3.9 to

register 2D T2-W-MRI and DCE-MRI images. By using image symmetries and the

MSE metric, they found the parameters of an affine transformation but without using

a common objective function. The scale factor, the rotation, and the translation are

independently and sequentially estimated.

Giannini et al. used also a in-house registration method for 2D T2-W-MRI and DW-

MRI images using an affine model [85, 86]. The bladder is first segmented in both

modalities in order to obtain its contours which are then used as a metric function (i.e.

distance between contours) for registration.

Giannini et al. and also Vos et al. used a framework based on finding an affine

transformation to register the T2-W-MRI and DCE-MRI images using MI [85, 241, 313].

Then, an elastic registration using B-spline takes place using the affine parameters to

initialize the geometric model with the same similarity measure. However, the two
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Table 3.5: Overview of the CADe strategies employed in CAD systems.

CADe: ROIs selection strategy References

All voxels-based approach [14, 15, 85, 127, 129, 143, 167, 168, 179, 180, 204, 205, 209, 229, 230,
231, 232, 233, 273, 278, 279, 280, 281, 282, 283, 284, 290, 291, 306,

307, 308, 309, 310]
Lesions candidate detection [33, 34, 161, 163, 164, 314]

approaches differ regarding the choice of the optimizer since a gradient descent is used

in [85] and a quasi-Newton method in [313]. Moreover, Giannini et al. applied a 2D

registration whereas Vos et al. registered 3D volumes.

Viswanath et al. as well as Vos et al. registered T2-W-MRI and DCE-MRI images

using an affine registration and a MI metric [306, 308, 311]. However, the choice of

the optimizer has not been specified. Furthermore, Viswanath et al. focused on 2D

registration [306, 308] while Vos et al. performed 3D registration [311].

Finally, Viswanath et al. performed a 3D registration with the three modalities, T2-

W-MRI, DCE-MRI, and DW-MRI, using an affine transformation model combined with

the CMI similarity measure [309]. Moreover, in this latter work, the authors employed a

gradient descent approach [41] to solve this problem but suggested that the Nelder-Mead

simplex and the quasi-Newton methods are other possible solutions.

3.2 Image classification framework

3.2.1 CADe: ROIs detection/selection

As discussed in the introduction and shown in Fig. 3.1, the image classification framework

is often composed of a CADe and a CADx. In this section, we focus on studies which

embed a CADe in their framework. Two approaches are considered to define a CADe:

(i) voxel-based delineation and (ii) lesion segmentation. These methods are summarized

in Table 3.5. The first strategy is in fact linked to the nature of the classification

framework and concerns the majority of the studies reviewed [14, 15, 85, 127, 129, 143,

167, 168, 179, 180, 204, 205, 209, 229, 230, 231, 232, 233, 273, 278, 279, 280, 281, 282,

283, 284, 290, 291, 306, 307, 308, 309, 310]. Each voxel is a possible candidate and

will be classified as cancer or healthy. The second group of methods is composed of

method implementing a lesion segmentation algorithm to delineate potential candidates

to further obtain a diagnosis through the CADx. This approach is borrowed from other
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application areas such as breast cancer. These methods are in fact very similar to the

classification framework used in CADx later.

Regarding lesion candidate detection, Vos et al. highlighted lesion candidates by

detecting blobs in the ADC map [314]. These candidates are filtered using some a priori

criteria such as SI or diameter. As mentioned in Sect. 2.6 and Table 2.1, low SI in ADC

map can be linked to potential CaP. Hence, blob detectors are suitable to highlight these

regions. Blobs are detected in a multi-resolution scheme, by computing the three main

eigenvalues {λσ,1, λσ,2, λσ,3} of the Hessian matrix, for each voxel location of the ADC

map at a specific scale σ [153]. The probability p of a voxel x being a part of a blob at

the scale σ is given by:

P (x, σ) =


‖λσ,3(x)‖2
‖λσ,1(x)‖ , if λσ,k(x) > 0 with k = {1, 2, 3} ,

0 , otherwise .
(3.27)

The fusion of the different scales is computed as:

L(x) = maxP (x, σ),∀σ . (3.28)

The candidate blobs detected are then filtered depending on their appearances — i.e.,

maximum of the likelihood of the region, diameter of the lesion — and their SI in ADC

and T2-W-MRI images. The detected regions are then used as inputs for the CADx.

Cameron et al. used a similar approach by automatically selecting low SI connected

regions in the ADC map with a size larger than 1 mm2 [33, 34].

Litjens et al. used a pattern recognition approach in order to delineate the ROIs [163].

A blobness map is computed in the same manner as in [313] using the multi-resolution

Hessian blob detector on the ADC map, T2-W, and pharmacokinetic parameters maps

(see Sect. 3.2.2 for details about those parameters). Additionally, the position of the

voxel x = {x, y, z} is used as a feature as well as the Euclidean distance of the voxel to

the prostate center. Hence, each feature vector is composed of 8 features and a support

vector machines (SVM) classifier is trained using a radial basis function (RBF) kernel

(see Sect. 3.2.4 for more details).

Subsequently, Litjens et al. modified this approach by including only features related

to the blob detection on the different maps as well as the original SIs of the parametric

images [164]. Two new maps are introduced based on texture and a k-nearest neighbour
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(k-NN) classifier is used instead of a SVM classifier. The candidate regions are then

extracted by performing a local maxima detection followed by post-processing region-

growing and morphological operations.

3.2.2 CADx: Feature detection

Discriminative features which help to recognize CaP from healthy tissue need to be first

detected. This processing is known in computer vision as feature extraction. However,

feature extraction also refers to the name given in pattern recognition to some types

of dimension reduction methods which are later presented. In order to avoid confusion

between these two aspects, in this survey, the procedure “detecting” or “extracting”

features from images and signals is defined as feature detection. This section summarizes

the different features used in CAD for CaP.

3.2.2.1 Image-based features

This section focuses on image-based features which can be categorized into two cate-

gories: (i) voxel-wise detection and (ii) region-wise detection.

Voxel-wise detection This strategy refers to the fact that a feature is extracted at

each voxel location. As discussed in Chap. 2, CaP has an influence on the SI in mp-MRI

images. Therefore, intensity-based feature is the most commonly used feature [9, 10,

14, 15, 33, 34, 40, 47, 85, 86, 129, 137, 143, 161, 163, 164, 167, 193, 194, 204, 205, 229,

231, 290, 291, 311]. This feature consists in the extraction of the intensity of the MRI

modality of interest.

Edge-based features have also been used to detect SI changes but bring additional

information regarding the SI transition. Each feature is computed by convolving the

original image with an edge operator. Three operators are commonly used: (i) Prewitt

operator [221], (ii) Sobel operator [260], and (iii) Kirsch operator [132]. These operators

differ due to the kernel used which attenuates more or less the noise. Multiple studies

used the resulting magnitude and orientation of the edges computed in their classification

frameworks [47, 129, 143, 193, 194, 230, 232, 233, 281, 282, 284, 307, 309].

Gabor filters [58, 81] offer an alternative to the usual edge detector, with the possi-

bility to tune the direction and the frequency of the filter to encode a specific pattern. A
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(a) θ = 0◦. (b) θ = 60◦. (c) θ = 120◦. (d) θ = 180◦.

Figure 3.11: Illustration of 4 different Gabor filters varying their orientations θ.

Gabor filter is defined by the modulation of a Gaussian function with a sine wave which

can be further rotated and is formalized as in Eq. 3.29.

g(x, y; θ, ψ, σ, γ) = exp

(
−x
′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ ψ

)
, (3.29)

with

x′ = s (x cos θ + y sin θ) ,

y′ = s (−x sin θ + y cos θ) ,

where λ is the wavelength of the sinusoidal factor, θ represents the orientation of the

Gabor filter, ψ is the phase offset, σ is the standard deviation of the Gaussian envelope,

γ is the spatial aspect ratio, and s is the scale factor. In an effort to characterize

pattern and texture, a bank of Gabor filters is usually created with different angles, scale,

and frequency — refer to Fig. 3.11 — and then convolved with the image. Viswanath

et al. [310], Tiwari et al. [283] and more recently Khalvati et al. [129] and Chung et al. [47]

have designed a bank of Gabor filters to characterized texture and edge information in

T2-W-MRI and DW-MRI modalities.

Texture-based features provide other characteristics discerning CaP from healthy

tissue. The most common texture analysis for image classification is based on the gray-

level co-occurence matrix (GLCM) with their related statistics which have been proposed

by Haralick et al. in [102]. In a neighborhood around a central voxel, a GLCM is build

considering each voxel pair defined by a specific distance and angle. Then, using the

GLCM, a set of statistical features is computed as defined in Table 3.6 and assigned to
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Table 3.6: The 14 statistical features for texture analysis commonly computed from the
GLCM p as presented by [102].

Statistical features Formula

Angular second moment
∑
i

∑
j p(i, j)

2

Contrast
∑Ng−1
n=0 n2

[∑Ng−1
i=1

∑Ng−1
j=1 p(i, j)

]
, |i− j| = n

Correlation

∑
i

∑
j(ij)p(i,j)−µxµy

σxσy

Variance
∑
i

∑
j(i− µ)2p(i, j)

Inverse difference moment
∑
i

∑
j

1
1+(i−µ)2 p(i, j)

Sum average
∑2Ng

i=2 ipx+y(i)

Sum variance
∑2Ng

i=2 (i− fs)2px+y(i)

Sum entropy −
∑2Ng

i=2 px+y(i) log px+y(i)

Entropy −
∑
i

∑
j p(i, j) log p(i, j)

Difference variance
∑Ng−1
i=0 i2px−y(i)

Difference entropy −
∑Ng−1
i=0 px−y(i) log px−y(i)

Info. measure of corr. 1
S(X;Y )−S1(X;Y )
max(S(X),S(Y ))

Info. measure of corr. 2
√

(1− exp [−2(H2(X;Y )−H(X;Y ))])

Max. corr. coeff.
√
λ2 , of Q(i, j) =

∑
k
p(i,k)p(j,k)
px(i)py(k)

the location of the central voxel. Therefore, N — up to 14 — statistical maps are derived

from the GLCM analysis, one per statistics presented in Table 3.6. GLCM is commonly

used in CAD systems, on the different MRI modalities, namely T2-W-MRI, DCE-MRI,

or DW-MRI [13, 33, 34, 47, 129, 143, 193, 194, 230, 232, 233, 281, 282, 284, 290, 307, 308,

309, 310]. However, the statistics extracted from the GLCM across studies vary. Along

the same line, Rampun et al. extracted from T2-W-MRI [230, 233] Tamura features [276]

composed of three features to characterize texture: (i) coarseness, (ii) contrast, and (iii)

directionality.

Lopes et al. used fractal analysis and more precisely a local estimation of the fractal

dimension [20], to describe the texture roughness at a specific location. The fractal

dimension is estimated through a wavelet-based method in multi-resolution analysis.

They showed that cancerous tissues have a higher fractal dimension than healthy tissue.

Chan et al. described texture using the frequency signature via the discrete cosine

transform (DCT)[2] defining a neighbourhood of 7 px× 7 px for modalities used, namely

T2-W-MRI and DW-MRI. The DCT allows to decompose a portion of an image into a

coefficient space, where few of these coefficients encode the significant information. The
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DCT coefficients are computed such as:

Ck1,k2 =
M−1∑
m=0

N−1∑
n=0

pm,n cos

[
π

M

(
m+

1

2

)
k1

]
cos

[
π

N

(
n+

1

2

)
k2

]
, (3.30)

where Ck1,k2 is the DCT coefficient at the position k1, k2, M and N are the dimension

of the neighbourhood and pm,n is the pixel SI at the position {m,n}.
Regarding other features, Viswanath et al. projected T2-W-MRI images into the

wavelet space, using the Haar wavelet, and used the resulting coefficients as features [310].

Litjens et al. computed the texture map based on T2-W-MRI images using a Gaussian

filter bank [163]. Likewise, Rampun et al. employed a rotation invariant filter bank pro-

posed in [150]. The bank is composed of 48 filters including Gaussian filters, first and

second derivatives of Gaussian filters as well as Laplacian of Gaussian.

Region-wise detection Unlike the previous section, another strategy is to study a

region instead of each pixel independently. Usually, the feature maps are computed using

the method presented in voxel-based approach followed by a step in which features are

computed in some specific delineated regions to characterize them.

The most common feature type is based on statistics and more specifically the

statistic-moments such as mean, standard deviation, kurtosis, and skewness [9, 10, 13,

33, 34, 47, 129, 143, 161, 163, 164, 193, 194, 215, 230, 232, 233, 281, 282, 284, 307, 308,

309, 310]. Additionally, some studies extract additional statistical landmarks based on

percentiles [13, 143, 161, 163, 164, 193, 194, 215, 312, 313, 314] The percentiles to use are

manually determined by observing the PDF of the features and checking which values

allow the best to differentiate malignant from healthy tissue.

Further statistics are computed through the use of histogram-based features. Liu

et al. introduced 4 different types of histogram-based features to characterize hand-

delineated lesions [165]. The first type corresponds to the histogram of the SI of the

image. The second type is the histogram of oriented gradient (HOG) [57] which encodes

the local shape of the object of interest by using the distribution of the gradient direc-

tions. This descriptor is extracted mainly in three steps. First, the gradient image and

its corresponding magnitude and direction are computed. Then, the ROI is divided into

cells and an oriented-based histogram is generated for each cell. At each pixel location,
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the orientation of the gradient votes for a bin of the histogram and this vote is weighted

by the magnitude of the same gradient. Finally, the cells are grouped into blocks and

each block is normalized. The third histogram-based type used in [165] is the shape

context introduced in [19]. The shape context is also a way to describe the shape of an

object of interest. First, a set of points defining edges have to be detected and for each

point of each edge, a log-polar-based histogram is computed using the relative points

distribution. The last set of histogram-based feature extracted is based on the frame-

work described in [325] which is using the Fourier transform of the histogram created

via local binary pattern (LBP) [199]. LBP is generated by comparing the value of the

central pixel with its neighbours, defined through a radius and the number of connected

neighbours. Then, in the ROI, the histogram of the LBP distribution is computed.

The discrete fourier transform (DFT) of the LBP histogram is used to make the feature

invariant to rotation.

Another subset of features are anatomical-based features and have been used in [33,

34, 161, 164, 179]. Litjens et al. computed the volume, compactness, and sphericity

related to the given region [161, 164]. Additionally, Litjens et al. also introduced a

feature based on symmetry in which they compute the mean of a candidate lesion as well

as its mirrored counter-part and compute the quotient as feature [161]. Matulewicz et al.

introduced 4 features corresponding to the percentage of tissue belonging to the regions

PZ, CG, periurethral region, or outside the prostate region for the considered ROI [179].

Finally, Cameron et al. defined 4 features based on morphology and asymmetry: (i) the

difference of morphological closing and opening of the ROI, (ii) the difference of the initial

perimeter and the one after removing the high-frequency components, (iii) the difference

between the initial ROI and the one after removing the high-frequency components, and

(iv) the asymmetry by computing the difference of the two areas splitting the ROI by

its major axes [33, 34].

The last group of region-based feature is based on fractal analysis. This group

of features is based on estimating the fractal dimension which is a statistical index

representing the complexity of the analyzed texture. Lv et al. proposed two features

based on fractal dimension: (i) texture fractal dimension and (ii) histogram fractal

dimension [170]. The first feature is based on estimating the fractal dimension on the SI

of each image and thus this feature is a statistical characteristic of the image roughness.

The second fractal dimension is estimated using the PDF of each image and characterizes
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Table 3.7: Parameters used as features for a DCE semi-quantitative analysis in CAD
systems.

Semi-quantitative features Explanations

Amplitude features:

S0 Amplitude at the onset of the enhancement
Smax Amplitude corresponding to 95% of the maximum amplitude
Sp Amplitude corresponding to the maximum amplitude
Sf Amplitude at the final time point

Time features:

t0 Time at the onset of the enhancement
tmax Time corresponding to 95% of the maximum amplitude
tp Time corresponding to the maximum amplitude
tf Final time
ttp Time to peak which is the time from t0 to tp

Derivatives and integral features:

WI Wash-in rate corresponding to the signal slope from t0 to tm or tp
WO Wash-out rate corresponding to the signal slope from tm or tp to tp
IAUC Initial area under the curve which is the area between t0 to tf

the complexity of the PDF. Lopes et al. proposed a 3D version to estimate the fractal

dimension of a volume using a wavelet decomposition [168].

3.2.2.2 DCE-based features

DCE-MRI is more commonly based on a SI analysis over time as presented in Sect. 2.3.

In this section, the specific features extracted for DCE-MRI analysis are presented.

Whole-spectra approach Some studies are using the whole DCE time series as fea-

ture vector [9, 10, 283, 306, 307]. In some cases, the high-dimensional feature space is

reduced using dimension reduction methods as it will be presented in the Sect. 3.2.3.

Semi-quantitative approach Semi-quantitative approaches are based on mathemat-

ically modelling the DCE time series. The parameters modelling the signal are commonly

used, mainly due to the simplicity of their computation [86, 143, 180, 193, 194, 223, 244,

273, 290, 291]. Parameters included in semi-quantitative analysis are summarized in Ta-

ble 3.7 and also graphically depicted in Fig. 3.12. A set of time features corresponding

to specific amplitude level (start, maximum, and end) are extracted. Then, derivative

and integral features are also considered as discriminative and are commonly computed.
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Figure 3.12: Graphical representation of the different semi-quantitative features used for
DCE-MRI analysis.

Quantitative approach As presented in Chap. 2, quantitative approaches correspond

to mathematical-pharmacokinetic models based on physiological exchanges. Four differ-

ent models have been used in CAD for CaP systems. The most common model reviewed

is the Brix model [14, 15, 167, 204, 205, 273]. This model is formalized such as:

S(t)

S(0)
= 1 +Akep

(
exp(−kept)− exp(−kelt)

kel − kep

)
, (3.31)

where S(·) is the DCE signal, A is the parameter simulating the tissue properties, kel is

the parameter related to the first-order elimination from the plasma compartment, and

kep is the parameter of the transvascular permeability. The parameters kep, kel, and A

are computed from the MRI data and used as features.

Another model is Tofts model [286] which has been used in [85, 86, 137, 143, 180,

193, 194]. In this model, the DCE signal relative to the concentration is presented as:

Ct(t) = vpCp(t) +Ktrans

∫ t

0
Cp(τ) exp(−kep(t− τ)) dτ , (3.32)

where Ct(·) is the concentration of the medium, Cp(·) is the AIF which has to be esti-
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mated independently, Ktrans is the parameter related to the diffuse transport of media

across the capillary endothelium, kep is the parameter related to the exchanges back into

the vascular space, and ve is the extravascular-extracellular space fraction defined such

that ve = 1− vp. In this model, parameters Ktrans, kep, and ve are computed and used

as features.

Mazzetti et al. and Giannini et al. used the Weibull function [85, 86, 180] which is

formalized as:

S(t) = At exp(−tB) , (3.33)

where A and B are the two parameters which have to be inferred.

They also used another empirical model which is based on the West-like function

and named the phenomenological universalities (PUN) [38], formalized as:

S(t) = exp

[
rt+

1

β
a0 − r (exp(βt)− 1)

]
, (3.34)

where the parameters β, a0 and r are inferred. For all these models, the parameters are

inferred using an optimization curve fitting approach.

3.2.2.3 MRSI-based features

Whole spectra approach As in the case of DCE analysis, one common approach is to

incorporate the whole MRSI spectra in the feature vector for classification [127, 179, 209,

278, 280, 281, 282, 284, 290, 291, 306]. Sometimes post-processing involving dimension

reduction methods is performed to reduce the complexity during the classification as it

will be presented in Sect. 3.2.3.

Quantification approach We can reiterate that in MRSI only few biological markers

— i.e., choline, creatine, and citrate metabolites — are known to be useful to discrim-

inate CaP and healthy tissue. Therefore, only the concentrations of these metabolites

are considered as a feature prior to classification. In order to perform this quantifica-

tion, 4 different approaches have been used. Kelm et al. used the following models [127]:

QUEST [235], AMARES [298], and VARPRO [51]. They are all time-domain quantifi-

cation methods varying by the type of pre-knowledge embedded and the optimization
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approaches used to solve the quantification problem. Unlike the time-domain quantifi-

cation approaches, Parfait et al. used the LcModel approach proposed in [222] which

solves the optimization problem in the frequency domain. Although Parfait et al. used

each metabolite relative concentration individually [209], other authors such as Kelm

et al. proposed to compute relative concentrations as the ratios of metabolites as shown

in Eq. 3.35 and Eq. 3.36.

R1 =
[Cho] + [Cr]

[Cit]
. (3.35)

R2 =
[Cit]

[Cho] + [Cr] + [Cit]
, (3.36)

where Cit, Cho and Cr are the relative concentration of citrate, choline, and creatine,

respectively.

Recently Trigui et al. used an absolute quantification approach from which water

sequences are acquired to compute the absolute concentration of the metabolites [290,

291]. Absolute quantification using water as reference is based on the fact that the fully

relaxed signal from water or metabolites is proportional to the number of moles of the

molecules in the voxel [82].

Wavelet decomposition approach Tiwari et al. performed a wavelet packet decom-

position [50] of the spectra using the Haar wavelet basis function and use its coefficients

as features.

3.2.2.4 Summary

The feature detection methods used in CAD are summarized in Table 3.8.
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Table 3.8: Overview of the feature detection methods used in CAD systems. Notes: ( 3|- 3|- 3|- ): triplet stating the implemen-
tation or not of the feature for respectively T2-W-MRI images, DCE-MRI images, DW-MRI images; 3: used or implemented; 3!:
partially implemented.

Feature detection methods Indexes

MRI image:

Voxel-wise detection

Intensity-based 3- -[9, 10, 229, 231, 311] - - 3[85] 3- 3[14, 15, 33, 34, 40, 47, 86, 129, 137, 161, 163, 164, 167, 204, 205, 290, 291]
333[143, 193, 194]

Edge-based

• Prewitt operator 3- -[281, 282, 284, 307]

• Sobel operator 3- -[230, 232, 233, 281, 282, 284, 307, 308, 309, 310] 333[143, 193, 194]

• Kirsch operator 3- -[281, 282, 284, 307, 308, 309, 310] 3-3[47, 129] 333[143, 193, 194]

• Gabor filtering 3- -[283, 307, 310] 3-3[47, 129]

Texture-based

• Haralick features 3- -[13, 230, 232, 233, 281, 282, 284, 290, 307, 308, 310] 33-[309] 3-3[33, 34, 47, 129] 333[143, 164, 193, 194]

• Tamura features 3- -[230, 232, 233]

• Fractal analysis 3- -[168, 170]

• DCT 333[40]

• Wavelet-based features 3- -[310]

• Gaussian filter bank 3- -[161, 230, 232, 233]

• Laplacian of Gaussian filter bank 3- -[230, 232, 233]

Position-based [40, 161, 163, 164]

Region-wise detection

Statistical-based

• Percentiles - 3-[312] - - 3[13, 215] 33-[313] 333[143, 161, 163, 164, 193, 194, 314]

• Statistical-moments 3- -[9, 10, 230, 232, 233, 281, 282, 284, 307, 308, 310] - - 3[13] 33-[309] 3- 3[33, 34, 47, 129, 215]
333[143, 161, 163, 164, 193, 194]

Histogram-based

• PDF 333[165]

• HOG 333[165]
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• Shape context 333[165]

• LBP 333[165]

Anatomical-based [33, 34, 161, 164, 179]

Fractal-based [168, 170]

DCE signal:

Whole spectra approach [9, 10]

Semi-quantitative approach 3!
[223] [86, 143, 180, 193, 194, 244, 273, 290, 291]

Quantitative approach

• Toft model 3!
[165, 215] [85, 86, 137, 143, 161, 163, 164, 180, 193, 194]

• Brix model 3!
[14, 15, 204, 205] [167, 273]

• Weibull function [85, 86, 180]

• PUN [85, 86, 180]

MRSI signal:

Whole spectra approach [127, 179, 209, 278, 279, 280, 281, 282, 284, 307]

Quantification approach [127, 209, 290, 291]

Wavelet-based approach [283]
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3.2.3 CADx: Feature selection and feature extraction

As presented in the previous section, it is a common practise to extract a wide variety of

features. While dealing with mp-MRI, the feature space created is a high-dimensional

space which might mislead or corrupt the classifier during the training phase. Therefore,

it is of interest to reduce the number of dimensions before proceeding to the classifica-

tion task. The strategies used can be grouped as: (i) feature selection and (ii) feature

extraction. In this section only the methods used in CAD for CaP systems are presented.

3.2.3.1 Feature selection

The feature selection strategy is based on selecting the most discriminative feature di-

mensions of the high-dimensional space. Thus, the low-dimensional space is then com-

posed of a subset of the original features detected. In this section, methods employed

in CAD for CaP detection are presented. A more extensive review specific to feature

selection is available in [243].

Niaf et al. make use of the p-value by using the independent two-sample t-test with

equal mean for each feature dimension [193, 194]. In this statistical test, there are 2

classes: CaP and healthy tissue. Hence, for each particular feature, the distribution of

each class is characterized by their means X̄1 and X̄2 and standard deviation sX1 and

sX2 . Therefore, the null hypothesis test is based on the fact that these both distribution

means are equal. The t-statistic used to verify the null hypothesis is formalized such

that:

t =
X̄1 − X̄2

sX1X2 ·
√

1
n1

+ 1
n2

, (3.37)

sX1X2 =

√
(n1 − 1)s2

X1
+ (n2 − 1)s2

X2

n1 + n2 − 2
,

where n1 and n2 are the number of samples in each class. From Eq. (3.37), more the

means of the class distribution diverge, the larger the t-statistic t will be, implying that

this particular feature is more relevant and able to make the distinction between the two

classes.
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The p-value statistic is deduced from the t-test and corresponds to the probability

of obtaining such an extreme test assuming that the null hypothesis is true [93]. Hence,

smaller the p-value, the more likely the null hypothesis to be rejected and more relevant

the feature is likely to be. Finally, the features are ranked and the most significant

features are selected. However, this technique suffers from a main drawback since it

assumes that each feature is independent, which is unlikely to happen and introduces a

high degree of redundancy in the features selected.

Vos et al. in [314] employed a similar feature ranking approach but make use of the

Fisher discriminant ratio to compute the relevance of each feature dimension. Taking

the aforementioned formulation, the Fisher discriminant ratio is formalized as the ratio

of the interclass variance to the intraclass variance as:

Fr =
(X̄1 − X̄2)2

s2
X1

+ s2
X2

. (3.38)

Therefore, a relevant feature dimension is selected when the interclass variance is

maximum and the intraclass variance in minimum. Once the features are ordered, the

authors select the feature dimensions with the largest Fisher discriminant ratio.

MI is a possible metric to use for selecting a subset of feature dimensions. This

method has previously been presented in Sect. 3.1.3 and expressed in Eq. (3.25). Peng

et al. [213] introduced two main criteria to select the feature dimensions based on MI: (i)

maximal relevance and (ii) minimum redundancy. Maximal relevance criterion is based

on the paradigm that the classes and the feature dimension which has to be selected

have to share a maximal MI and is formalized as:

arg maxRel(x, c) =
1

|x|
∑
xi∈x

MI(xi, c) , (3.39)

where x = {xi; i = 1, · · · , d} is a feature vector of d dimensions and c is the class

considered. As in the previous method, using maximal relevance criterion alone imply

an independence between each feature dimension. The minimal redundancy criterion

enforce the selection of a new feature dimension which shares as little as possible MI

with the previously selected feature dimensions such that:

arg minRed(x) =
1

|x|2
∑

xi,xj∈x

MI(xi, xj) . (3.40)
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Combination of these two criteria is known as the minimum redundancy maximum rel-

evance (mRMR) algorithm [213]. Two combinations are usually used: (i) the difference

or (ii) the quotient. This method has been used at several occasions for the selecting a

subset of features prior to classification [47, 129, 143, 193, 194, 310].

3.2.3.2 Feature extraction

The feature extraction strategy is related to dimension reduction methods but not se-

lecting discriminative features. Instead, these methods aim at mapping the data from

the high-dimensional space into a low-dimensional space to maximize the separability

between the classes. As in the previous sections, only methods employed in CAD sys-

tem are reviewed in this section. We refer the reader to [74] for a full review of feature

extraction techniques.

PCA is the most commonly used linear mapping method in CAD systems. PCA is

based on finding the orthogonal linear transform mapping the original data into a low-

dimensional space. The space is defined such that the linear combinations of the original

data with the kth greatest variances lie on the kth principal components [122]. The

principal components are computed by using the eigenvectors-eigenvalues decomposition

of the covariance matrix. Let x denote the data matrix. Then, the covariance matrix

and eigenvectors-eigenvalues decomposition are defined as in Eq. (3.41), and Eq. (3.42),

respectively. The eigenvectors-eigenvalues decomposition can be formalized as:

Σ = xTx . (3.41)

v−1Σv = Λ , (3.42)

where v are the eigenvectors matrix and Λ is a diagonal matrix containing the eigenval-

ues.

It is then possible to find the new low-dimensional space by sorting the eigenvectors

using the eigenvalues and finally select the eigenvectors corresponding to the largest

eigenvalues. The total variation that is the sum of the principal eigenvalues of the

covariance matrix [74], usually corresponds to the 95 % to 98 % of the cumulative sum

of the eigenvalues. Tiwari et al. used PCA in order to reduce the complexity of feature

space [279, 280, 283].
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Non-linear mapping has been also used for dimension reduction and is mainly based

on Laplacian eigenmaps and locally linear embedding (LLE) methods. Laplacian eigen-

maps also referred as spectral clustering in computer vision, aim to find a low-dimensional

space in which the proximity of the data should be preserved from the high-dimensional

space [18, 253]. Therefore, two adjacent data points in the high-dimensional space should

also be close in the low-dimensional space. Similarly, two distant data points in the high-

dimensional space should also be distant in the low-dimensional space. To compute this

projection, an adjacency matrix is defined as:

W (i, j) = exp ‖xi − xj‖2 , (3.43)

where xi and xj are the two samples considered. Then, the low-dimensional space is

found by solving the generalized eigenvectors-eigenvalues problem:

(D −W )y = λDy , (3.44)

where D is a diagonal matrix such that D(i, i) =
∑

jW (j, i). Finally the low-dimensional

space is defined by the k eigenvectors of the k smallest eigenvalues [18]. Tiwari et al. [278,

280, 281] and Viswanath et al. [307] used this spectral clustering to project their feature

vector into a low-dimensional space. The feature space in these studies is usually com-

posed of features extracted from a single or multiple modalities and then concatenated

before applying the Laplacian eigenmaps dimension reduction technique.

Tiwari et al. used a slightly different approach by combining the Laplacian eigenmaps

techniques with a prior multi-kernel learning strategy [280, 284]. First, multiple features

are extracted from multiple modalities. The features of a single modality are then

mapped to a higher-dimensional space via the Kernel trick [3], namely a Gaussian kernel.

Then, each kernel is linearly combined to obtain a combined kernel K and the adjacency

matrix W is computed. Finally, the same scheme as in the Laplacian eigenmaps is

applied. However, in order to use the combined kernel, Eq. (3.44) is rewritten as:

K(D −W )KTy = λKDKTy , (3.45)

which is solved as a generalized eigenvectors-eigenvalues problem as previously. Viswanath
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et al. used Laplacian eigenmaps inside a bagging framework in which multiple embed-

dings are generated by successively selecting feature dimensions [309].

LLE is another common non-linear dimension reduction technique widely used, first

proposed in [239]. LLE is based on the fact that a data point in the feature space is

characterized by its neighbourhood. Thus, each data point in the high-dimensional space

is transformed to represent a linear combination of its k-nearest neighbours. This can

be expressed as:

x̂i =
∑
j

W (i, j)xj , (3.46)

where x̂i are the data points estimated using its neighbouring data points xj , and W is

the weight matrix. The weight matrix W is estimated using a least square optimization

as in Eq. (3.47).

Ŵ = arg min
W

∑
i

|xi −
∑
j

W (i, j)xj |2 , (3.47)

subject to
∑
j

W (i, j) = 1 ,

Then, the essence of LLE is to project the data into a low-dimensional space, while re-

taining the data spatial organization. Therefore, the projection into the low-dimensional

space is tackled as an optimization problem as:

ŷ = arg min
y

∑
i

|yi −
∑
j

W (i, j)yj |2 . (3.48)

This optimization is solved as an eigenvectors-eigenvalues problem by finding the

kth eigenvectors corresponding to the kth smallest eigenvalues of the sparse matrix (I −
W )T(I −W ).

Tiwari et al. used a modified version of the LLE algorithm in which they applied LLE

in a bagging approach with multiple neighbourhood sizes [279]. The different embeddings

obtained are then fused using the maximum likelihood (ML) estimation.

Another way of reducing the complexity of high-dimensional feature space is to use

the family of so-called dictionary-based methods. Sparse coded features (SCF) represen-

tation has become very popular in other computer vision application and has been used

by Lehaire et al. in [143]. The main goal of sparse modeling is to efficiently represent the

images as a linear combination of a few typical patterns, called atoms, selected from a
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dictionary. Sparse coding consists of three main steps: sparse approximation, dictionary

learning, and low-level features projection [240].

Sparse approximation - Given a dictionary D ∈ Rn×K composed of K atoms and an

original signal y ∈ Rn — i.e., one feature vector —, the sparse approximation corresponds

to find the sparest vector x ∈ RK such that:

arg min
x

‖y −Dx‖2 s.t. ‖x‖0 ≤ λ , (3.49)

where λ is a specified sparsity level.

Solving the above optimization problem is an NP-hard problem [69]. However, ap-

proximate solutions are obtained using greedy algorithms such as Matching Pursuit

(MP) [176] or orthogonal matching pursuit (OMP) [59, 211].

Dictionary learning - As stated previously, the sparse approximation is computed

given a specific dictionary D, which involves a learning stage from a set of training

data. This dictionary is learned using K-SVD which is a generalized version of K-means

clustering and uses SVD. The dictionary is built, in an iterative manner by solving the

optimization problem of Eq. (3.50), by alternatively computing the sparse approximation

of X and the dictionary D.

arg min
D,X

‖Y −DX‖2 s.t. ‖xi‖1 ≤ λ , (3.50)

where Y is a training set of low-level descriptors, X is the associated sparse coded matrix

— i.e., set of high-level descriptors — with a sparsity level λ, and D is the dictionary

with K atoms. Given D, X is computed using the batch-OMP algorithm, while given

X, D is sequentially updated, one atom at a time using SVD.

Low-level features projection - Once the dictionary is learned, each set of low-level

features FI previously extracted is encoded using the dictionary D, solving the opti-

mization problem presented in Eq. (3.49) such that FI ' DXI .

The bag of words (BoW) approach offers an alternative method [257] for feature

extraction. BoW was used by Rampun et al. in [229, 231]. This model represents the

features by creating a codebook or visual dictionary, from the set of low-level features.

The set of low-level features are clustered using k -means to create the dictionary with

k clusters known as visual words. Once the codebook is created from the training set,

the low-level descriptors are replaced by their closest word within the codebook. The
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Table 3.9: Overview of the feature selection and extraction methods used in CAD systems.

Dimension reduction methods References

Feature selection:

Statistical test [193, 194, 314]
MI-based methods [47, 129, 143, 193, 194, 311]
Correlation-based methods [230, 233]

Feature extraction:

Linear mapping
PCA [279, 280]

Non-linear mapping
Laplacian eigenmaps [278, 280, 281, 282, 307, 309]
LLE and LLE-based [279, 280, 306, 307]

Dictionary-based learning
Sparse coding [143]
BoW [229, 231]

final descriptor is a histogram of size k which represents the codebook occurrences for a

given mapping.

3.2.3.3 Summary

The feature selection and extraction used in CAD systems are summarized in Table 3.9.

3.2.4 CADx: Classification

Once the feature vector has been extracted and eventually the complexity reduced, it is

possible to make a decision and classify this feature vector to belong to CaP or healthy

tissue. A full review of classification methods used in pattern recognition is available

in [22].

Rule-based method Lv et al. make use of a decision stump classifier to distinguish

CaP and healthy classes [170]. Puech et al. detect CaP by implementing a given set

of rules and scores based on a medical support approach [223]. During the testing, the

feature vector goes through these different rules, and a final score is computed resulting

to a final decision.

Clustering methods k-nearest neighbour (k-NN) is one of the simplest supervised

machine learning classification methods. In this method, a new unlabelled vector is

assigned to the most represented class from its k nearest-neighbours in the feature space.

The parameter k is usually an odd number in order to avoid any tie case. k-NN has been
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one of the methods used in [193, 194, 231] mainly to make a comparison with different

machine learning techniques. Litjens et al. used this method to roughly detect potential

CaP voxels before performing a region-based classification [164].

The k-means algorithm is an unsupervised clustering method in which the data is

partitioned into k clusters in an iterative manner. First, k random centroids are defined

in the feature space and each data point is assigned to the nearest centroid. Then, the

centroid position for each cluster is updated by computing the mean of all the samples

belonging to this particular cluster. Both assignment and updating are repeated until

the centroids are stable. The number of clusters k is usually defined as the number of

classes. This algorithm can also be used for “on-line” learning. In case that new data has

to be incorporated, the initial centroid positions correspond to the results of a previous k-

means training and is followed by the assignment-updating stage previously explained.

Tiwari et al. used k-means in an iterative procedure [278, 280]. Three clusters were

defined corresponding to CaP, healthy, and non-prostate. k-means is repeatedly applied

and at each iteration, the voxels corresponding to the largest cluster are excluded under

the assumption that it is assigned to “non-prostate” cluster. The algorithm stopped

when the number of voxels in all remaining clusters were smaller than a given threshold.

Tiwari et al. and Viswanath et al. used k-means in a repetitive manner in order to be less

sensitive to the centroids initialization [279, 306, 307]. Thus, k clusters are generated T

times and the final assignment is performed by majority voting using a co-association

matrix as proposed in [75].

Linear model classifiers Linear discriminant analysis (LDA) is used as a classifi-

cation method in which the optimal linear separation between 2 classes is found by

maximizing the inter-class variance and minimizing the intra-class variance [78]. The

linear discriminant function is defined as:

δk(xi) = xT
i Σ−1µk −

1

2
µT
k Σ−1µk + log(πk) , (3.51)

where xi = {x1, x2, . . . , xn} is an unlabelled feature vector of n features, Σ is the covari-

ance matrix of the training data, µk is the mean vector of the class k, and πk is the prior

probability of class k. To perform the classification, a sample xi is assigned to the class
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which maximizes the discriminant function as in Eq. (3.52).

C(xi) = arg max
k

δk(xi) . (3.52)

LDA has been used in [13, 40, 193, 194, 314].

Logistic regression is also used to perform binary classification and provides the

probability of an observation to belong to a class. The posterior probability of one of

the classes, c1 is written as:

p(c1|xi) =
1

1 + exp(−wTxi)
, (3.53)

with p(c2|xi) = 1 − p(c1|xi) and where w is the vector of the regression parameters

allowing to obtain a linear combination of the input feature vector xi. Thus, an unla-

belled observation xi is assigned to the class which maximizes the posterior probability

as shown in Eq. (3.54).

C(xi) = arg max
k

p(C = k|xi) . (3.54)

From Eq. (3.53), one can see that the key to classification using logistic regression

model is to infer the set of parameters w through a learning stage using a training set.

This vector of parameters w is inferred by estimating the maximum likelihood. This

step is performed through an optimization scheme, using a quasi-Newton method [32],

which seeks in an iterative manner for the local minimum in the derivative of Eq. (3.53).

This method has been used to create a linear probabilistic model in [127, 143, 223, 230].

Non-linear model classifier Viswanath et al. used quadratic discriminant analysis

(QDA) instead of LDA [310]. Unlike in LDA in which one assumes that the class

covariance matrix Σ is identical for all classes, a covariance matrix Σk specific to each

class is computed. Thus, Eq. (3.51) becomes:

δk(xi) = xT
i Σ−1

k µk −
1

2
µT
k Σ−1

k µk + log(πk) , (3.55)

where xi has additional terms corresponding to the pairwise products of individual fea-

tures such as {x1, x2, . . . , xn, x
2
1, x1x2, . . . x

2
n}. The classification scheme in the case of

the QDA is identical to Eq. (3.52).
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Probabilistic classifiers The most commonly used classifier is the naive Bayes clas-

sifier which is a probabilistic classifier assuming independence between each feature di-

mension [236]. This classifier is based on Bayes’ theorem:

p(C = k|x) =
p(C)p(x|C)

p(x)
, (3.56)

where p(C = k|x) is the posterior probability, p(C) is the prior probability, p(x|C) is the

likelihood, and p(x) is the evidence. However, the evidence term is usually discarded

since it is not class dependent and plays the role of a normalization term. Hence, in a

classification scheme, an unlabelled observation is classified to the class which maximizes

the posterior probability as:

C(xi) = arg max
k

p(C = k|xi) , (3.57)

p(C = k|xi) = p(C = k)
n∏
j=1

p(xij , |C = k) , (3.58)

where d is the number of dimensions of the feature vector xi = {xi1, · · · , xid}. Usu-

ally, a model includes both the prior and likelihood probabilities and it is common

to use an equal prior probability for each class or eventually a value based on the

relative frequency derived from the training set. Regarding the likelihood probabil-

ity, it is common to choose a Gaussian distribution to characterize each class. Thus,

each class is characterized by two parameters: (i) the mean and (ii) the standard

deviation. These parameters are inferred from the training set by using the maxi-

mum likelihood estimation (MLE) approach. The naive Bayes classifier has been used

in [33, 34, 85, 180, 193, 194, 194, 229, 230, 231, 233].

Ensemble learning classifiers AdaBoost (AdB) is an adaptive method based on

an ensemble learning method and initially proposed in [77]. AdB linearly combines

several weak learners resulting into a final strong classifier. A weak learner is defined

as a classification method performing slightly better than a random classifier. Popular

choices regarding the weak learner classifiers are: decision stump or decision tree learners

such as iterative dichotomiser 3 (ID3) [224], C4.5 [225], and classification and regression

tree (CART) [27].
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AdB is considered as an adaptive method in the way that the weak learners are

selected. The selection is performed in an iterative manner. At each iteration t, the

weak learner selected ht corresponds to the one minimizing the classification error on

a distribution of weights Dt, that is associated with the training samples. Each weak

learner is assigned a weight αt as:

αt =
1

2
ln

1− εt
εt

, (3.59)

where εt corresponds to the classification error rate of the weak learner on the distribution

of weight Dt.

Before performing a new iteration, the distribution of weights Dt is updated such

that the weights associated with the misclassified samples by ht increase and the weights

of well classified samples decrease as shown in Eq. (3.60).

Dt+1(i) =
Dt(i) exp (−αtyiht(xi))

Zt
, (3.60)

where xi is the ith sample corresponding to class yi and Zt is a normalization factor

forcing Dt+1 to be a probability distribution. This procedure allows to select a weak

learner at the next iteration t+1 which will classify in priority the previous misclassified

samples. Thus, after T iterations, the final strong classifier corresponds to the linear

combination of the weak learners selected and the classification is performed such that:

C(xi) = sign

(
T∑
t=1

αtht(xi)

)
. (3.61)

Lopes et al. make use of the AdB classifier to perform their classification [168] while

Litjens et al. used the GentleBoost variant [79] which provides a modification of the

function affecting the weight at each weak classifier [161].

Random forest (RF) is a classification method which is based on creating an ensemble

of decision trees and was introduced in [26]. In the learning stage, multiple decision tree

learners [27] are trained. However, each decision tree is trained using a different dataset.

Each of these datasets corresponds to a bootstrap sample generated by randomly choos-

ing n samples with replacement from the initially N samples available [67]. Then, ran-

domization is also part of the decision tree growth. At each node of the decision tree, from

the bootstrap sample of D dimensions, a number of d� D dimensions will be randomly
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Figure 3.13: Representation of the capabilities of the probabilistic boosting-tree algorithm
to split at each node of the tree the positive and negative samples.

selected. Finally, the dth dimension in which the classification error is minimum is used.

This best “split” classifier is often evaluated using MI or Gini index. Finally, each tree is

grown as much as possible without using any pruning procedure. In the prediction stage,

the unlabelled sample is introduced in each tree and each of them assign a class. Finally,

it is common to use a majority voting approach to choose the final class label. The RF

classifier has been used in [127, 161, 229, 230, 231, 233, 244, 283, 284, 290, 291, 308].

Probabilistic boosting-tree is another ensemble learning classifier which shares prin-

ciples with AdB but using them inside a decision tree [292]. In the training stage, the

probabilistic boosting-tree method grows a decision tree and at each node, a strong

classifier is learned in an almost comparable scheme to AdB. Once the strong learner is

trained, the training set is split into two subsets which are used to train the next strong

classifiers in the next descending nodes. Thus, three cases are conceivable to decide in

which branch to propagate each sample training xi:

• if q(+1,xi) − 1
2 > ε then xi is propagated to the right branch set and a weight

wi = 1 is assigned.

• if q(−1,xi)− 1
2 > ε then xi is propagated to the left branch set and a weight wi = 1

is assigned.

• else xi will be propagated in both branches with wi = q(+1,xi) in the right branch

and wi = q(−1,xi) in the left branch.
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with w = wi, i = {1, · · · , N} corresponding to distribution of weights, N the number of

samples as in AdB and q(·) is defined as:

q(+1,xi) =
exp(2H(xi))

1 + exp(2H(xi))
, (3.62)

q(−1,xi) =
exp(−2H(xi))

1 + exp(−2H(xi))
. (3.63)

Employing such a scheme tends to divide the data in such a way that positive and

negative samples are naturally split as shown in Eq. 3.13. In the classification stage, the

unlabelled sample x is propagated through the tree, where at each node, it is classified

by each strong classifier previously learned and where an estimation of the posterior

distribution is computed. The posterior distribution corresponds to the sum of the

posterior distribution at each node of the decision tree. The probabilistic boosting-tree

classifier has been used in [281, 282, 283, 309].

Kernel method A Gaussian process for classification is a kernel method in which

it is assumed that the data can be represented by a single sample from a multivariate

Gaussian distribution [234]. In the case of linear logistic regression for classification, the

posterior probability is expressed as:

p(yi|xi,w) = σ(yif(xi)) , (3.64)

f(xi) = xT
i w ,

where σ(·) is the logistic function and w are the parameters vector of the model. Thus,

the classification using Gaussian processes is based on assigning a Gaussian process

prior over the function f(x) which is characterized by a mean function f̄ and covariance

function K. Therefore, in the training stage, the best mean and covariance functions

have to be inferred in regard to our training data using a Newton optimization and a

Laplacian approximation. The prediction stage is performed in two stages. First, for a
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new observation x∗, the corresponding probability p(f(x∗)|f(x)) is computed such that:

p(f(x∗)|f(x)) = N(K∗K
−1f̄ ,K∗∗ −K∗(K ′)−1KT

∗ ) ,

K ′ = K +W−1 , (3.65)

W = ∇∇ log p(y|f(x)) ,

where K∗∗ is the covariance function k(x∗,x∗) the testing sample x∗, K∗ is the covariance

function k(x,x∗) of training-testing samples x and x∗. Then, the function f(x∗) is

squashed using the sigmoid function and the probability of the class membership is

defined such that:

C(x∗) = σ

(
f̄(x∗)√

1 + var(f(x∗))

)
. (3.66)

Only Kelm et al. used Gaussian process for classification of MRSI data [127].

Sparse kernel methods In a classification scheme using Gaussian processes, when

a prediction is performed, the whole training data are used to assign a label to the

new observations. That is why this method is also called kernel method. Sparse kernel

category is composed of methods which rely only on a few labelled observations of the

training set to assign the label of new observations [22].

Support vector machines (SVM) is a sparse kernel method aiming at finding the best

linear hyper-plane — non-linear separation is discussed further — which separates 2

classes such that the margin between the two classes is maximized [299]. The margin

is in fact the region defined by 2 hyper-planes splitting the 2 classes, such that there is

no points lying in between. The distance between these 2 hyper-planes is equal to 2
‖w‖

where w is the normal vector of the hyper-plane splitting the classes. Thus, maximizing

the margin is equivalent to minimizing the norm ‖w‖. Hence, this problem is solved by

an optimization approach and formalized as:

arg min
w

1

2
‖w2‖ ,

subject to yi(w.xi − b) ≥ 1, i = {1, . . . , N} ,
(3.67)

where xi is a training sample with is corresponding class label yi. From Eq. (3.67), it

is important to notice that only few points from the set of N points are selected which
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later define the hyper-plane. This constraint is imposed in the optimization problem

using Lagrange multipliers α. All points which are not lying on the margin are assigned

a corresponding αi = 0, which is formalized as Eq. (3.68).

arg min
w,b

max
α≥0

{
1

2
‖w‖2 −

n∑
i=1

αi[yi(w · xi − b)− 1]

}
. (3.68)

The different parameters are inferred using quadratic programming. This version

of SVM is known as hard-margin since no points can lie in the margin area. However,

it is highly probable not to find any hyper-plane splitting the classes such as specified

previously. Thus, a soft-margin optimization approach has been proposed [54], where

points have the possibility to lie on the margin but at the cost of a penalty ξi which is

minimized in the optimization process such that:

arg min
w,ξ,b

max
α,β

{
1

2
‖w‖2 + C

n∑
i=1

ξi −
n∑
i=1

αi[yi(w · xi − b)− 1 + ξi]−
n∑
i=1

βiξi

}
. (3.69)

The decision to assign the label to a new observation xi is taken such that:

C(xi) = sign

(
N∑
n=1

αn(xn.xi) + b0

)
, (3.70)

where xn|n = {1, · · · , S}, S being the support vectors.

SVM can also be used as a non-linear classifier by performing a Kernel trick [24].

The original data x is projected to a high-dimensional space in which it is assumed

that a linear hyper-plane splits the 2 classes. Different kernels are popular such as the

RBF kernel, polynomial kernels, or sigmoid kernels. In CAD for CaP systems, SVM

is the most popular classification method and has been used in a multitude of research

works [14, 15, 40, 47, 86, 129, 143, 163, 164, 165, 168, 193, 194, 204, 205, 209, 215, 273,

283, 291, 311, 312, 313, 314].

Relevant vector machine (RVM) is a sparse version of Gaussian process previously

presented, proposed in [277]. RVM is identical to a Gaussian process with the following

covariance function [226]:

KRVM (xp,xq) =
M∑
j=1

1

αj
Φj(xp)Φj(xq) , (3.71)
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Figure 3.14: Representation of a neural network of the multilayer perceptron family.

where φ(·) is a Gaussian basis function, xi|i = {1, · · · , N} are the N training points, and

α are the weights vector. As mentioned in [226], the sparsity regarding the relevance

vector arises for some j, the weight α−1
j = 0. The set of weights α is inferred using the

expectation maximization algorithm. Ozer et al. used of RVM and make a comparison

with SVM for the task of CaP detection [204, 205].

Neural network Multilayer perceptron is a feed-forward neural network considered

as the most successful model of this kind in pattern recognition [22]. The most well

known model used is based on 2 layers where a prediction of an observation is computed

as:

C(xn, w
(1)
ij , w

(2)
kj ) = σ

 M∑
j=0

w
(2)
kj h

(
D∑
i=0

w
(1)
ij xin

) , (3.72)

where h(·) and σ(·) are 2 activation functions usually non-linear, w
(1)
ij and w

(2)
kj are the

weights associated with the linear combination with the input feature xn and the hidden

unit.

A graphical representation of this network is presented in Eq. 3.14. Relating Fig. 3.14

with Eq. (3.72), it can be noted that this network is composed of some successive non-

linear mapping of the input data. First, a linear combination of the input vector xn
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is mapped into some hidden units through a set of weights w
(1)
ij . This combination

becomes non-linear by the use of the activation function h(·) which is usually chosen to

be a sigmoid function. Then, the output of the networks consists of a linear combination

of the hidden units and the set of weights w
(2)
kj . This combination is also mapped non-

linearly using an activation function σ(·) which is usually a logistic function. Thus, the

training of such a network resides in finding the best weights w
(1)
ij and w

(2)
kj which model

the best the training data. The error of this model is computed as:

E(w
(1)
ij , w

(2)
kj ) =

1

2

N∑
n=1

(
C(xn, w

(1)
ij , w

(2)
kj )− y(xn)

)2
, (3.73)

where xn|n = {1, · · · , N} are the N training vectors with their corresponding class label

y(xn).

Therefore, the best set of weights is inferred in an optimization framework where

the error E(·) needs to be minimized. This optimization is performed using a gra-

dient descent method where the derivative of Eq. (3.73) is computed using the back-

propagation algorithm proposed by [242]. This type of network has been used multiple

times [179, 209, 233, 290, 291].

Probabilistic neural networks are another type of feed-forward networks which is

derived from the multilayer perceptron case and has been proposed by [263]. This clas-

sifier is modelled by changing the activation function h(·) in Eq. (3.72) to an exponential

function such that:

h(xn) = exp

(
−(wj − x)T(wj − x)

2σ2

)
, (3.74)

where σ is a free parameter set by the user.

The other difference of the probabilistic neural networks compared with the multi-

layer perceptron networks resides in the architecture as shown in Fig. 3.15. This network

is formed by 2 hidden layers. The first hidden layer consists of the pattern layer, in which

the mapping is done using Eq. (3.74). This pattern layer is sub-divided into a number

of groups corresponding to the number of classes. The second hidden layer corresponds

to the summation layer which simply sums the output of each sub-group of the pattern

layer. This method is used in [9, 10, 309].
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Figure 3.15: Representation of a neural network of the probabilistic neural network family.

Graphical model classifiers Markov random field (MRF) is used as a lesion seg-

mentation method to detect CaP. First, let define s as a pixel which belongs to a certain

class denoted by ωs. The labelling process is defined as ω = {ωs, s ∈ I} where I is the

set of all the pixels inside the image. The observations corresponding to SI in the image

are noted F = {fs|s ∈ I}. Thus, the image process F represents the deviation from the

labelling process ω [125]. Hence, lesion segmentation is equivalent to estimating the best

ω̂ which maximizes the posterior probability p(ω|F). Thus, using a Bayesian approach,

this problem is formulated such that:

p(ω|F) = arg max
ω

∏
s∈I

p(fs|ωs)p(ω) . (3.75)

It is generally assumed that p(fs|ωs) follows a Gaussian distribution and that the

pixels classes λ = {1, 2} for a binary classification are characterized by their respective

mean µλ and standard deviation σλ. Then, ω is a Markov random field, thus:

p(ω) =
1

Z
exp (−U(ω)) , (3.76)
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where Z is a normalization factor to obtain a probability value, U(·) is the energy

function.

Thus, the segmentation problem is solved as an optimization problem where the

energy function U(·) has to be minimized. There are different possibilities to define the

energy function U(·). However, it is common to define the energy function such that

it combines two types of potential function: (i) a local term relative to the pixel itself

and (ii) a smoothing prior which embeds neighbourhood information which penalizes the

energy function affecting the region homogeneity. This optimization of such a function

can be performed using an algorithm such as iterated conditional modes [125]. Liu et al.

and Ozer et al. used MRF as an unsupervised method to segment lesions in mp-MRI

images [167, 205]. Artan et al. and Chung et al. used conditional random fields instead

of MRF for MRI segmentation [14, 15, 47]. The difference between these 2 methods

resides in the fact that conditional probabilities are defined such as:

p(ω|F) =
1

Z
exp

−∑
s∈I

VC1(ωs|F)−
∑
{s,r}∈C

VC2(ωs, ωr|F)

 . (3.77)

VC1(·) is the state (or partition) feature function and VC2(·) is the transition (or edge)

feature function [126].

3.2.4.1 Summary

Classification methods used to distinguish CaP from healthy tissue in in CAD systems

are summarized in Table 3.10.

3.2.5 Model validation

In pattern recognition, the use of model validation techniques to assess the performance

of a classifier plays an important role for reporting results. Two techniques are broadly

used in the development of CAD systems and are summarized in Table 3.11. The most

popular technique used in CAD systems is the leave-one-out cross-validation (LOOCV)

technique. From the whole data, one patient is kept for validation and the other cases

are used for training. This manipulation is repeated until each patient has been used for

validation. This technique is popular when working with a limited number of patients,

allowing to train on representative number of cases even with a small dataset. However,
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Table 3.10: Overview of the classifiers used in CAD systems.

Classifier References

Rule-based method: [170, 223]

Clustering methods:
k-means clustering [278, 279, 280]
k-NN [164, 193, 194, 231]

Linear model classifiers:
LDA [13, 40, 161, 193, 194, 314]
Logistic regression [127, 137, 143, 230]

Non-linear classifier:
QDA [310]

Probabilistic classifier:
Naive Bayes [33, 34, 85, 180, 193, 194, 229, 230, 231, 233]

Ensemble learning classifiers:
AdB [161, 168]
RF [127, 161, 229, 230, 231, 233, 244, 283, 284, 290, 291, 308]
Probabilistic boosting tree [280, 282, 283]

Kernel method:
Gaussian processes [127]

Sparse kernel methods:
SVM [14, 15, 40, 47, 86, 129, 143, 163, 164, 165, 168, 193, 194, 204, 205, 209,

215, 273, 283, 291, 311, 312, 313, 314]
RVM [204, 205]

Neural network:
Multiple layer perceptron [179, 209, 233, 290, 291]
Probabilistic neural network [9, 10, 309]

Graphical model classifiers:
Markov random field [167, 205]
Conditional random field [14, 15, 47]

Table 3.11: Overview of the model validation techniques used in CAD systems.

Model validation techniques References

LOOCV [9, 10, 13, 14, 15, 33, 34, 40, 47, 85, 127, 129, 143, 161, 164, 180, 193, 194,
204, 205, 215, 223, 284, 309, 311, 311, 313]

k-CV [163, 209, 229, 230, 231, 232, 233, 280, 281, 282, 283, 290, 291, 308, 310, 314]
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Table 3.12: Overview of the evaluation metrics used in CAD systems.

Evaluation metrics References

Accuracy [14, 15, 167, 273, 283]
Sensitivity - Specificity [14, 15, 33, 34, 85, 129, 167, 168, 180, 204, 205, 209, 215, 244, 279, 280, 290, 291,

306, 307]
ROC - AUC [10, 13, 40, 85, 86, 127, 137, 143, 165, 168, 170, 179, 180, 193, 194, 215, 229, 230,

231, 232, 233, 281, 282, 283, 284, 308, 309, 310, 311, 312, 313]
FROC [163, 164, 314]
Dice’s coefficient [14, 15, 167, 204]

LOOCV cross-validation suffers from a large variance and is considered as an unreliable

estimate [68].

The other technique is the k-fold cross-validation (k-CV) technique which is based on

splitting the dataset into k subsets where the samples are randomly selected. Then, one

fold is kept for testing and the remaining subsets are used for training. The classification

is then repeated as in the LOOCV technique. In fact LOOCV is a particular case of

k-CV when k equals the number of patients. In the reviewed papers, the typical values

used for k has been set to three and five. k-CV is regarded as more appropriate than

LOOCV, but the number of patients in the dataset needs to be large enough for the

results to be meaningful.

3.2.6 Evaluation measures

Several metrics are used in order to assess the performance of a classifier and are sum-

marized in Table 3.12. Voxels in the MRI image are classified into healthy or malign

tissue and compared with a ground-truth. This allows to compute a confusion matrix by

counting true positive (TP), true negative (TN), false positive (FP), and false negative

(FN) samples. From this analysis, different statistics are extracted.

The first statistic used is the accuracy which is computed as the ratio of true de-

tection to the number of samples. However, depending on the strategy employed in the

CAD work-flow, this statistic is highly biased by a high number of true negative samples

which boost the accuracy score overestimating the actual performance of the classifier.

That is why, the most common statistics computed are sensitivity and specificity de-

fined in Eq. (3.78) and Eq. (3.79), respectively. The metrics give a full overview of the
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performance of the classifier.

SE =
TP

TP + FN
, (3.78)

SP =
TN

TN + FP
. (3.79)

These statistics are also used to compute the receiver operating characteristic (ROC)

curves [184], which give information about voxel-wise classification. This analysis repre-

sents graphically the sensitivity as a function of (1−specificity), which is in fact the false

positive rate, by varying the discriminative threshold of the classifier. By varying this

threshold, more true negative samples are found but often at the cost of detecting more

false negatives. However, this fact is interesting in CAD since it is possible to obtain a

high sensitivity and to ensure that no cancers are missed even if more false alarms have

to be investigated or the opposite. A statistic derived from ROC analysis is the area

under the curve (AUC) which corresponds to the area under the ROC and is a measure

used to make comparisons between models.

The free-response receiver operating characteristic (FROC) extends the ROC analysis

but to a lesion-based level. The same confusion matrix is computed where the sample

are not pixels but lesions. However, it is important to define what is a true positive

sample in that case. Usually, a lesion is considered as a true positive sample if the

region detected by the classifier overlaps “sufficiently” the one delineated in the ground-

truth. However, “sufficiently” is a subjective measure defined by each researcher and can

correspond to one pixel only. However, an overlap of 30 % to 50 % is usually adopted.

Finally, in addition to the overlap measure, the Dice’s coefficient is often computed to

evaluate the accuracy of the lesion localization. This coefficient consists of the ratio

between twice the number of pixels in common and the sum of the pixels of the lesions

in the ground-truth GT and the output of the classifier S, defined as shown in Eq. (3.80).

QD =
2|GT ∩ S|
|GT|+ |S|

. (3.80)
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Figure 3.16: Comparison in terms of FROC of the methods using data from 3 T MRI
scanner.

3.3 Discussion

3.3.1 Results reported

As discussed previously in Sect. 3.2.6, different metrics have been used to report results.

A comparison of the different methods reviewed is given depending on the metric used

in field of research and also the type of MRI scanner used, i.e. 1.5 T or 3 T. For each

field, the best classification performance obtained in each study have been reported in

these figures. The results in terms of AUC-ROC are depicted in Fig. 3.17. The results

vary from 71 % to 97 % for some experiments with a 1.5 T MRI scanner and from 77 %

to 95 % with a 3 T MRI scanner.

The results in regard of sensitivity and specificity are reported in Fig. 3.18. In the

case that the data have been collected with a 1.5 T MRI scanner, the sensitivity ranges

from 74 % to 100 % and the specificity from 43 % to 93 %. For the experiments carried

out with a 3 T MRI scanner, the sensitivity varies from 60 % to 99 % and the specificity

from 66 % to 100 %. Four studies also use FROC analysis to report their results and are

reported in Fig. 3.16.
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Figure 3.17: Numerical and graphical comparison of the results in terms of AUC for
1.5 T (a) and 3 T (b) MRI scanners. The green value represents the metric and are graph-
ically reported in the green curve in the center of the figure. The red value and areas
correspond to the number of patients in the dataset. The numbers between brackets in blue
correspond to the reference as reported in Table 3.1.
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Figure 3.18: Numerical and graphical comparison of the results in terms of SE (a), (c) and
SP (b), (d) for 1.5 T and 3 T MRI scanners. The value in green represents the metric and
are graphically reported in the green curve in the center of the figure. The red value and
areas correspond to the number of patients in the dataset. The numbers between brackets
in blue correspond to the reference as reported in Table 3.1.
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3.3.2 Comparison

We would like to stress the following findings drawn during the review of the different

studies:

1. Quantitatively, it is difficult to make a fair comparison between the different studies

reviewed. Different factors come into play to elucidate this fact. Mainly a lack

of standardization has to be pointed out in regard to experimental evaluation:

(i) different datasets are used during the evaluation of the frameworks developed

hindering an inter-study comparison. The same conclusion has been recently drawn

by [161] supporting this argument; (ii) the experimental results are not reported

with a common metric which leads to the inability to compare the different studies.

2. However, multiple studies reported some performance improvements using mp-

MRI techniques instead of mono-parametric imaging techniques. Considering only

the most recent studies proposing CADe-CADx frameworks, the following results

can be highlighted. Viswanath et al. obtained an AUC of 77 % using an ensemble

learning approach combining the features from the three MRI modalities — i.e.,

T2-W-MRI, DCE–MRI, and DW-MRI, while the results obtained as standalone

modality range from 62 % to 65 % [309]. Tiwari et al. drawn similar conclusions by

using T2-W-MRI and MRSI modalities as both in standalone and multi-parametric

frameworks with an improved AUC ranging from 57 %-76 % to 85 % [284]. The

most recent work of Litjens et al. obtained an improved AUC metric from 71 %-

76 % considering each modality separately — i.e., T2-W-MRI, DCE-MRI, and

DW-MRI — to 89 % in their mp-MRI framework.

3. The studies comparing particular combination of more than a single modality

give rise to the same fact [161, 163, 165, 205]: using 3 modalities lead to better

performances than using any combination of 2 modalities.

4. Unlike the previous remark 2, no straightforward conclusions can be given regard-

ing the classification performance using each modality in a standalone framework.

The modality being processed by different methods, it does not allow us to con-

clude if a modality by itself is more suited than another. However, we are able to

distinguish some interesting trends which deserve the attention of the community.
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Tiwari et al. in [281, 283, 284] observed that MRSI is a more suitable modality than

T2-W to highlight CaP. Moreover, ADC maps have shown a better discriminative

power than T2-W as well [137, 215, 309]. Lately, Litjens et al. observed that DW-

MRI modality is more suitable than both DCE-MRI and T2-W-MRI to distinguish

CaP in their CADx system [161]. Recently, Rampun et al. showed, however, some

promising results using T2-W-MRI only in conjunction with textons and BoW;

this study should be transposed to other MRI modalities [231].

5. Furthermore, mp-MRI has attracted the attention of both radiologists and com-

puter vision researchers. Indeed, pioneer research groups included new modalities

over years when at the same time, new research groups directly introduced mp-

MRI CAD systems. These facts lead us to think that CaP researches will benefit

from mp-MRI techniques.

6. When focusing on the different modalities used, it can be pointed out that only

Trigui et al. reported the use of all modalities in a single framework by incorporat-

ing the MRSI modality [290, 291]. Although the results reported are promising,

the detection has been performed at MRSI scale and further investigations need

to be carried out. Nevertheless, MRSI has shown some overall good classification

performance at the price of a lower resolution as well as an increased acquisition

time. Moreover, MRSI analysis is more complex in comparison with the other

modalities. To our mind, MRSI could contribute in a mp-MRI framework and

should be fused with the other modalities.

7. Lately, 3 studies focused on developing a region-based classification in which PZ

and CG will be analyzed separately [161, 164, 310]. The promising obtained results

indicate that this strategy should be further investigated.

8. Recent studies are using quantitative features in addition to SI. It seems that these

quantitative features provide uncorrelated information with respect to SI features

and should lead to better classification performance when combined all together.

9. Regarding the methods used in the “image regularization” — i.e., pre-processing,

segmentation, and registration — it is particularly difficult to distinguish the ben-

efit of a method over another since none of the studies focus on making comparison
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of these processing stages. The focus is usually entirely based on the “image classi-

fication” framework where different methods are directly compared. Note that the

performance of a classifier is highly linked with the features vector extracted from

particular data. Hence, one can not conclude that a machine learning method is

more appropriate than another, but we can identify a trend in which SVM as well

as ensemble learning classifiers — i.e., AdaBoost, GentleBoost, and RF — seem

to perform better than neural network, LDA, or Naive Bayes.

10. We would like to draw the attention of the reader on the feature extraction/selec-

tion stage. This processing could reduce the complexity and also allow to find a

better feature space for classification. However, few studies are performing such

approaches. Niaf et al., Khalvati et al., Chung et al., and Rampun et al. are suc-

cessfully applying a scheme to reduce the number of dimensions by selecting the

most discriminative features [47, 129, 193, 194, 230, 233]. It allows them to obtain

improved performances compared with a classification performed with their initial

feature vector. Another group of studies also applied different feature extraction

methods [143, 229, 231, 278, 279, 280, 282, 283, 284, 306, 307, 310]. In these specific

cases, no comparison is performed against the original data.

3.4 Conclusion

This review leads to some general discussions which could direct to future avenues for

research. As previously mentioned, no open mp-MRI is currently available. This fact

leads to an impossibility to fairly compare the different algorithms designed over years.

Also, the availability of a full mp-MRI dataset, could lead to the development of algo-

rithms which use all the different modalities currently available. Recalling Table 3.1,

it can be noted that a single research work provides a solution using at the same time

the 4 different modalities. Also, all the algorithms are focused on one type of scanner

only, either 1.5 T and 3 T. A dataset including both these types of imaging could allow

development of more generic algorithms.

Analyzing the different stages of the CAD work-flow, it is seen that the current

CAD systems do not include all the pre-processing steps. It could be interesting to

evaluate the improvement using these pre-processing steps on the final results. Regarding
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segmentation and registration of the prostate, CAD systems could greatly benefit from

specific research in these areas which could lead to a better automation of those systems.

Additionally, no research focuses on the problem of imbalanced dataset. While classi-

fying at the voxel-level, the medical dataset are highly imbalanced regarding the frequen-

cies of CaP against healthy samples. Imbalanced data substantially compromises the

learning process since most of the standard machine learning algorithms expect balanced

class distribution or an equal misclassification cost [103].

Therefore, it seems important to investigate this field of pattern recognition to im-

prove the classification performance while developing CAD systems.

Therefore, the main objectives of this thesis are to: (i) collect and make available the

first mp-MRI dataset; (ii) design, develop, and investigate a CAD system taking advan-

tage of all available MRI modalities; (iii) focus on pre-processing methods to improve the

classification performance of CAD systems; (iv) investigate the problem of imbalanced

dataset in the CAD performance; (v) release source code to allow future benchmarking.
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Chapter 4

Materials

Replication The repetition of a scientific experiment or trial to obtain a

consistent result.

Such definition of replication reveals the importance of reproducible research, since the

confirmation of results obtained from independent studies is considered the scientific

gold standard to build our body of knowledge.

Peng states the excitement and wanders that computational science brings to the

scientific landscape, but he also exposes the limitations in the scientific community to

evaluate its published findings due to the lack of reproducibility [214]. In order to

overcome such limitations, Peng [214] proposes reproducibility spectrum to be covered

to move from non-reproducible publication to fully-reproducible research (see Fig. 4.1).

Specifically, Peng [214] argues that the original data and executable code which lead to

the published results should be all coupled and available.

Furthermore, Varoquaux [300] in his article Of Software and Science. Reproducible

science: what, why, and how summarizes a discussion which took place in MLOSS 2015

Figure 4.1: The spectrum of reproducibility (copyright by [214]).
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workshop regarding the issue of reproducible science. He concluded that the repro-

ducibility spectrum proposed by Peng [214] falls short because it focuses on providing

materials to backup publications but oversights the importance of sound reusable ma-

terials and methods, which are the foundation of future scientific developments despite

being cast out of the success formula in academia where only impact factor seems to

matter.

With respect to aforementioned discussion our intention with this chapter is two

fold: (i) position ourselves with respect to reproducible research and (ii) describe all

the resources and outcomes from this thesis that allow our experiments be reproducible.

The former part is a philosophical discussion of the working framework used during the

thesis. The latter is a concrete description of the resources to reproduce the work of

this thesis. Therefore, in the remainder of this section we first present the structure

of our framework towards reproducible research, before to present our dataset which

is publicly available through our website. We conclude by presenting the open source

toolboxes developed during this thesis.

4.1 Our efforts towards reproducible research

To conduct our research we have developed working strategies based on existing and

in-house platforms. This section describes the current and upcoming states of the frame-

work, which has been refined through the thesis.

4.1.1 I2Cvb

We have created the I2Cvb website and its associated GitHub community, which stands

on the following core pillars stated on the website1.

Why? Vision: Ease the access to research The first need in modern research, re-

gardless its application domain, is related to the access to reliable data for its subsequent

study. However, data gathering is an entrance barrier for most of the researchers mainly

due to factors as diverse costs, infrastructure, availability, etc. Moreover, isolated en-

deavours to gather these data without granting public access lead to the creation of muda

(“waste”): waste of resources and inability to compare results and validate conclusions.

1http://i2cvb.github.io/
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Despite being highlighted by numerous research works, the lack of usable, public,

reliable, and accessible data remains disregarded in many fields. The I2Cvb is a wake-

up call for addressing and breaking the entrance barriers in research due to data and/or

isolation by applying collaborative strategies.

What? Mission: Provide open data; evaluation methods; comparison frame-

work; reporting platform The lack of common data combined with non-aggregated

assessing strategies result in non-existent or misleading comparisons which make diffi-

cult to acknowledge relevant novel methodologies. A common duty to the research and

development communities is to overcome these limitations, which can be successfully

addressed by co-creation and collaborative work.

I2Cvb aims at serving as foundation for collecting and sharing data as well as pro-

viding common evaluation methodologies. Furthermore, the use of common data and

evaluation is the only way to achieve fair comparison.

Who? Protagonists: Research groups and individuals from all walks of life

to shape a transparent community I2Cvb creates for everyone the opportunity

to pursue common goals through sharing, collaborating and team-working, to empower

the individuals by taking advantages of personal skills and resources. As a consequence,

young researchers will find an eco-system for self-improvement in which work will be

rewarded through benchmarking compilation.

How? Strategy: Transfer successful practises from free software and quality

management I2Cvb community challenges the impossible as well as the current sta-

tus quo in research. Therefore, we strive to settle a multi-skilled community pursuing

common goals to achieve excellence through collaborative continuous improvement.

At I2Cvb, we believe that Free software and quality management have already re-

shaped the world and that it is time to apply some of the successful practices learned in

such domains to expand the boundaries of research in computer vision and specially for

the medical imaging case.
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4.1.2 Software Quality

All the different implemented source codes for this thesis have been released to support

future development and the possibility to build a consistent benchmark. All available

code is primarily developed in Python with a concern of: (i) Quality assurance by

developing unit tests, automatic code quality checking, and code consistency checking

using PEP8 standards; (ii) Continuous integration is achieved through tools as Travis CI

to easily integrate new contributions and ensure back-compatibility; (iii) Community-

based development by using collaborative tools — git, GitHub, and gitter — to ease

collaborative programming, issue tracking, code integration, and idea discussions; (iv)

Documentation through a description of the developed API.

4.1.3 Working strategy

As aforesaid, we developed a website and a GitHub community. The website is used

mainly as front-hand of our project while the I2Cvb GitHub community is the main core

and this is how we strive for repeatable research. Our research is based on collaborating

with specialists to collect data, coding experiments, interpret, and communicate the

observations. In essence, research is an iterative and incremental process that needs to

ensure the quality of each of its step.

The outcome of any research is highlighted through publications. In our work strat-

egy publications of each project are sub-projects of the main projects which are both

hosted in GitHub. This allows us to review projects and publications in the same man-

ner taking advantage of issue tracking and CI. The data of the project are hosted at

CERN, provided with a DOI using Zenodo, and disseminated through I2Cvb website.

At the time of publication, the code is released to freeze its state. Zenodo provides a

DOI to reference the release. Releases are incorporated to the CI systems to detect

back-compatibility breaks and fix them by release reviews. Evolution of our tools and

libraries also captured by the CI.

4.2 Prostate data

This section describes the datasets used in this thesis which are also available through

the I2Cvb website.
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4.2.1 1.5 T General Electric scanner

The multiparametric magnetic resonance imaging (MRI) (mp-MRI) data are acquired

from a cohort of patients with higher-than-normal level of prostate-specific antigen

(PSA). The acquisition is performed using a 1.5 T whole body GE Signa MRI scanner

(General Electric, Milwaukee, WI, USA) with an endorectal coil (Medrad, Pittsburgh,

PA, USA), using sequences to obtain T2 Weighted (T2-W)-MRI, dynamic contrast-

enhanced (DCE)-MRI, diffusion weighted (DW)-MRI, and magnetic resonance spec-

troscopy imaging (MRSI). Aside of the MRI examination, these patients also have un-

dergone a guided-biopsy.

Three-dimensional T2-W fast spin-echo (repetition time (TR):3480 ms, echo time

(TE):113.6 ms, echo train ength (ETL): 16, slice thickness: 3 mm) images are then ac-

quired in an oblique axial plane with a 320× 224 acquisition matrix and a pixel spacing

of 0.27 mm.

DCE-MRI is performed using a fat suppressed 3D fast spoiled gradient echo (TR/TE/Flip

angle: 4.42 ms/2.10 ms/12◦; Matrix: 320×192; slab of 40 partitions of 3.5 mm thickness;

temporal resolution: 10 s/slab over approximately 5 min). A power injector (Medrad,

Indianola, USA) is used to provide a bolus injection of Gd-DTPA (Dotarem, Guerbet,

Roissy, France) at a dose of 0.2 ml Gd-DTPA/kg of body weight.

DW-MRI images have been acquired using the single-shot spin-echo echo-planar

imaging (EPI) technique. The diffusion-encoding gradients have been applied using a

pulsed gradient spin-echo technique resulting in diffusion images acquired at 2 b-values

— i.e., 100 s mm−2 and 1400 s mm−2 — and in the 3 orthogonal directions. Sequential

sampling of the k-space has been used with a TE of 100.1 ms, a TR of 10 825 ms, a

bandwidth of 1953 Hz px−1, and an acquisition matrix size of 128× 128.

MRSI is performed using a water and lipid suppressed double-spin-echo point-resolved

spectroscopic (PRESS) sequence optimized for quantification detection of choline and

citrate metabolites. Water and lipid have been suppressed using a dual-band spectral

spatial pulse technique. Datasets have been acquired as 16×8×8 phase-encoded spectral

arrays, a TE of 130 ms, a TR of 1000 ms.
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4.2.2 3 T Siemens scanner

The mp-MRI data are acquired from a cohort of patients with higher-than-normal level

of PSA. The acquisition is performed using a 3 T whole body MRI scanner (Siemens

Magnetom Trio TIM, Erlangen, Germany) using sequences to obtain T2-W-MRI, DCE-

MRI, DW-MRI, and MRSI. Aside of the MRI examination, these patients also have

undergone a guided-biopsy. The dataset is composed of a total of 19 patients of which

17 patients have biopsy proven prostate cancer (CaP) and 2 patients are “healthy” with

negative biopsies. From those 17, 12 patients have a CaP in the peripheral zone (PZ),

3 patients have CaP in the central gland (CG), 2 patients have invasive CaP in both

PZ and CG. An experienced radiologist has segmented the prostate organ — on T2-

W-MRI, DCE-MRI, and apparent diffusion coefficient (ADC)-MRI — as well as the

prostate zones — i.e., PZ and CG —, and CaP on the T2-W-MRI.

A 3 mm slice fat-suppressed T2-W fast spin-echo sequence (TR: 3400 ms, TE: 85 ms,

ETL:13) is used to acquire images in sagittal and oblique coronal planes, the latter planes

being orientated perpendicular or parallel to the prostate PZ rectal wall axis. Three-

dimensional T2-W fast spin-echo (TR: 3600 ms, TE: 143 ms, ETL: 109, slice thickness:

1.25 mm) images are then acquired in an oblique axial plane. The nominal matrix

and field of view (FOV) of the 3D T2-W fast spin-echo images are 320 mm2 × 256 mm2

and 280 mm2 × 240 mm2, respectively, thereby affording sub-millimetric pixel resolution

within the imaging plane.

DCE-MRI is performed using a fat suppressed 3D T1 VIBE sequence (TR: 3.25 ms,TE:

1.12 ms, Flip angle:10◦; Matrix: 256 × 192; FOV: 280 × 210 (with 75 % rectangular

FOV); slab of 16 partitions of 3.5 mm thickness; temporal resolution: 6 s/slab over ap-

proximately 5 min). A power injector (Medrad, Indianola, USA) is used to provide a

bolus injection of Gd-DTPA (Dotarem, Guerbet, Roissy, France) at a dose of 0.2 ml

Gd-DTPA/kg of body weight.

DW-MRI images have been acquired using the single-shot spin-echo echo-planar

imaging (EPI) technique. As proposed by Stejskal and Tanner [269], the diffusion-

encoding gradients have been applied using a pulsed gradient spin-echo technique re-

sulting in diffusion images acquired at 2 b-values — i.e., 100 s mm−2 and 800 s mm−2

— and in the 3 orthogonal directions. Sequential sampling of the k-space has been

used with a TE of 101 ms, a TR of 4200 ms, and a bandwidth of 1180 Hz px−1. Other
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parameters included a FOV of 240 mm, an acquisition matrix size of 128 × 128 and a

slice thickness of 3.5 mm. The ADC map has been directly generated by the Siemens

workstation from the raw data on a pixel-by-pixel basis.

MRSI is performed using a water and lipid suppressed double-spin-echo point-resolved

spectroscopic (PRESS) sequence optimized for quantification detection of choline and

citrate metabolites. Water and lipid have been suppressed using a dual-band spectral

spatial pulse technique. In order to eliminate signals from adjacent tissues, especially

periprostatic lipids and the rectal wall up to 8 outer voxel saturation pulses have been

used. Datasets have been acquired as 16×12×16 — interpolated to 16×16×16 phase-

encoded spectral arrays, a TE of 140 ms, a TR of 720 ms and 13 min of acquisition time.

A spectral bandwidth of 1250 Hz has been used with 512 data points. A combination

of an elliptic weighted averaged k-space acquisition scheme 3D filtering of the signal

in k-space have been used, the latter in order to reduce intervoxel signal combination.

Shimming has been carried out using the Siemenbens 3D Mapshim routine on a voxel

adapted to the volume of the entire prostate gland. Additional unsuppressed water ac-

quisitions at TE of 30 ms, 80 ms, and 140 ms of 1.5 min have also been performed in

order to allow quantification with respect to prostate water. Systematic verification of

the global shim — i.e., over the complete 3D PRESS-selected volume — revealed line

widths at half-height of the water peak of the order of 20 Hz to 30 Hz, routinely. The

line widths for individual voxels are of the order of 8 Hz to 12 Hz. The total examination

time, including the time spent positioning the patient, is approximately 45 minutes.

4.3 imbalanced-learn toolbox

The imbalanced-learn toolbox1 is an open-source python toolbox aiming at providing

a wide range of methods to cope with the problem of imbalanced dataset frequently

encountered in machine learning and pattern recognition. The implemented state-of-the-

art methods can be categorized into 4 groups: (i) under-sampling, (ii) over-sampling,

(iii) combination of over- and under-sampling, and (iv) ensemble learning methods. The

proposed toolbox only depends on numpy, scipy, and scikit-learn and is distributed

under MIT license. Furthermore, it is fully compatible with scikit-learn and is part

of the scikit-learn-contrib supported project. Documentation, unit tests as well as

1G. Lemâıtre is one of the core contributors
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integration tests are provided to ease usage and contribution. The toolbox is publicly

available in GitHub1.

To illustrate the developed API and the compatibility with scikit-learn, an exam-

ple of a pipeline using a principal components analysis (PCA) decomposition, a synthetic

minority over-sampling techniques (SMOTE) over-sampler, and a k-nearest neighbour

(k-NN) classifier is presented below:

1 from s k l ea r n . da ta s e t s import m a k e c l a s s i f i c a t i o n

2 from s k l ea r n . c r o s s v a l i d a t i o n import t r a i n t e s t s p l i t as t t s

3 from s k l ea r n . decompos it ion import PCA

4 from s k l ea r n . ne ighbors import KNe ighbo r sC la s s i f i e r as KNN

5 from s k l ea r n . met r i c s import c l a s s i f i c a t i o n r e p o r t

6 from imblearn . over sampl ing import SMOTE

7 from imblearn . p i p e l i n e import P i p e l i n e

8 X, y = m a k e c l a s s i f i c a t i o n ( n c l a s s e s =2, c l a s s s e p =2,

9 n in fo rmat ive =3, n redundant =1, f l i p y =0,

10 n f e a t u r e s =20, n c l u s t e r s p e r c l a s s =1,

11 n samples =1000 , weights =[0 .1 , 0 . 9 ] )

12 pca = PCA( )

13 smt = SMOTE( )

14 knn = KNN( )

15 p i p e l i n e = P i p e l i n e ( [ ( ’ smt ’ , smt ) , ( ’ pca ’ , pca ) , ( ’ knn ’ , knn ) ] )

16 X train , X test , y t ra in , y t e s t = t t s (X, y , random state =42)

17 p i p e l i n e . f i t ( X train , y t r a i n )

18 y hat = p i p e l i n e . p r e d i c t ( X tes t )

Listing 4.1: Code snippet to over-sample a dataset using SMOTE in conjunction with

PCA and a k-NN classifier.

4.4 protoclass toolbox

The protoclass toolbox2 is an open-source python toolbox providing tools for fast

prototyping of machine learning pipeline in medical imaging. It implements most of

the state-of-the-art feature detection techniques presented in Chap. 3. To illustrate the

API, an example is given in which a T2-W-MRI volume is normalized and the voxels

corresponding to the prostate are extracted and can be used easily with scikit-learn.

This toolbox is publicly available on GitHub3.

1https://github.com/scikit-learn-contrib/imbalanced-learn
2G. Lemâıtre is the lead contributor
3https://github.com/glemaitre/protoclass
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4.4 protoclass toolbox

1 import os

2 from p r o t o c l a s s . data management import T2WModality

3 from p r o t o c l a s s . data management import GTModality

4 from p r o t o c l a s s . p r e p r o c e s s i n g import Gauss ianNormal izat ion

5 from p r o t o c l a s s . e x t r a c t i o n import I n t e n s i t y S i g n a l E x t r a c t i o n

6

7 # Def ine the path the d i f f e r e n t data path

8 path t2w = ’ / data /T2W’

9 path gt = [ ’ / data /GT/ pro s ta t e ’ ]

10 l a b e l g t = [ ’ p ro s t a t e ’ ]

11

12 # Read the T2W

13 t2w mod = T2WModality ( )

14 t2w mod . read data f rom path ( path t2w )

15

16 # Read the ground−t ruth

17 gt mod = GTModality ( )

18 gt mod . read data f rom path ( l a b e l g t , path gt )

19

20 # Normalize the T2W modal ity

21 t2w norm = Gauss ianNormal izat ion ( T2WModality ( ) )

22 t2w norm . f i t ( t2w mod , ground truth=gt mod , cat=l a b e l g t [ 0 ] )

23 t2w mod = t2w norm . normal ize ( t2w mod , ground truth=gt mod ,

24 cat=l a b e l g t [ 0 ] )

25

26 # Extract the voxe l from the p ro s t a t e

27 i s e = I n t e n s i t y S i g n a l E x t r a c t i o n ( t2w mod )

28 data = i s e . t rans form ( t2w mod , ground truth=gt mod , cat=l a b e l g t [ 0 ] )

Listing 4.2: Code snippet to normalize a volume and extract some voxels.
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Chapter 5

Normalization/Standardization of

T2W-MRI and DCE-MRI Images

Computer-aided detection and diagnosis (CAD) systems are usually designed as a se-

quential process consisting of four stages: pre-processing, segmentation, registration,

and classification. We presented in Sect. 3.1.1.1 the state-of-the-art techniques for nor-

malization/standardization of magnetic resonance imaging (MRI) modality among other

pre-processing steps. As a conclusion, we can stress that only little attention has been

dedicated to this topic. Data normalization is, however, a crucial and important step of

the chain to design a robust classifier and overcome the inter-patient intensity variations.

In this chapter, we focus on the normalization of T2 Weighted (T2-W)-MRI and

dynamic contrast-enhanced (DCE)-MRI modalities. On the one hand, we investigate

two novel T2-W-MRI normalization methods based on (i) Rician a priori and (ii) square-

root slope function (SRSF) representation and compare them with the state-of-the-art

methods. On the other hand, we propose and investigate a fully automated framework

for DCE-MRI normalization, the first of its kind.

5.1 Normalization of T2-W-MRI images

This section focuses on T2-W-MRI normalization. First, the related work is presented in

Sect. 5.1.1 before focusing on two new normalization methods which are presented and

investigated in Sect. 5.1.2 and Sect. 5.1.3
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5.1.1 Related work

We briefly recall the state-of-the-art methods which have been proposed for the normal-

ization of T2-W-MRI prostate images.

Artan et al. [14, 15], Ozer et al. [204, 205], and Rampun et al. [229, 230, 231, 233]

used a parametric method to normalize T2-WMRI images. This parametric method is

based on computing the standard score — also known as z-score — of the peripheral

zone (PZ) voxels such as:

Is(x) =
Ir(x)− µPZ

σPZ
,∀x ∈ PZ, (5.1)

where, Is(x) and Ir(x) are the standardized and the raw signal intensity, respectively,

and µPZ and σPZ are the mean and standard deviation of the PZ signal intensity,

respectively. This transformation enforces the image probability density function (PDF)

to have a zero mean and a unit standard deviation. However, this normalization is not

appropriate if the PDF does not follow a Gaussian distribution as illustrated in Fig. 5.1

Lv et al. [170] used the non-parametric method which is a piecewise-linear normaliza-

tion, proposed by Nyul et al. in [198]. For a given patient, a warping function is inferred

by matching some specific landmarks — i.e., different percentiles — of the current PDF

to the same landmarks learned during a training phase from several patients. The map-

ping between each landmark is performed using a linear mapping. Viswanath et al. used

a variant of the previous method by segmenting first the image using region growing

with a pre-defined homogeneity criterion and keeping only the largest region to build

the PDF [310]. Nevertheless, the warping functions inferred by these methods suffer

from abrupt changes — refer to Fig. 5.2(a) — around the landmarks position, leading

to a disrupt PDF in the normalized image.

In this section, we evaluate and compare different normalization approaches in the

context of T2-W-MRI prostate image normalization. Our contribution is threefold: (i)

a parametric normalization approach based on a Rician a priori ; (ii) a non-parametric

normalization approach based on a method used in registration of functional data; and

(iii) a novel evaluation metric to asses quantitatively the alignment of the PDFs inde-

pendently of the assumed distribution. These methods are compared qualitatively and

quantitatively, with both z-score normalization and piecewise-linear normalization.
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5.1 Normalization of T2-W-MRI images

(a) RMS: Rice 4.13 × 10−5 - Normal 2.59 × 10−3 (b) RMS: Rice 2.25 × 10−4 - Normal 9.57 × 10−4

Figure 5.1: Visual evaluation of the goodness of fitting using Rician and Gaussian distri-
bution for 2 different MRI prostate data. For each data the solid black line represents the
Rician fitting while the dotted represents the Gaussian distribution.

5.1.2 Methodology

5.1.2.1 Parametric normalization using Rician a priori

As previously stated, proper normalization of the MRI data during pre-processing is a

key problem that has been addressed using parametric and non-parametric strategies.

We believe that normalizing MRI data using a parametric model based on a Rician dis-

tribution would improve the results. Expecting this improvement by changing the data

model from the widely used Gaussian distribution to Rician distribution is reasonable.

Indeed, Bernstein et al. state that MRI data theoretically follow a Rayleigh distribution

for a low-signal-to-noise (SNR) scenarios while it appears closer to a Gaussian distri-

bution when the SNR increases [21]. Figure 5.1 shows the intensity spectrum for some

MRI prostate data as well as the fitted Gaussian and Rician distributions for 2 different

patients. In this figure the solid-black line represents the Rician fitting while the dotted-

black shows the fitted Gaussian. A qualitative assessment of the underlying distribution

is performed by overlying the fitted distribution, while quantitative results of the fitting

are given in terms of root mean square (RMS). It can be highlighted that the Rician

model better fits the data than the Gaussian model.

The normalization is carried out through the following 3 steps: (i) fit a Rician model

— Eq. (5.2) — to each prostate PDF using non-linear least squares minimization, namely

Levenberg-Marquardt; (ii) compute the mean — Eq. (5.3) — and variance — Eq. (5.4)

103



5. NORMALIZATION/STANDARDIZATION OF T2W-MRI AND
DCE-MRI IMAGES

— of the Rician model; (iii) normalize the entire data using the z-score similarly as

in Eq. (5.1).

f(x|ν, σ) =
x

σ2
exp

(
−(x2 + ν2)

2σ2

)
I0

(xν
σ2

)
, (5.2)

µr = σ

√
π

2
L1/2(− ν2

2σ2
) , (5.3)

σr = 2σ2 + ν2 − πσ2

2
L2

1/2

(
−ν2

2σ2

)
, (5.4)

where ν and σ are the distance between the reference point and the center of the bi-

variate distribution and the scale, respectively; L1/2 denotes a Laguerre polynomial; I0

is the modified Bessel function of the first kind with order zero.

5.1.2.2 Non-parametric normalization based on SRSF

Srivastava et al. proposed a generic method to register functional data, without any

assumption regarding the models of the different functions [264]. In a nutshell, this

framework relies on the SRSF representation which transforms the Fisher-Rao metric

into the conventional L2 metric, and thus allows to define a cost function corresponding

to an Euclidean distance between 2 functions in this new representation.

SRSF representation In the proposed registration framework of functional data, 2

functions f1 and f2 are registered by composing f2 with a warping function γ such that:

arg min
γ∈Γ

DFR(f1, (f2 ◦ γ)) , (5.5)

where DFR is the Fisher-Rao distance and Γ is the set of all the functions γ.

The SRSF representation is used to transform the functions and register them into

this space. The SRSF of a function f is defined as:

q(t) = sign(ḟ(t))

√
|ḟ(t)| , (5.6)

where ḟ(t) corresponds to the derivative of f .
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5.1 Normalization of T2-W-MRI images

The major property of the SRSF representation used in the registration framework

is the following: the composition of a function f with a warping function γ — i.e., f ◦ γ
— is equivalent to Eq. (5.7), using the SRSF representation.

q̃(t) = (q(t) ◦ γ)
√
γ̇ , (5.7)

where γ̇ is the derivative of γ.

Using this property, a cost function — so called amplitude or y-distance — is defined

to measure the similarity between the 2 functions f1 and f2, expressed as in Eq. (5.8):

Dy(f1, f2) = inf
γ∈Γ
‖q1 − (q2 ◦ γ)

√
γ̇‖ . (5.8)

Registration framework The registration framework consists of 2 steps. First, an

initialization in which the Karcher mean µf is computed as in Eq. (5.9)

µf = arg min
f∈F

n∑
i=1

Dy(f, fi)
2 . (5.9)

Then, for each function fi: (i) compute γ∗i as in Eq. (5.10); (ii) compute q̃i as in

Eq. (5.7); (iii) update µf as in Eq. (5.9) by replacing fi by f̃i, using q̃i.

γ∗i = arg min
γ∈Γ

n∑
i=1

Dy(µf , fi)
2 , (5.10)

where n is the total number of functions to be aligned.

This step is performed in an iterative manner based on the gradient of the cost

function given in Eq. (5.9). We refer the reader to the work of Srivastava et al. for more

detailed discussion [264].

5.1.2.3 Evaluation metric

In their work, Nyul et al. evaluated the normalization methods by computing the varia-

tion of the mean of a specific tissue. However, this measure can be biased since that the

mean can also be used as a landmark with the piecewise-linear method. Furthermore,

considering a single statistic does not allow to evaluate the overall performance of a nor-

malization. Indeed, this statistic corresponds to evaluate a single point of the mapping

function and thus a large portion of the mapping functions are disregarded.
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That is why, to evaluate the performance of the different metrics, we propose to

use a spectral evaluation by decomposing the set of normalized PDFs using principal

components analysis (PCA) under the assumption that they are linearly dependent.

Intuitively, the eigenvalues of the PCA decomposition are correlated with the alignment

of the different PDFs. Thus, in the case of a perfect alignment of the PDFs, the first

eigenvalue is much greater than the remaining since that the first eigenvector encodes

all the information. In the contrary, in the case of a misalignment of the PDFs, more

eigenvectors are needed to encode the information synonymous with larger eigenvalues.

Therefore, the cumulative sum of the normalized eigenvalues as well as the area under

the curve (AUC) are used, as depicted in Fig. 5.4.

5.1.3 Materials

The experiments are conducted on a subset of the public multiparametric MRI (mp-

MRI) prostate presented in Sect. 4.2.2. We used the 3 T dataset which is composed of a

total of 19 patients of which 17 patients had biopsy proven prostate cancer (CaP) and

2 patients are “healthy” with negative biopsies. In this study, our subset consists of 17

patients with CaP.

The different normalization methods are implemented in Python and are part of the

protoclass toolbox presented in Sect. 4.4. The normalization based on SRSF uses the

implementation1 of Tucker et al. [293]. The piecewise-linear normalization is performed

using the following set of percentiles s ∈ {0, 5, 25, 50, 75, 95, 100} as landmarks. In

the SRSF-based normalization, the PDFs are smoothed using spline-based denoising

method.

5.1.4 Results and discussion

Qualitative results Figure 5.3 depicts the alignment of the different PDFs using the

different methods implemented. All the methods seem to address the problem of the

PDF alignment of the full prostate data. However, the Rician normalization outperforms

the other methods when focusing solely on the CaP data. The PDF computed in this

specific area is more skewed from its original shape in the case of the piecewise-linear

normalization than with the 3 other normalization strategies. The SRSF normalization

1https://github.com/glemaitre/fdasrsf
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5.1 Normalization of T2-W-MRI images

(a) Piecewise-linear mapping function. (b) SRSF mapping function.

Figure 5.2: Comparison of the mapping functions found with the piecewise-linear and
SRSF-based normalization. Each curve corresponds to a mapping function for a single
patient.

gets unstable due to the warping function γ found which is in practise non-smooth

as shown in Fig. 5.2(b). Additionally, the warping function found with the piecewise-

linear normalization suffer from abrupt transition around the landmarks as depicted in

Fig. 5.2(b).

Quantitative results In overall, all normalization methods improve the alignment

of the PDFs. The parametric methods outperform the non-parametric while evaluat-

ing the PDF alignment considering the full prostate organ. Furthermore, the Rician

normalization is more appropriate than the Gaussian normalization. The SRSF-based

normalization is shown to perform poorly which might be due to the instability of the

mapping function inferred. However, by focusing on the solely on the CaP region, the

SRSF outperforms the other methods followed by the Rician normalization. Therefore,

the Rician normalization outperforms the other methods with an AUC of 99.74 and

98.25 considering the full prostate and CaP, respectively.
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(a) Raw prostate - AUC: 99.08.
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(b) Raw CaP - AUC: 98.19.
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(c) Gaussian prostate - AUC:
99.58.
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(d) Rician prostate - AUC: 99.74.
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(e) Linear prostate - AUC: 99.45.
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(f) SRSF prostate - AUC: 99.12.
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(g) Gaussian CaP - AUC: 98.22.
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(h) Rician CaP - AUC: 98.25.
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(i) Linear CaP - AUC: 98.09.
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(j) SRSF CaP - AUC: 98.30.

Figure 5.3: Qualitative evaluation by visual inspection of the alignment of the PDFs for the full prostate and the CaP in T2-W-
MRI. The first row corresponds to the original PDF
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5.1.5 Conclusion

In this section, we propose to normalize the T2-W-MRI prostate images using two new

strategies: (i) based on a Rician a priori and (ii) based on a SRSF representation.

An extensive comparison has been conducted showing that the Rician normalization

outperforms the Gaussian, SRSF-based, and piecewise-linear normalization for T2-W-

MRI prostate images normalization. As avenues for future research, the contribution of

the Rician normalization must be evaluated in a classification framework. Additionally,

the SRSF-based normalization is unstable due to a non-smooth mapping function which

might be solved by post-processing this function. Although our proposed evaluation

metric seems more appropriate than the previous method, we think that complementary

metric should be proposed. Furthermore, normalized T2-W-MRI can be included with

other modalities in order to perform classification using mp-MRI data.

5.2 Normalization of DCE-MRI images

This section focuses on DCE-MRI normalization. We recall that in DCE-MRI, a contrast

media is injected intravenously and a set of images is acquired over time. Consequently,

each voxel in an image corresponds to a dynamic signal which is related to both contrast

agent concentration and the vascular properties of the tissue. Therefore, changes of the

enhanced signal allows to discriminate healthy from CaP tissues. In fact, these properties

are automatically extracted using quantitative or semi-quantitative approaches [147].

Quantitative approaches uses pharmacokinetic modelling based on a bicompartment

model, namely Brix [29] and Tofts [287] models. The parameters of the Brix model

are inferred assuming a linear relationship between the media concentration and the

MRI signal intensity. This assumption has shown, however, to lead to inaccurately

estimate the pharmacokinetic parameters [106]. Instead, the Tofts model requires a

conversion from the MRI signal intensity to concentration, which becomes a non-linear

relationship using the specific equations of the MRI sequences (e.g., FLASH sequence).

Tofts modelling suffers, however, from a higher complexity [92]. Indeed, the conversion

using the non-linear approach requires to acquire a T1 map which is not always possible

during clinical examination. Additionally, the parameter calculation requires the arterial

input function (AIF) which is challenging to measure and can also lead to an inaccurate

estimation.
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Figure 5.4: Spectral evaluation using PCA decomposition: (a) evaluation considering the
full prostate, (b) evaluation considering only the CaP.

110



5.2 Normalization of DCE-MRI images

Semi-quantitative approaches are rather mathematical than pharmacokinetic mod-

elling since no pharmacokinetic assumption regarding the relation between the MRI

signal and the contrast agent are made [92, 117]. These methods offer the advantages to

not require any knowledge about the MRI sequence nor any conversion from signal in-

tensity to concentration. However, they present some limitations: the heuristic approach

proposed by Huisman et al. [117] requires an initial estimate of the noise standard devi-

ation of the signal as well as some manual tuning.

Nevertheless, all presented methods suffer from 2 major drawbacks: (i) inter-patient

variability and (ii) loss of information. The inter-patient variability is mainly due to

the acquisition process and consequently leads to generalization issue while applying a

machine learning algorithm. All previous methods extract few discriminative parameters

to describe the DCE-MRI signal which might lead to a loss of information.

In this section, we propose a fully automatic normalization method for DCE-MRI

that reduces the inter-patient variability of the data. The benefit and simplicity of

our approach will be shown by classifying the whole normalized DCE-MRI signal and

comparing with the state-of-the-art quantitative and semi-quantitative methods. Addi-

tionally, we will show that using this normalization approach in conjunction with the

quantitative methods improves the classification performance of most of the models. We

also propose a new clustering-based method to segment enhanced signals from the ar-

teries, later used to estimate an AIF as well as an alternative approach to estimate the

parameters of the semi-quantitative model proposed by [117].

This section is organized as follows: First, Sect. 5.2.1.1 details our normalization

strategy for DCE-MRI data. Quantitative and semi-quantitative methods are summa-

rized in Sect. 5.2.1.2 with insights about their implementations. Finally experiments

and results to answer the previous stated challenges are reported in Sect. 5.2.2 while

discussed in Sect. 5.2.3, followed by a concluding section.

5.2.1 Methodology

5.2.1.1 Normalization of DCE-MRI images

In this section, we propose a method to normalize DCE-MRI prostate data to reduce

inter-patient variations, although it can be applied to any DCE-MRI sequences. As

presented in the previous section, in T2-W-MRI, these variations are characterized by
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Figure 5.5: Illustration of the inter-patient variations in 17 different patients, using the
PDF representation.

a shift and a scaling of the intensities as illustrated by the intensity PDF in Fig. 5.5.

Therefore, these variations can be corrected using a z-score approach — i.e., normalizing

the data by subtracting the mean and dividing by the standard deviation — assuming

that the data follow a specific distribution [148].

In DCE-MRI, the intensity PDF of prostate gland does not follow a unique type of

distribution such as Rician or Gaussian distribution, as shown in Fig. 5.6(a). Indeed, the

inter-patient variations are more complex due to the temporal acquisition. A better rep-

resentation to observe these variations is to represent the intensity PDF of the prostate

gland over time — requiring to segment the prostate — using a heatmap representa-

tion as shown in Fig. 5.6(a). Analyzing this heatmap representation across patients (see

Fig. 5.6(c)), the following variations are highlighted: (i) intensity offsets ∆i of the PDF

peak, (ii) a time offset ∆t depending of the contrast agent arrival, and (iii) a change

of scale αi related to the signal enhancement. Therefore, our normalization method

should attenuate all these variations and be performed globally across the different time

sequences rather than for each independent sequence.

Graph-based intensity offsets correction Before to standardize each sequence, the

first step of the normalization is to cancel the intensity specific at each patient, occurring
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(a)

(b) (c)

Figure 5.6: DCE normalization: (a) Illustration of the heatmap representation: all PDFs
of the prostate gland are concatenated together to build an heatmap; (b)-(c) Illustration of
inter-patient variations (i.e., ∆i, ∆t, and αi) PDF over time of two patients in a DCE-MRI.
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Figure 5.7: Illustration of the estimator found using the shortest-path through the graph.

due to the media injection. As previously mentioned, the intensity PDF does not always

follow either a Rician or a Gaussian distribution over time, in DCE-MRI. Therefore,

the mean of these distributions cannot be used as a potential estimate for these offsets.

Additionally, these offsets should be characterized by a smooth transition between series

over time. Thus, this problem is solved using the graph-theory: considering the intensity

PDF over time as shown in Fig. 5.6(a), the offsets correspond to the boundary splitting

the heatmap in two partitions such that they are as close as possible to the peak of the

intensity PDF, as depicted in Fig. 5.7. Given the heatmap, a directed weighted graph

G = (V,E) is built by taking each bar — i.e., the probability for a given time and pixel

intensity — of the heatmap as a node and connecting each pair of bars by an edge. The

edge weight wij between 2 nodes i and j corresponding to 2 pixels at position (xi, yi)

and (xj , yj), respectively, is defined as in Eq. (5.11):

wij =


α exp(1− H(i)

max(H)) if xj = xi + 1 and yj = yi,

(1− α) exp(1− H(i)
max(H)) if xj = xi and yj = yi + 1,

0 otherwise,

(5.11)

where H is the heatmap, α is a smoothing parameter controlling the partitioning.

Therefore, these offsets related to ∆i are estimated by finding the shortest-path to
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(a) RMSD computed for each patient of our
dataset.
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(b) RMSD after alignment using the curve para-
metric model.

Figure 5.8: Illustration of the correction of the time offset and the data dispersion.

cross the graph using Dijkstra’s algorithm. The entry and exiting nodes are set to

be the bin with the maximum probability for the first DCE-MRI serie and the bin

corresponding to the median value for the last DCE-MRI serie, respectively. To ensure

a robust estimation of these offsets, the process of finding the shortest-path is repeated

in an iterative manner by shifting the data and updating the heatmap as well as the

graph G. The procedure is stopped once the offset found does not change. In general, this

process is not repeated more than 3 iterations. The parameter α is set to 0.9, empirically.

Figure 5.7 illustrates the final estimation of the offsets ∆i (i.e., red landmark) found for

each DCE-MRI serie. Therefore, each intensity offset is subtracted for each DCE-MRI.

Time offset and data dispersion correction The next variations to correct are the

time offset ∆t and the data dispersion σi. By computing the root-mean-square deviation

(RMSD) of the intensities for each DCE-MRI serie, one can observe these two variations

as shown in Fig. 5.8(a). Therefore, to correct these variations, we propose to register

each patient RMSD to a mean model which corresponds to the mean of all patients

RMSD. The parametric model to perform the registration is formulated as in Eq. (5.12):

T (α, τ, f(t)) = αf(t− τ), (5.12)

where τ and α are the two parameters handling the time offset ∆i and global scale σi,
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respectively, f(·) is the RMSD function defined as:

f(t) =

√√√√(∑N
n=1 x(t)2

n

N

)
, (5.13)

where x(t)n is the shifted intensity of a sample from a specific DCE-MRI serie at time

t from a total number of N samples.

Therefore the registration problem is equivalent to:

arg min
α,τ

=
N∑
t=1

[T (α, τ, f(t))− µ(t)]2 , (5.14)

where µ(·) is the mean model, N is the number of DCE-MRI series.

Illustration of the correction applied to each RMSD patient is shown in Fig. 5.8(b).

Once all these parameters have been inferred, the data are shifted as well as scaled.

The resulting normalized data can be used into 2 fashions: (i) each normalized

signal can be used as a whole to determine whether the corresponding voxel is healthy

or cancerous or (ii) the normalized data can be fitted using a quantitative method, as

presented in the next section.

5.2.1.2 Quantification of DCE-MRI

The quantitative approaches for detection of DCE-based features have been briefly dis-

cussed in Sect. 3.2.2.2. In this section, we present in details the different methods which

have been used for the quantification of DCE-MRI for CaP detection [147] and which

will be used for comparison in this work. Furthermore, we would like to emphasize the

following additional contributions for this section: (i) a novel automatic AIF estima-

tion algorithm based on clustering and (ii) a simplified semi-quantitative method using

constrained optimization.

Brix and Hoffmann models In the Brix model [29], the MRI signal intensity is as-

sumed to be proportional to the media concentration. Therefore, the model is expressed

as in Eq. (5.15) (see also Eq. (3.31)):

sn(t) = 1 +A

[
exp(kelt

′)− 1

kep(kep − kel)
exp(−kelt)−

exp(kept
′)− 1

kel(kep − kel)
exp(−kept)

]
, (5.15)
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with

sn(t) =
s(t)

S0
, (5.16)

where s(t) and S0 are the MRI signal intensity at time t and the average pre-contrast MRI

signal intensity, respectively; A, kel, and kep are the constant proportional to the transfer

constant, the diffusion rate constant, and the rate constant, respectively. Additionally,

t′ is set such that 0 ≤ t ≤ τ , t′ = t and afterwards while t > τ , t′ = τ .

Hoffmann et al. [110] proposed a similar model as expressed in Eq. (5.17), which

derive from the Brix model:

sn(t) = 1 +
A

τ

[
kep (exp(kelt

′)− 1)

kel(kep − kel)
exp(−kelt)−

exp(kept
′)− 1

(kep − kel)
exp(−kept)

]
, (5.17)

in which the constant A is redefined by isolating the parameter τ .

The parameters A, kel, and kep are estimated by fitting the model using non-linear

least-squares optimization solved with Levenberg-Marquardt.

Tofts model The extended Tofts model is formulated as in Eq. (5.18) (see also Eq. (3.32)):

Ct(t) = KtransCp(t)∗ exp(−kept) + vpCp(t), (5.18)

where ∗ is the convolution operator; Ct(t) and Cp(t) are the concentrations of con-

trast agent in the tissue and in the plasma, respectively; Ktrans, kep, and vp are the

volume transfer constant, the diffusion rate constant, and the plasma volume fraction,

respectively.

Therefore, Tofts model requires to: (i) detect candidate voxels from the femoral

or iliac arteries and estimate a patient-based AIF signal, (ii) convert the MRI signal

intensity (i.e., AIF and dynamic signal) to a concentration, and (iii) in the case of a

population-based AIF, estimate an AIF signal.

Segmentation of artery voxels and patient-based AIF estimation The AIF sig-

nal from DCE-MRI can be manually estimated by selecting the most-enhanced

voxels from the femoral or iliac arteries [183]. Few methods have been proposed to

address the automated extraction of AIF signal. Chen et al. filtered successively

the possible candidates to be considered as AIF such that [43]: (i) dynamic signals
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(a) Original image. (b) Candidates region after
clustering.

(c) Regions selected after ap-
plying the different criteria.

Figure 5.9: Illustration of the segmentation of the area used to determine the AIF.

with small peak and voxels with a small wash-in are rejected by thresholding, (ii)

a blob detector is used and large enough regions are kept, and (iii) circular and

cylindricality criteria are used to reject the false positives. Zhu et al. proposed an

iterative method selecting voxels which best fit a gamma variate function [327].

However, it requires to compute first and second derivatives as well as maximum

curvature points. Shanbhag et al. proposed a 4-steps algorithm [72, 251]: (i)

remove slices with artifacts and find the best slices based on intrinsic anatomic

landmarks and enhancement characteristics, (ii) find the voxel candidates using

the maximum enhanced voxels and a multi-label maximum entropy based thresh-

olding algorithm, (iii) exclude region next to the endorectal coil, and (iv) select the

best 5 candidates which meet enhancement characteristics and that are correlated.

All the above methods are rather complex compromising robustness and gener-

alization. Thus, we propose a simpler method which is based on the following

reasonable assumptions: (i) all possible AIF signal candidates should have a sim-

ilar shape, (ii) a high enhancement, and (iii) the arteries should be almost round

and within a size range. Therefore, each slice is clustered into regions using K-

means clustering with k = 6. The cluster made of the most enhanced signals is

selected since it contains the artery signals. In this regard, the selection criteria

corresponds to the 90th percentile of the maximum DCE-MRI signal. Finally, re-

gions with an eccentricity smaller than 0.5 and an area in the range of [100, 400]

voxels are kept. Additionally, to remove voxels contaminated by partial volume

effect, only the 10 % most enhanced voxels of the possible candidates are kept as

proposed by [245] and the average signal is computed. A summary of the different

segmentation steps is presented in Fig. 5.9.

Conversion of MRI signal intensity to concentration To estimate the free param-

eters of the Tofts model (see Eq. (5.18)), the concentration Ct(t) and Cp(t) need to
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be computed from the MRI signal intensity and the AIF signal, respectively. This

conversion is based on the equation of the FLASH sequence — see A for details

— and is formulated as in Eq. (5.19):

c(t) =
1

TR · r1
ln

(
1− cosα · S∗ s(t)S0

1− S∗ s(t)S0

)
− R10

r1
, (5.19)

with,

S∗ =
1− exp(−TR ·R10)

1− cosα · exp(−TR ·R10)
, (5.20)

where s(t) is the MRI signal, S0 is the MRI signal prior to the injection of the

contrast media, α is the flip angle, TR is the repetition time (TR), R10 is the pre-

contrast tissue relaxation time also equal to 1
T10

, and r1 is the relaxitivity coefficient

of the contrast agent.

T10 can be estimated from the acquisition of a T1 map. However, this modality

is not part of the clinical trial in this research and the value of T10 is fixed to

1600 ms for both blood and prostate, in accordance with the values found in the

literature [36, 60, 72].

Estimation of population-based AIF While estimating the pharmacokinetic param-

eters from Tofts model, the AIF concentration Cp(t) can be computed either from

the patient or a population. We presented in the two previous sections the algo-

rithms which allows to estimate the patient-based AIF concentration. To compare

with the previous approach, we also computed a population-based AIF which will

be also used later to compare the performance of both approaches. In that re-

gard, the population-based AIF was estimated as in [183] by fitting the average

patient-based AIFs to the model of [210] which is formulated as in Eq. (5.21):

Cp(t) =
2∑

n=1

An

σn
√

2π
exp

(
−(t− Tn)2

2σ2
n

)
+

α exp(−βt)
1 + exp−s(t− τ)

, (5.21)

where An, Tn, and σn are the scaling constants, centers, and widths of the nth

Gaussian, α and β are the amplitude and decay constant of the exponential; and

s and τ are the width and center of the sigmoid function, respectively.
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The parameters are estimated by fitting the model using a constrained non-linear

least-squares optimization, solved with the Trust Region Reflective algorithm [262] and

bounding the parameters to be positive.

PUN model Gliozzi et al. showed that phenomenological universalities (PUN) ap-

proach can be used for DCE-MRI analysis [92]. The model has been successfully used

in a CAD system proposed by Giannini et al. [86]. This model can be expressed as in

Eq. (5.22) (see also Eq. (3.34)):

sn(t) = exp

[
rt+

1

β
(a0 − r) (exp(βt)− 1)

]
, (5.22)

with

sn(t) =
s(t)− S0

S0
, (5.23)

where s(t) and S0 are the MRI signal intensity at time t and the average pre-contrast

MRI signal intensity, respectively; r, a0, and β are the free parameters of the model.

The parameters are estimated by fitting the model using non-linear least-squares

optimization solved with Levenberg-Marquardt.

Semi-quantitative analysis The semi-quantitative analysis of the DCE-MRI is equiv-

alent to extracting curve characteristics directly from the signal without a strict theoret-

ical pharmacokinetic meaning (see Table 3.7). In this work, we use the model presented

by Huisman et al. [117] which formulated the MRI signal as in Eq. (5.24):

s(t) =


S0 0 ≤ t ≤ t0
SM − (SM − S0) exp

(
−(t−t0)

τ

)
t0 < t ≤ t0 + 2τ

SM − (SM − S0) exp
(
−(t−t0)

τ

)
+ w(t− t0 + 2τ) t > t0 + 2τ

(5.24)

where s(t) is the MRI signal intensity, S0 is the pre-contrast signal intensity, t0 is the

time corresponding to the start of enhancement, SM and τ is the maximum of the signal

and the exponential time constant, and w is the slope of the linear part.

Huisman et al. [117] argue that curve fitting via least-squares minimization using

Nelder-Mead algorithm leads to inaccurate estimation of the free parameters: mainly
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the issue comes from an incorrect estimation of the start of enhancement t0 leading to

incorrect estimation of the other parameters. Therefore, they propose to: (i) estimate

robustly t0, (ii) estimate S0 by averaging the samples between 0 and t0 (ii) estimate w

depending if the slope is significant or not, (iii) estimate SM which should be the point

at the intersection of the most probable slope line and the plateau.

Instead of these successive estimations, we propose a unified optimization in which

t0 is fixed since that this is a key parameter. Therefore, t0 is robustly estimated from the

AIF signal since that this is the most enhanced signal in which the start of enhancement

is easily identifiable. The AIF signal is computed as presented previously. t0 is estimated

by finding the maximum of the first derivative of the AIF signal, always occurring at the

beginning of the signal. Then, the function in Eq. (5.24) is fitted using non-linear least

squares with the Trust Region Reflective algorithm [262]. Furthermore, the parameters τ

and SM are bounded during the optimization to ensure robust estimations. τ is bounded

between t0 and tf which is the time of the last sample while SM is bounded between S0

and max(s(t)).

From Eq. (5.24), the following features are extracted: (i) the wash-in corresponding

to the slope between t0 and t0 + 2τ , (ii) the wash-out corresponding to the parameter w,

(iii) the area under the curve between t0 and the end of the signal, (iv) the exponential

time constant τ , and (v) the relative enhancement SM − S0.

5.2.2 Experiments and results

The experiments are conducted on a subset of the public mp-MRI prostate presented in

Sect. 4.2.2. We used the 3 T dataset which is composed of a total of 19 patients of which

17 patients had biopsy proven CaP and 2 patients are “healthy” with negative biopsies.

In this study, our subset consists of 17 patients with CaP.

The DCE-MRI sequences are resampled using the spatial information of the T2-W-

MRI and missing data are interpolated using a linear interpolation. The volumes of

the DCE-MRI dynamic are rigidly registered, to remove any patient motion during the

acquisition. Furthermore, a non-rigid registration is performed between the T2-W-MRI

and DCE-MRI in order to propagate the prostate zones and CaP ground-truths. The

resampling is implemented in C++ using the Insight Segmentation and Registration

Toolkit [119].
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Table 5.1: Coefficient of determination R2 (i.e., µ (±σ)), while fitting data with the
different quantification models.

Data type Brix Hoffmann Tofts pop.
AIF

Tofts pat.
AIF

PUN Semi-
quantitative

Un-normalized 0.85 (±0.11) 0.81 (±0.17) 0.84 (±0.14) 0.88 (±0.12) 0.27 (±0.18) 0.64 (±0.24)
Normalized 0.92 (±0.05) 0.72 (±0.32) 0.92 (±0.06) 0.90 (±0.10) 0.28 (±0.20) 0.75 (±0.20)

The implementation of the registration (C++), normalization (Python), and classi-

fication pipeline (Python) are publicly available on GitHub1 [146]. The data used for

this work are also publicly available2 [149].

5.2.2.1 Goodness of model fitting

Parameter estimation of the quantification methods are related to fit a specific model to

the DCE-MRI data. Therefore, this section reports the goodness of fitting by computing

the coefficient of determination R2 such as in Eq. (5.25)

R2 = 1−
∑T

t=1(st − ŝt)2∑T
t=1(st − s̄)2

, (5.25)

where st and ŝt are the original and fitted signals at time t, respectively; s̄ is the average

signal to be fitted.

Mean and standard-deviation of the coefficient of determination R2 is reported in

Table 5.1 for each quantification model. Brix, Hoffmann, and Tofts models are fitted

with a coefficient R2 superior to 0.80. Additionally, the proposed PUN model does not

seem to fit well the data. Data normalization improves the coefficient R2 for all the

methods apart of the Hoffmann model. The large standard deviation for this model

might imply that there are some cases where the fitting fails. Furthermore, the use of

a bi-exponential model — i.e., Brix, Hoffman, and Tofts models — instead of a mix

of mono-exponential and linear functions — i.e., semi-quantitative analysis — allow a

better fitting.
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Table 5.2: AUC (i.e., µ (±σ)) for each individual pharmacokinetic parameter using a RF
classifier.

Features Un-normalized data Normalized data

Brix model
A 0.540 (±0.069) 0.555 (±0.080)
kel 0.549 (±0.062) 0.577 (±0.093)
kep 0.506 (±0.032) 0.497 (±0.019)

Hoffmann model
A 0.516 (±0.020) 0.508 (±0.031)
kel 0.545 (±0.066) 0.529 (±0.065)
kep 0.550 (±0.063) 0.545 (±0.060)

Tofts model with population AIF
Ktrans 0.556 (±0.086) 0.565 (±0.097)
kep 0.506 (±0.026) 0.528 (±0.038)
vp 0.533 (±0.064) 0.548 (±0.082)

Tofts model with patient AIF
Ktrans 0.563 (±0.077) 0.548 (±0.060)
kep 0.492 (±0.025) 0.491 (±0.020)
vp 0.530 (±0.069) 0.495 (±0.033)

PUN model
a0 0.521 (±0.040) 0.530 (±0.045)
r 0.550 (±0.085) 0.573 (±0.097)
β 0.531 (±0.051) 0.549 (±0.068)

Semi-quantitative analysis
wash-in 0.587 (±0.107) 0.533 (±0.032)
wash-out 0.516 (±0.037) 0.486 (±0.035)
IAUC 0.506 (±0.048) 0.513 (±0.032)
τ 0.565 (±0.104) 0.537 (±0.089)
SM − S0 0.560 (±0.083) 0.532 (±0.029)
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(a) Without normalization.
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(b) With normalization.

Figure 5.10: ROC analysis using a RF classifier (a) with and (b) without normalization
of DCE-MRI data for different pharmacokinetic models.
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5.2.2.2 Detection of CaP using pharmacokinetic parameters

To study the potential benefit of our normalization, CaP are detected at a voxel level

using pharmacokinetic parameters estimated from un-normalized and normalized DCE-

MRI data. Each individual pharmacokinetic parameter is classified to evaluate their

individual discriminative power to detect CaP. Therefore, a random forest (RF) classifier

is used in conjunction with a leave-one-patient-out cross-validation (LOPO CV). The

use of RF is motivated since that it leads to the best performance in the state-of-the-art

methods [147, 161]. Results are summarized in Table 5.2 in terms of AUC: in general,

the discriminative power of each individual parameter is rather low and Ktrans, kel,

and wash-in parameters lead to the best classification performance. Furthermore, the

obtained AUCs are in line with results reported in previous studies [86] since CaPs are

occurring in both prostate zones — i.e., PZ and central gland (CG) — in our dataset.

Additionally, normalization can improve the detection of CaP; however, the benefit of

normalization is more obvious by combining together the pharmacokinetic features of a

given model — e.g., A, kep, and kel for Brix model —, as previously done in traditional

CAD system [147]. For the latter configuration, results are summarized by performing

a receiver operating characteristic (ROC) analysis and computing the AUC, as reported

in Fig. 5.10. Quantification using normalized data outperforms quantification using un-

normalized data in terms of classification performance apart of Hoffmann and Tofts

population-based AIF models. The reasons behind the decrease of the AUC might be

related to: (i) a poor fitting as discussed in Sect. 5.2.2.1 (cf., Hoffmann model) and (ii)

a small number of patients while estimating some parameters (cf., Tofts model). The

best classification performance are obtained using the semi-quantitative approach with

an AUC of 0.655.

5.2.2.3 Classification of the entire enhanced DCE-MRI signal

As stated in the introduction, the quantification methods are extracting a set of param-

eters characterizing the enhancement DCE-MRI signal. However, this extraction might

lead to a loss of information. This experiment is performed to assess if making use of the

whole DCE-MRI signal instead of the just the pharmacokinetic parameters can improve

1https://github.com/I2Cvb/lemaitre-2016-nov/tree/master
2https://zenodo.org/record/61163
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Figure 5.11: ROC analysis using the entire DCE-MRI signal with and without normaliza-
tion in conjunction with a RF classifier.

the classification performance. Therefore, each enhanced DCE-MRI signal, normalized

and un-normalized, is classified using a RF classifier in a LOPO CV fashion. The ROC

analysis and AUC are reported in Fig. 5.11. Classification without normalization lead

to the worst performance, with an AUC of 0.568. However, data normalization in con-

junction with the use of the whole DCE-MRI signal is the strategy which outperforms

all others, with an AUC of 0.666.

5.2.3 Discussion and conclusion

The experiments conducted in the previous section can give rise to several discussions.

In Tofts quantification, two different approaches have been used to infer the pharmacoki-

netic parameters: using a population-based or a patient-based AIF. The patient-based

AIF approach leads to better classification performance. However, there are two short-

comings to take into account while advancing this fact: (i) T10 parameter has been

fixed and not computed from a T1 map and (ii) the population-based AIF has been es-

timated from a cohort of only 17 patients. These two limitations have to be considered

while advancing that population-based AIF modelling is outperforming patient-based

AIF modelling.
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The best classification performance is reached by normalizing the DCE-MRI data

and use the whole enhanced signal as feature, emphasizing the fact that a loss of in-

formation while extracting quantitative parameters. Furthermore, this normalization is

a less complex process than all quantification methods. However, this strategy suffers

from one drawback: the training time of the RF classifier increases since that from 3 to

5 features, the feature space becomes a 40 dimensions space.

Nevertheless, this study is performed on a small cohort of patients using a single MRI

machine. Generalizing the results of this study on a larger dataset acquired from differ-

ent commercial systems have to be considered to study the robustness of the proposed

approach.

In this work, we presented a new method for normalizing/standardizing DCE-MRI

data. This method aimed at reducing the inter-patient variations occurring during data

acquisition. A graph-based approach was used to correct intensity offset in conjunction

with a model-based correction to reduce time offset as well as intensity scaling. We

show the benefit of our normalization method prior to extract quantitative and semi-

quantitative features, with a significant improvement of the classification performance.

Nevertheless, we also show that using the whole normalized DCE-MRI signal outper-

forms all quantitative approaches.

As avenues for future research, this normalization has to be part of a mp-MRI CAD

system in which DCE-MRI modality needs to be combined with other complementary

modalities.
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Chapter 6

Proposed CAD system for CaP

In this chapter, we develop and investigate a computer-aided detection and diagno-

sis (CAD) system for the prostate cancer (CaP) detection, using all magnetic reso-

nance imaging (MRI) modalities, namely T2 Weighted (T2-W)-MRI, dynamic contrast-

enhanced (DCE)-MRI, diffusion weighted (DW)-MRI, and magnetic resonance spec-

troscopy imaging (MRSI). Furthermore, we address some of the issues drawn in the con-

clusion of Chap. 3: (i) the methods investigated in Chap. 5 are used in the pre-processing

step of the proposed CAD; (ii) the discriminative power of each individual modality is

investigated; (iii) the problem of learning from imbalanced dataset is investigated us-

ing state-of-the-art methods as well as (iv) several strategies for feature selection and

combination.

Therefore, the organization of this chapter is as follows: the methodology is de-

scribed in Sect. 6.1 by presenting the image regularization framework as well as the

image classification framework. Section 6.2 provides different experiments to investigate

the performance of the proposed CAD system. This chapter is concluded by a concise

discussion in Sect. 6.3.

6.1 Methodology

Our multiparametric MRI (mp-MRI) CAD system consists of seven different steps: pre-

processing, segmentation, registration, feature detection, balancing, feature selection/ex-

traction, and finally classification.
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Figure 6.1: Illustration of the variability of the PDF of the ADC coefficients within the
prostate for 3 patients.

6.1.1 Pre-processing

The reader can refer to Sect. 3.1.1 to have an extensive overview of the state-of-the-art

methods used to pre-process mp-MRI data. Three types of pre-processing are used for

MRI images: (i) noise filtering, (ii) bias correction, and (iii) standardization/normal-

ization. Our dataset is based on 3 T images without endorectal coil and therefore, the

two first types of correction have not been considered as necessary. Normalization is,

however, a crucial step to reduce the inter-patient variations which allows to improve the

learning during the classification stage. Chap. 5 presented two normalization methods to

pre-process T2-W-MRI and DCE-MRI, respectively. Therefore, we used these methods

to standardize these images. Regarding the apparent diffusion coefficient (ADC) map

normalization, the probability density function (PDF) within the prostate does not follow

a known distribution as depicted in Fig. 6.1. Thus, one cannot use a parametric model

to normalize these images and a non-parametric piecewise-linear normalization [198] is

the best option for this case.

Additionally, the MRSI modality requires a specific pre-processing based on signal

processing rather than image processing. Therefore, the MRSI modality has been pre-

processed to correct the phase, baseline, and frequency. Regarding the problem of phase

correction and frequency alignment, we use the most efficient method of the state-of-the-

art reviewed in Sect. 3.1.1. Indeed, as Parfait et al. and Trigui et al. [209, 290, 291], the

phase of each MRSI spectra is corrected using the approach of Chen et al. [44]. Along

the same line, the frequency shift of each spectra is corrected by aligning to 4.65 ppm the

maximum of an inferred function fitted to the residuals of water, using a Voigt profile
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as in Eq. (6.1).

V (x;σ, γ) =
R [w(z)]

σ
√

2π
, (6.1)

where R [w(z)] is the real part of the Faddeva function for z = x+iγ

σ
√

2
.

By assessing the qualitative results obtained in [208], the baseline correction method

used by Parfait et al. and Trigui et al. does not provide an optimal solution for that

matter. The iterative low-pass filter enforces too much the smoothness of the base-

line. Xi and Rocke proposed a baseline detection derived from a parametric smoothing

model [322]. The nuclear magnetic resonance (NMR) signal is formalized as a sum of a

pure signal, the baseline function, and an additive Gaussian noise such as:

yi = bi + µie
ni + εi , (6.2)

where yi is the NMR signal, bi is the baseline, µi is the true signal, and ni and εi are

Gaussian noises.

Xi and Rocke propose to find the baseline function through an iterative optimization

by maximizing the following cost function:

F (b) =
N∑
i=1

bi −
A∗N4

σ

N∑
i=1

(bi+1 + bi−1 − 2bi)
2 − 1.25B∗

σ

N∑
i=1

(bi − γi)2g(bi − γi) , (6.3)

where g(bi − γi) is the Heaviside function, A∗ and B∗ are the terms controlling the

smoothness and negative penalties, respectively, σ is an estimation of the standard de-

viation of the noise, and N is the total number of points in the MRSI signal.

The standard deviation of the noise σ is estimated as in [322], and the A∗ and B∗ are

empirically set to 5× 10−6 and 100, respectively, for all the MRSI signal. Setting these

parameters allows to obtain an estimation of a smooth and possibly negative baseline,

required by the aspect of the citrate peak in our MRSI acquisition, as depicted in Fig. 6.2.

Additionally, each MRSI spectrum is normalized using the L2 norm, which has been

shown to be the most efficient normalization method in MRSI as discussed in Sect. 3.1.1.
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Figure 6.2: Illustration of the detection of the baseline on an MRSI spectrum.

6.1.2 Segmentation and registration

For this study, no segmentation method has been developed and the manual segmenta-

tion given by our radiologist has been used. The prostate is suffering, however, from a

misalignment between the different MRI modalities. Therefore, three registrations have

been developed to: (i) the patient motion during the DCE-MRI acquisition, (ii) the

patient motion between the T2-W-MRI and the DCE-MRI acquisitions, and (iii) the

patient motion between the T2-W-MRI and the ADC map acquisition. All registrations

are implemented in C++ using Insight Segmentation and Registration Toolkit (ITK).

The DCE-MRI acquisition being dynamic, some intra-patient motions might occur

during the acquisition. For each serie of this dynamic acquisition, each 3D volume is

registered to the first volume acquired, to remove the residual motion. The appearance

in the DCE-MRI images, however, varies due to the presence or not of the contrast

media. Therefore, the metric chosen to be minimized is the mutual information (MI)

and the geometric transform has been set to a rigid transform. The optimization is

performed using a regular step gradient descent.

Once the intra-patient motions corrected, a registration to correct the alignment

between the T2-W-MRI and the DCE-MRI acquisitions is performed. For that matter,

the prostate has been segmented in both modalities — T2-W-MRI and DCE-MRI —

to create two binary masks. Therefore, these 3D binary masks are directly registered

using the mean squared error (MSE) metric. Unlike the previous registration, we use

a more complex geometric transform by successively finding a rigid transformation, a

coarse elastic transformation, and a fine elastic transformation. B-splines transformation
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Table 6.1: Features extracted in T2-W-MRI and ADC volumes.

Features Parameters # dimensions

Intensity 1
DCT decomposition window: 9 px× 9 px× 3 px 243
Kirsch filter 2
Laplacian filter 1
Prewitt filter 3
Scharr filter 3
Sobel filter 3
Gabor filters 4 frequencies f ∈ [0.05, 0.25]; 4 azimuth angles α ∈ [0, π]; 8

elevation angles α ∈ [0, 2π]
256

Phase congruency filter 5 orientations; 6 scales 3
Haralick filter window: 9 px× 9 px× 3 px; # grey levels: 8; distance: 1 px; 13

directions
169

LBP filter 2 radii r = {1, 2}; 2 neighborhood sizes N = {8, 16} 6

is used as the elastic transform. These successive transformations allow to get a good

initialization for the next transformation. The transformation is inferred by minimizing

the cost function using a regular step gradient descent.

The T2-W-MRI and ADC map acquisitions are registered using the same approach

as for the registration of the T2-W-MRI and the DCE-MRI modalities.

Additionally, the CaP, peripheral zone (PZ), and central gland (CG) are segmented

on the T2-W-MRI and thus T2-W-MRI is used as the reference modality.

6.1.3 Feature detection

To approach the task of automatic detection of CaP using machine learning, one has to

extract a variety of feature specific to the MRI modality as presented in Sect. 3.2.2.

T2-W-MRI and ADC map features Apart of using the normalized intensity, edge-

and texture-based features are commonly extracted from T2-W-MRI and ADC map. A

set of common features earlier reported in Sect. 3.2.2 have been computed. The following

set of filters characterizing edges has been used: (i) Kirsch, (ii) Laplacian, (iii) Prewitt,

(iv) Scharr, (v) Sobel, and (vi) Gabor. Apart of Kirsch filter, the other filters are applied

in 3D to get more information using a volume and not a slice, as it is usually done. The

extension of the most common edge detectors in 3D is obvious and will not be recalled.

However, 3D Gabor filters [318] are not commonly used and we recall their formulation
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in Eq. (6.4).

g(x;σ, f, θ, φ) = ĝ(x;σ) exp(j2πf (x sin θ cosφ+ y sin θ sinφ+ z cos θ)) , (6.4)

where,

ĝ(x;σ) =
1

(2π)
3
2

exp

(
−1

2

(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

))
, (6.5)

where x is the position vector {x, y, z}, σ is the standard deviation vector {σx, σy, σz}
of the 3D Gaussian envelope, f is the radial center frequency of the sine wave, θ is the

elevation angle, and φ is the azimuth angle.

Additionally, features based on phase congruency as proposed by Kovesi are com-

puted [134]. Therefore, from a set of Log-Gabor filter bank, the orientation image, the

local weighted mean phase angle, and the phase angle are estimated at each voxel.

To characterize the local texture, both second-order gray-level co-occurence matrix

(GLCM)-based features [102] and rotation invariant and uniform local binary pattern

(LBP) [200] are extracted. To encode 3D information, the 13 first Haralick features —

refer to Table 3.6 — are computed for the 13 possible directions. For the same reason,

the LBP codes are computed for the three-orthogonal-planes of each MRI volume.

Table 6.1 summarizes the different features extracted with their corresponding pa-

rameters. Note that all these features are extracted at each voxel of the volume.

DCE-MRI features The extracted features for the DCE-MRI are exactly the ones

describes in the previous chapter. The reader can refer to Sect. 5.2.1.2 for a detailed

presentation of the different methods used. In brief, the entire enhanced signal, semi-

quantitative, and quantitative methods are computed.

MRSI features MRSI-based features have been explained in Sect. 3.2.2.3. Due to un-

availability of some unsuppressed water acquisition, absolute quantification as presented

by Trigui et al. could not be computed [291]. Therefore, likewise in [209], three different

techniques are used to extract discriminative features: (i) relative quantification based

on metabolite quantification, (ii) relative quantification based on bounds integration,

and (iii) spectra extraction.
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Figure 6.3: Illustration of the metabolite fitting: (a) the models are perfectly fitted for
both citrate and choline; (b) the fitting of the citrate metabolite is inaccurate since it does
not follow the a priori model.

Relative quantification based on metabolite quantification relies on a robust integra-

tion of the citrate and choline signal based on peak modelling. Therefore, we propose to

tackle this problem as a non-linear least squares optimization problem by (i) quantify-

ing the citrate peaks as a Gaussian mixture and (ii) quantifying the choline as a single

Gaussian.

As illustrated in Fig. 6.3(a), the MRSI sequence imply a 3-peaks citrate metabolite.

Therefore, we propose the following model to represent our function as in Eq. (6.6).

M1(x; w) = α1N(x;µ, σ1) + α2N(x;µ+ δ2, σ2) + α3N(§;µ− δ, σ) , (6.6)

where N(·) is a Gaussian distribution, µ is the central mean of the citrate, δ2 and δ3

are the shifts from the citrate central peak to the citrate side peaks, {α1, α2, α3} are the

amplitude factors of each Gaussian distribution, and {σ1, σ2, σ3} are the standard devia-

tions of each Gaussian distribution. Additionally, we defined w as the vector containing

the free parameters.
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Equation (6.6) is minimized under constraints as in Eq. (6.7).

arg min
w

|S(x)−M1(x; w)|2 ,

subject to 2.54 < µ < 2.68 ,

0.06 < δ1, δ2 < 0.16 ,

0.01 < σ1, σ2, σ3 < 0.1 ,

α1, α2, α3 > 0 ,

(6.7)

where S(x) is the MRSI signal. The different constraints are empirically set but based

on the a priori location of the peaks.

Figure 6.3 illustrates two fitting cases. If the MRSI signal follows the assumption

regarding the model, which is generally the case — i.e., a mixture of 3 Gaussian distribu-

tions —, the signal is perfectly fitted as shown in Fig. 6.3(a). However, if the MRSI signal

does not obey to the model, the signal is fitted inaccurately as depicted in Fig. 6.3(b).

Theoretically, one could suggest to fit a Voigt mixtures instead of a Gaussian mixtures

due to the presence of noise during the acquisition. However, the use of Gaussian

distributions reduces the number of parameters to be optimized and allows for a more

robust optimization due to less interdependence between the bounds.

The choline metabolite is quantified on a similar manner assuming that there is only a

single Gaussian distribution rather than a mixture. Therefore the problem is formulated

as:

M2(x;µ, σ) = αN(x;µ, σ) , (6.8)

where N(·) is a Gaussian distribution, µ is the center of the choline, alpha is the am-

plitude factor, and σ is the standard deviation. The optimization is performed such

as:

arg min
µ,σ

|S(x)−M2(x;µ, σ)|2 ,

subject to 3.17 < µ < 3.21 ,

0.001 < σ < 0.02 ,

α > 0 .

(6.9)
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Finally, the citrate and choline fitted function are integrated to obtain the relative

concentration of each metabolite. Additionally, the ratio of the citrate over the choline

is also computed.

A second solution to compute the relative concentration of each metabolite is pro-

posed for the sake of comparison. For both the choline and citrate, a local maximum

is found near of the theoretical position of the peak. Subsequently, a range is defined

around each peak —i.e., 0.36 ppm for the citrate and 0.08 ppm for the choline — and

the integral of the signal is computed using the Simpson’s rule.

The third and last option corresponds on a cropping of the MRSI signal from 2 ppm

to 4 ppm as proposed in [209].

Anatomical features Beside the aforementioned features specific at each modality,

anatomical features as proposed by Chen et al. and Litjens et al. are computed [44, 161].

Therefore, 4 different metrics are computed based on the relative distance to the prostate

boundary as well as the prostate center, and the relative position in the Euclidean and

cylindrical coordinate systems.

6.1.4 Feature balancing

Data imbalanced is a recurrent issue in classification, notably in medical data. The

problem of imbalanced dataset lies in the fact that one of the class has a smallest

number of data — i.e., in medical data, the class corresponding to patients with a

disease — compared with the other classes. Therefore, solving the problem of imbalanced

is equivalent to under- or over-sampling part of the dataset to obtain equal number of

samples in the different classes. In this section, several methods which will be used in

the experiments are presented.

6.1.4.1 Under-sampling

Techniques that reduce the number of samples of the majority class to be equal to the

number of samples of minority class are referred to as under-sampling (US) techniques.

Nearmiss (NM) offers three different methods to under-sample the majority class [177].

In nearmiss-1 (NM-1), samples from the majority class are selected such that for

each sample, the average distance to the k neareast neighbour (NN) samples from
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the minority class is minimum. nearmiss-2 (NM-2) diverges from NM-1 by con-

sidering the k farthest neighbours samples from the minority class. In nearmiss-3

(NM-3), a subset M containing samples from the majority class is generated by

finding the m NN from each sample of the minority class. Then, samples from

the subset M are selected such that for each sample, the average distance to the

k NN samples from the minority class is maximum. In our experiment, k and m

are fixed to 3.

Instance-hardness-threshold (IHT) select samples with a high hardness thresh-

old [259]. Hardness indicates the likelihood of mis-classification rate for each

samples. The notation of instance hardness are drawn through the decomposi-

tion of p(h|t) using Bayes’ theorem, where h represent the mapping function used

to map input features to their corresponding labels and t represents the training

set.

IHh(〈xi, yi〉) = 1− p(yi|xi, h). (6.10)

Therefore, under-sampling is performed by keeping the most probable samples —

i.e, filtering the samples with high hardness value — through k-fold cross-validation

(k-CV) training sets while considering specific threshold for filtering.

6.1.4.2 Over-sampling

In contrast to US techniques, data can be balanced by over-sampling (OS) in which

the new samples belonging to the minority class are generated, aiming at equalizing the

number of samples in both classes.

Synthetic minority over-sampling techniques (SMOTE) is a method to gener-

ate new synthetic samples [42]. Let define xi as a sample belonging to the minority

class. Let define xnn as a randomly selected sample from the k-NN of xi, with k

set to 3. A new sample xj is generated such that xj = xi + σ (xnn − xi), where σ

is a random number in the interval [0, 1].

SMOTE-borderline1 (SMOTE-b1) over-samples the minority class samples simi-

larly to SMOTE [100]. However, instead of using all the minority samples, it

focuses on the borderline samples of minority class. Borderline samples simply

138



6.1 Methodology

indicate the samples that are closer to the other class. First, the borderline sam-

ples of minority class are detected. A sample xi belongs to borderline samples if

more than half of its k-NN samples belong to the majority class. Synthetic data is

then created based on SMOTE method for borderline samples, by selecting Then,

s-NN of the minority class are selected to generate synthetic sample similarly to

SMOTE.

SMOTE-borderline2 (SMOTE-b2) performs similarly to SMOTE-b1 [100]. How-

ever, the s-NN are not computed by only considering the minority class but by

considering both classes. The same generation rules as SMOTE is used.

6.1.5 Feature selection and extraction

Feature selection and extraction are used in the experiment: (i) signal-based data —

i.e., MRSI and DCE-MRI — are decomposed using feature extraction methods while

(ii) image-based features are selected through different feature selection methods. These

methods have been presented in Sect. 3.2.3.

Among those, principal components analysis (PCA), sparse-PCA, and independent

components analysis (ICA) are used to decompose signal-based data.

Similarly to PCA decomposition, ICA is projecting data on independent compo-

nents [52]. However, it does not require orthogonality of the space and does not assume

Gaussian distribution for each independent source. Therefore, opposite to PCA it can

recover uniquely the signals themselves rather than linear subspace in which the signals

lie [191].

Sparse-PCA is another approach for feature extraction and dimension reduction [329].

Similarly to PCA, this approach projects the data as a linear combination of input data.

However, instead of using original data, it uses a sparse representation of the data, and

therefore projects them as linear combination of few input components rather than all of

them. Referring to Eq. (3.42), the cost function of sparse-PCA is formulated to maximize

the variance while maintaining the sparsity constraint:
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arg max v−1Σv , (6.11)

subject to ‖v‖2 = 1 ,

‖v‖0 ≤ k .

where k indicates that number of non-zero elements in v.

Additionally to feature extraction, we use two methods of feature selection during

the experiments. The first feature selection is the one-way analysis of variance (ANOVA)

test. This test is based on computing the F-test which is the ratio of the between-group

variability over the with-in group variability. The F-value is computed for each pair of

features and the K feature dimensions corresponding to the largest F-values are kept.

Apart of using random forest (RF) as our main classifier, RF provide information

regarding the importance of each feature. The feature importance in RF is linked with

the Gini importance. In a tree classifier, the Gini impurity criterion of the child nodes is

inferior to the parent node. For each individual feature, adding the decrease of the Gini

impurity along the tree gives information about the feature importance: the higher, the

better. Therefore, one can add the decrease of the Gini impurity across all the trees of a

forest and obtain the importance of a specific feature for this forest. Subsequently, the

K most important features are selected to perform the feature selection.

6.1.6 Classification

Variety of classifiers have been explained in Sect. 3.2.4.

Among those, RF showed its reliability to lead to high classification performance.

That is why, RF has been chosen as our base classifier — allowing for feature selection

as well — to perform classification of individual modality as well as the combination of

modalities.

Additionally, we use stacking to create ensemble of base learners using a meta-

classifier [321]. Figure 6.4 illustrate the principle of stacking. Stacking consists in a

two-stage learning: (i) First, a set of training samples is used to train each individ-

ual base learner and (ii) subsequently, a set of validation samples is provided to each

RF which individually output a corresponding set of probability used to train a meta-
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Figure 6.4: The principle of stacking. First, training samples (red) are used to train each
individual RF. Subsequently, a validation set (green) is provided to each RF which outputs
a set of probabilities used for the classification of the meta-classifier. Finally, a test set is
used to asses the classification performance to whole stack.

classifier. Finally, the stack of classifiers is assessed by providing a test set which is going

through the base learners and the meta-classifier.

In the later experiments, AdaBoost (AdB) and Gradient Boosting (GB) are chosen

as meta-classifiers to aggregate the base learners in the stacking strategies. AdB has

been presented in Sect. 3.2.4 and thus only GB will be succinctly in the remaining of

this section. GB is an ensemble classifier [80] which similarly to AdB is formulated as

in Eq. (6.12).

F (x) =

M∑
m=1

γmhm(x) , (6.12)

where hm(x) is a weak learner with its associated weight γm. As with AdB, hm(x)

is chosen to minimize a loss function using the additive model Fm−1. The difference

between AdB and GB lie in the fact the this minimization is tackle as a numerical

optimization problem using the steepest descent.
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6.2 Experiments and results

In this section, different experiments are proposed to design and investigate our mp-

MRI CAD for the detection of CaP. First, the classification performance of each inde-

pendent modality is investigated in Sect. 6.2.1. For each modality, the “quantification”

approaches maximizing the classification performance are selected. Additionally, we

focus on to directly combined mp-MRI modalities, which we referred to as “coarse”

combination as presented in Sect. 6.2.2. Subsequently, Sect. 6.2.3 presents the benefit

of balancing the dataset on the learning stage and strategies for feature selection and

extraction, for each feature modality as well as an aggregation of them. Consequently,

different combination classifier rules are studied using the previous fine-tuned feature

space in Sect. 6.2.4. Finally, we conclude in Sect. 6.2.5 by investigating the benefit of

fusing the MRSI information with the other modality.

All these experiments are conducted on a subset of the public mp-MRI prostate

presented in Sect. 4.2.2. We used the 3 T dataset which is composed of a total of 19

patients of which 17 patients had biopsy proven CaP and 2 patients are “healthy” with

negative biopsies. In this study, our subset consists of 17 patients with CaP.
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(a) Performance of the quantitative methods on DCE-
MRI.
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(b) Performance of enhanced DCE-MRI signal.
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(c) Performance of image-based features for T2-W-MRI
and ADC map.
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(d) Performance of different approaches for the MRSI
modality.

Figure 6.5: Analysis of the classification performance for each individual MRI modality. Different models have been tested for
DCE-MRI and MRSI modalities.
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6. PROPOSED CAD SYSTEM FOR CAP

6.2.1 Assessment of classification performance of individual modality

In this experiment, we attend to assess the classification performance of each individual

MRI modality.

T2-W-MRI and ADC map features All features presented in Table 6.1 are ex-

tracted for both T2-W-MRI and ADC map. These features are combined per modality

and for each of them, a RF classifier is trained.

DCE-MRI features This experiment has been presented in Sect. 5.2.2. We aim at

finding the most discriminative “quantification” method for DCE-MRI modality, by as-

sessing the classification performance of the different models. Therefore, the pharmacoki-

netic parameters from the Brix, Hoffmann, Tofts, and phenomenological universalities

(PUN) models, the semi-quantitative parameters, and the enhanced DCE-MRI signal

are extracted. For each set of feature, a RF classifier is trained.

MRSI features Similarly to DCE-MRI, 4 RF classifiers are trained on different fea-

tures: (i) the cropped MRSI signal, (ii) the relative concentration of the citrate over the

relative concentration of the choline, both computed through fitting as presented in the

previous section, (iii) the ratio of the two previous features, and finally (iv) the ratio of

the relative concentration of the citrate over the relative concentration of the choline,

using fix integration bounds.

Results Each trained RF is evaluated using a leave-one-patient-out cross-validation

(LOPO CV). A receiver operating characteristic (ROC) analysis is carried out and the

area under the curve (AUC) score is computed to report and compare the classification

performance of each classifier. The results are depicted in Fig. 6.5. As presented is

the previous chapter, classification of DCE-MRI data using the normalized enhanced

DCE-MRI signal is the strategy leading the highest AUC — i.e., 0.666 ± 0.154 —,

outperforming any quantification method. Similarly to these findings, classification of

the cropped MRSI signal outperforms other quantification-based methods, with an AUC

of 0.697 ± 0.165. Classification of the extracted features based on ADC offer a close

performance with an identical mean AUC and a smaller standard deviation of 0.128.

Finally, the features extracted from T2-W-MRI are shown to be the most discriminative
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Feature aggregation ­ AUC  = 0. 802± 0. 130

Stacking AdaBoost ­ AUC  = 0. 761± 0. 135

Stacking Gradient Boosting ­ AUC  = 0. 769± 0. 128

Figure 6.6: Comparison of different combination approaches: (i) aggregation of the differ-
ent features in conjunction with a RF classifier, (ii) a stacking approach using 4 RFs and
AdB as meta-classifier, and (iii) a stacking approach using 4 RFs and GB as meta-classifier.

with an AUC reaching 0.720 ± 0.122. As a conclusion, the most efficient features in

terms of classification performance for each modality are selected for the remainder of

the experiment section.

6.2.2 Coarse combination of mp-MRI modalities

As a first attempt to design a mp-MRI CAD system, 3 different approaches are used to

combine the selected feature from each modality: (i) feature aggregation, (ii) stacking

using AdB, (iii) stacking using GB. We refer these combinations as being coarse since

no tuning — i.e., feature balancing/selection/extraction — aiming at improving the

classification performance is involved. This experiment can be considered as the baseline

to obtain a mp-MRI CAD for the detection of CaP.

In the first approach, the features from all the different modalities are concatenated

together to form a unique matrix. Additionally, the anatomical features are concatenated

within the same matrix. The second and third approaches are based on the stacking

which has been presented in the previous section. They differ in the choice of the meta-

learner since the first stack uses an AdB classifier while the second stack uses a GB. Each

base learner is similar to the RF selected in the previous experiment. The difference lie
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smote­b2 balancing ­ AUC  = 0. 805± 0. 083

Figure 6.7: Analysis of the benefit of balancing the training dataset before the learning
process while concatenating all features.

in the concatenation of the anatomical features with each feature set derived from the

MRI modality presented in the previous experiment.

Results The three coarse combinations are tested using a LOPO CV. Furthermore,

for the stacking approaches, the training set is split into a smaller training set and a

validation set composed of 10 and 6 patients, respectively. A ROC analysis is carried

out for each combination and the AUC is computed as reported in Fig. 6.6.

A single learner using aggregated features outperforms the stacking-based classifier

with an AUC of 0.802 ± 0.130. Furthermore, GB chosen as a meta-classifier leads to

better classification performance than AdB, with an improved AUC from 0.761± 0.135

to 0.769± 0.128.

6.2.3 Benefits of data balancing and feature selection/extraction

In this section, we focus on optimizing the different feature set used in the previous clas-

sification. Therefore, our contribution is twofold: (i) we compare the different balancing

methods to distinguish which method is the best suited and (ii) we use feature selec-

tion/extraction methods to identify which feature are the most discriminative among

each set.
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Comparison of balancing strategies For this experiment, a RF classifier is trained

for each feature set selected from the first experiment. As in the previous experiment,

a LOPO CV is used as validation model. During the learning phase, the training sets

are balanced using the methods presented in Sect. 6.1.4. The possible improvements

offered by the balancing methods is analyzed through a ROC analysis and computing

the AUC. The results are depicted in Fig. 6.8 and give rise to two observations: (i) there

is at least one balancing method which improves the classification performance and (ii)

IHT and SMOTE are the methods performing the best on individual modality features.

On the one hand, IHT outperforms the other methods while balancing the feature sets

based on the DCE-MRI and ADC map. The AUC increases of 0.019 and 0.018 for the

feature sets of the DCE-MRI and ADC map, respectively. On the other hand, SMOTE

increases the AUC of 0.042 for T2-W-MRI. However, there is no significant improvement

for the MRSI since only the standard deviation of the AUC decreases of 0.019. Once all

features are concatenated together, NM-3 is the method providing the best enhancement

of the classification performance with an AUC of 0.824± 0.076, as depicted in Fig. 6.7.

In conclusion, the methods leading to the best performance are applied prior to feature

selection/extraction for the remainder of the experiment.

Feature selection and extraction Noisy or non-discriminative features included in

the learning process might degrade the overall performance of a classifier. Thus, the

feature selection and extraction methods presented in Sect. 6.1.4 are used to obtain a

fine-tuned feature space. The selection approaches — i.e., ANOVA F-value and Gini

importance — are applied on the image-based features extracted from T2-W-MRI and

ADC map modalities. For both methods, a threshold defines the percentage of features

to select. Additionally, several thresholds are defined to find the number of features

maximizing the classification performance.

Features computed from MRSI and DCE-MRI modalities are related to signal and

feature extraction seems more appropriate rather than feature selection. Therefore, the

3 feature extraction methods — i.e., PCA, sparse-PCA, and ICA — are applied by

varying the number of components or the sparsity level, which allows to find the level

which maximizes the classification performance. Finally, the feature selection methods

have been applied on the concatenation of all the features.
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Table 6.2: Results in terms of AUC of the feature selection based on ANOVA F-value for T2-W-MRI.

Methods
Percentiles

15 17.5 20 22.5 25 27.5 30

ANOVA F-score 0.755± 0.049 0.770± 0.058 0.777± 0.064 0.782± 0.066 0.784± 0.067 0.783± 0.072 0.782± 0.070

Table 6.3: Results in terms of AUC of the feature selection based on Gini importance for T2-W-MRI.

Methods
Percentiles

1 2 5 10 15 20 30

Gini importance 0.726± 0.064 0.731± 0.055 0.751± 0.065 0.758± 0.076 0.752± 0.087 0.761± 0.077 0.764± 0.079

Table 6.4: Results in terms of AUC of the feature selection based on ANOVA F-value for ADC.

Methods
Percentiles

10 12.5 15 17.5 20 22.5 25

ANOVA F-score 0.684± 0.123 0.713± 0.125 0.712± 0.134 0.710± 0.144 0.714± 0.142 0.708± 0.150 0.708± 0.150

Table 6.5: Results in terms of AUC of the feature selection based on Gini importance for ADC map.

Methods
Percentiles

1 2 5 10 15 20 30

Gini importance 0.672± 0.132 0.690± 0.138 0.743± 0.139 0.730± 0.136 0.730± 0.142 0.724± 0.141 0.722± 0.142

Table 6.6: Results in terms of AUC of the feature extraction methods for DCE-MRI.

Methods
Number of components or sparsity level

2 4 8 16 24 32 36

PCA 0.656± 0.133 0.634± 0.121 0.668± 0.149 0.680± 0.145 0.682± 0.146 0.679± 0.151 0.683± 0.149
Sparse-PCA 0.578± 0.117 0.546± 0.121 0.554± 0.097 — — — —
ICA 0.657± 0.132 0.629± 0.117 0.671± 0.157 0.686± 0.158 0.691± 0.158 0.681± 0.161 0.679± 0.166
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(a) T2-W-MRI
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(b) ADC-MRI
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Figure 6.8: Analysis of the benefit of balancing the training dataset before learning process for each modality.
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Table 6.7: Results in terms of AUC of the feature extraction methods for MRSI.

Methods
Number of components or sparsity level

2 4 8 16 24 32 36

PCA 0.566± 0.120 0.575± 0.141 0.648± 0.162 0.662± 0.177 0.659± 0.184 0.671± 0.179 0.672± 0.182
Sparse-PCA 0.502± 0.050 0.571± 0.158 0.585± 0.111 — — — —
ICA 0.567± 0.119 0.578± 0.140 0.654± 0.145 0.656± 0.167 0.650± 0.187 0.663± 0.174 0.677± 0.171

Table 6.8: Results in terms of AUC of the feature selection based on ANOVA F-value for the aggregation of feature from all
mp-MRI features.

Methods
Percentiles

10 12.5 15 17.5 20 22.5 25

ANOVA F-score 0.764± 0.095 0.765± 0.079 0.800± 0.083 0.817± 0.089 0.828± 0.084 0.822± 0.0.084 0.815± 0.086

Table 6.9: Results in terms of AUC of the feature selection based on Gini importance for the aggregation of feature from all
mp-MRI features.

Methods
Percentiles

10 12.5 15 17.5 20 22.5 25

Gini importance 0.834± 0.085 0.834± 0.088 0.834± 0.084 0.836± 0.083 0.834± 0.079 0.828± 0.086 0.830± 0.077

Table 6.10: Selected feature and number of occurrence for T2-W-MRI, ADC map, and one all the features are concatenated.

T2-W-MRI ADC T2-W-MRI ADC DCE-MRI MRSI

8 edges 1 DCT 113 Gabor filters 53 Gabor filters 14 samples 78 samples
155 Gabor filters 32 Gabor filters 1 phase congruency 2 phase congruency
2 Haralick features 1 phase congruency 4 edges
1 intensity 1 intensity
4 LBP
2 phase congruency

172 features 34 features 267 features
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6.2 Experiments and results

As the previous experiments, the classification is performed using a RF with LOPO

CV model validation. A ROC analysis is performed and for each ROC, the AUC score

is computed. The results are reported from Table 6.2 to Table 6.8, in which the best

results are highlighted in bold.

Overall, feature selection or extraction lead to increase the classification performance.

For features extracted from the T2-WMRI, ANOVA-based selection lead to better per-

formance than Gini importance selection, with a AUC of 0.784 ± 0.067. The opposite

conclusion is drawn for the features extracted from the ADC map. The selection using

the Gini importance criterion leads to an AUC of 0.743± 0.139. Therefore, the feature

selection leads to an improve AUC of 0.022 and 0.013 for T2-W-MRI and ADC map,

respectively. The features which have been selected are reported in the 1st and 2nd

columns of Table 6.10. To conclude, from the 690 original features, 172 and 43 features

are selected from the T2-W-MRI and ADC map, respectively.

Regarding feature extraction, ICA outperforms other methods for both MRSI and

DCE-MRI with AUC scores of 0.677 ± 0.171 and 0.691 ± 0.158, respectively. However,

only the projection applied to DCE-MRI features leads to improved results with a gain

of 0.013 with 24 components selected instead of the original 40 dimensions.

Gini importance selection method is also outperforming ANOVA-based method while

selecting the features from the concatenation of all of them. The reported AUC is

0.836 ± 0.083 with an increase of 0.034. The features which have been selected are

reported from the 3rd to the 6th columns of Table 6.10. To conclude, from the 1533

original features, 267 features are selected from the entire set of feature.

6.2.4 Fine-tuned combination of mp-MRI modalities

This experiment aims at providing the most efficient mp-MRI CAD for CaP using the

fine-tuned feature space from the previous experiment. Three strategies are applied:

(i) the selected features from each modality — i.e., 331 features — are concatenated

together and used in a RF classifier, (ii) the selected features from each modality — i.e.,

331 features — are used to train a stacking classifier with a GB as meta-classifier, and

(iii) the selected features from the concatenated set of feature — i.e., 267 features — are

used to train a single RF classifier.
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Figure 6.9: Analysis of feature combination approaches after fine tuning through balancing
and feature selection/extraction.
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Figure 6.10: Individual patient AUC for the best configuration of the mp-MRI CAD.
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Figure 6.11: Illustration the resulting detection of our mp-MRI CAD for CaP detection. The blue contours corresponds to the
CaP while the jet overlay represents the probability.
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As previously done, the experiment is performed in a LOPO CV fashion and a

ROC analysis is carried out. The comparative results are shown in Fig. 6.9. In overall,

classification using the fine-tuned features improve the classification performance. The

third classification configuration is, however, the one which outperforms others with an

AUC of 0.836±0.083. The improvement in terms of AUC is of 0.028 and 0.050 compared

with the 1st and 2nd, respectively.

In clinical setting, the AUC score is categorized in 3 levels: (i) “acceptable” discrim-

ination for an AUC ranging from 0.7 to 0.8, (ii) “excellent” discrimination for an AUC

ranging from 0.8 to 0.9, and “outstanding” discrimination when the AUC is over 0.9 [111].

Therefore, the combination of all MRI modalities in conjunction with fine-tuning allow

to upgrade our CAD system from an “acceptable” to an “excellent” discrimination level.

Additionally, the individual ROC analysis for each patient for the best configuration

is shown in Fig. 6.10. It can be noted that 12 patients have an AUC superior to 0.800

and 2 patients have a rather low AUC below 0.700. Regarding the 4 patients with an

AUC below 0.800, 3 patients have a CaP localized in the CG.

To illustrate qualitatively the results of our mp-MRI CAD system, 6 diverse examples

are presented in Fig. 6.11 by overlapping the probability map of having a CaP with the

original T2-W-MRI slice.

6.2.5 Benefit of the MRSI modality

We recall that the goal of this thesis is to use all the mp-MRI modalities. In this regard,

MRSI has nearly never been used together with the other modalities — i.e., T2-W-

MRI, DCE-MRI, and ADC map — apart of the recent work of Trigui et al. [290, 291].

Therefore, we propose in this experiment to compare the classification performance by

removing the MRSI features. In this regard, we propose to train 2 stacking classifiers —

with a GB as meta-classifier — while removing the feature related to MRSI for one of

them. The same LOPO CV validation model is used as before and the results obtained

from ROC analysis are depicted in Fig. 6.12.

Therefore, including MRSI into the classification pipeline increases the AUC from

0.756± 0.092 to 0.786± 0.098 for a gain of 0.030.
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Figure 6.12: Illustration of the gain of including the MRSI modality in a mp-MRI CAD.

6.3 Discussion and conclusion

We would like to stress the following findings drawn during the previous experiments.

The classification of individual modality highlights the weakness of the quantification

methods — i.e., pharmokinetic models, semi-quantitative model, and relative quan-

tification of metabolites — which might be due to the loss of information during the

quantification procedure. Furthermore, the features extracted from the T2-W-MRI are

the most discriminative even after features selection. Unlike T2-W-MRI, DCE-MRI is

always the less efficient method.

The experiment link to the feature selection highlights some interesting facts re-

garding the most efficient features. On the one hand, the Gabor filters and the phase

congruency are always selected, independently of the strategy and modality during the

feature selection process. Additionally, edge filters — i.e., Kirsch, Prewitt, Scharr, and

Sobel — have been only selected for the T2-W-MRI. A possible explanation might be

due to the fact that T2-W-MRI is the modality with the highest spatial resolution and

in which the level of details is the most important. Subsequently, the intensity feature

of the T2-W-MRI modality is always selected, implying that our normalization method

proposed in Sect. 5.1 is efficient.

While applying the feature selection on the concatenated set of features, MRSI ap-
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peared to be one of the most significant feature by keeping most of the information.

Along the same line, we show that removing this modality from the stacking classifier

decreases drastically the classification performance.

Finally, we can highlight that the classification performance obtained are the worst

with patients having a CaP localized in the CG.

As avenues for future research, one could switch from voxel-based classification to

super-voxel classification such that spatial structure are classified instead of voxel. Fur-

thermore, all features from this chapter can be defined as hand-crafted features. There-

fore, an approach with unsupervised learning as convolutional neural network and con-

junction with transfer learning should be investigated.
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Chapter 7

Conclusion

In this section, we summarize the work presented along this thesis as well the final

contributions. We also a give short discussion regarding the potential avenues for future

research.

7.1 Summary of the thesis

This manuscript begins by introducing problematic and societal challenges related to

prostate cancer (CaP) which give rise to the research motivation of this work. An

overview is given in Chap. 2 regarding the magnetic resonance imaging (MRI) techniques

currently used for medical screening. Therefore, in Chap. 3 we focus on reviewing the

current state-of-the-art on mono- and multiparametric MRI (mp-MRI) computer-aided

detection and diagnosis (CAD) systems for the detection of CaP. As a conclusion, the

target of this thesis has been fixed to design and investigate a new mp-MRI CAD system

based on all MRI modalities currently in used in clinical settings. Additionally, we point

out several missing pieces from the given puzzle: (i) no mp-MRI dataset nor CAD system

are currently publicly available, (ii) the knowledge about pre-processing methods in the

current CAD systems is limited, and (iii) the problem of data balancing never has been

explored in the past. Subsequently, we present in Chap. 4 the contours of our working

materials — i.e., mp-MRI dataset, source code, communication website — which we

made publicly available along this thesis. Finally, Chap. 5 and Chap. 6 present the

technical investigations regarding pre-processing and our mp-MRI CAD system for the

detection of CaP.

157



7. CONCLUSION

7.2 Contributions

The major contributions of this thesis can be summarized as:

Public mp-MRI dataset Together with clinicians, we collected, annotated, and pub-

licly made available the first mp-MRI dataset for the detection of CaP.

Normalization methods We proposed and extensively investigated two normaliza-

tion methods for both T2 Weighted (T2-W)-MRI and dynamic contrast-enhanced

(DCE)-MRI modalities.

mp-MRI CAD for CaP detection We proposed and extensively investigated a new

mp-MRI CAD for CaP detection. This CAD system uses all current MRI modal-

ities currently in use in clinical settings.

7.3 Avenues for future research

Although the proposed mp-MRI CAD system provides satisfactory results, drastic im-

provements are needed to the system to become in use in clinical environment. The

current CAD system is taking decision at the voxel level. Spatial information is, how-

ever, an important factor to be included which suggests to move from a voxel-based

system to a super-voxel based system. In Chap. 6, we identified strong image features

— i.e., Gabor filters and phase congruency features — which should be further inves-

tigated. In the context of the search for large number of quantitative features [136] —

a.k.a. radiomics —, these two types of features have the merit to be further investigated.

Additionally, other strategies to avoid hand-crafted feature detection have to be explored

such as deep convolutional neural-networks. However, the challenge given by the limited

number of cases as in many medical applications stresses the need for transfer learning

while applying deep-learning [255]. Subsequently, collecting additional mp-MRI cases

would be beneficial to move towards unsupervised learning.
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Appendix A

Conversion from FLASH signal to

media concentration

In this appendix, we show the demonstration used to extract the agent concentration

from the MRI signal.

The signal equation in FLASH sequence [97] is defined as:

s(t) = Seq sinα · 1− exp (−TR (R10 + r1c(t)))

1− cosα · exp (−TR (R10 + r1c(t)))
, (A.1)

where s(t) is the MRI signal, Seq is the maximum signal amplitude of the spoiled gradient

at the echo time (TE) which is proportional to the proton density (PD), α is the flip

angle, TR is the repetition time (TR), R10 is the pre-contrast tissue relaxation time also

equal to 1
T10

, r1 is the relaxitivity coefficient of the contrast agent, and c(t) is the media

concentration.

Therefore, the pre-contrast signal prior to bolus injection of the media is defined as:

S0 = Seq sinα · 1− exp (−TR ·R10)

1− cosα · exp (−TR ·R10)
. (A.2)

To simplify the demonstration, let us define:

A = exp(−TR ·R10), (A.3)

B = exp(−TR · r1c(t)). (A.4)
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A. CONVERSION FROM FLASH SIGNAL TO MEDIA
CONCENTRATION

Let us define:

S∗ =
S0

Seq sinα
, (A.5)

=
1−A

1−A cosα
. (A.6)

Thus,

S∗
s(t)

S0
=

S0

Seq sinα

s(t)

S0
, (A.7)

=
1−AB

1−AB cosα
. (A.8)

Now, let us define:

1− cosα · S∗ s(t)S0

1− S∗ s(t)S0

=
1− cosα

(
1−AB

1−AB cosα

)
1− 1−AB

1−AB cosα

, (A.9)

=
1−AB cosα− cosα(1−AB)

1−AB cosα− (1−AB)
, (A.10)

=
1−AB cosα− cosα+AB cosα

1−AB cosα− 1 +AB
, (A.11)

=
1− cosα

AB(1− cosα)
, (A.12)

=
1

AB
. (A.13)

Thus,

−TR ·R10 − TR · r1c(t) = ln

(
1− cosα · S∗ s(t)S0

1− S∗ s(t)S0

)
. (A.14)

Therefore,

c(t) =
1

TR · r1
ln

(
1− cosα · S∗ s(t)S0

1− S∗ s(t)S0

)
− R10

r1
. (A.15)
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