On Spatio-Temporal Saliency Detection in Videos using Multilinear PCA - Université de Bourgogne Accéder directement au contenu
Communication Dans Un Congrès Année : 2016

On Spatio-Temporal Saliency Detection in Videos using Multilinear PCA


Visual saliency is an attention mechanism which helps to focus on regions of interest instead of processing the whole image or video data. Detecting salient objects in still images has been widely addressed in literature with several formulations and methods. However, visual saliency detection in videos has attracted little attention, although motion information is an important aspect of visual perception. A common approach for obtaining a spatio-temporal saliency map is to combine a static saliency map and a dynamic saliency map. In this paper, we extend a recent saliency detection approach based on principal component analysis (PCA) which have shwon good results when applied to static images. In particular, we explore different strategies to include temporal information into the PCA-based approach. The proposed models have been evaluated on a publicly available dataset which contain several videos of dynamic scenes with complex background, and the results show that processing the spatio-tempral data with multilinear PCA achieves competitive results against state-of-the-art methods.
Fichier principal
Vignette du fichier
ICPR16_0156_FI.pdf (781.08 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01390675 , version 1 (02-11-2016)


  • HAL Id : hal-01390675 , version 1


Désiré Sidibé, Mojdeh Rastgoo, Fabrice Mériaudeau. On Spatio-Temporal Saliency Detection in Videos using Multilinear PCA. International Conference on Pattern Recognition, IEEE/IAPR, Dec 2016, CANCUN, Mexico. ⟨hal-01390675⟩
75 Consultations
218 Téléchargements


Gmail Facebook X LinkedIn More