Integration of a Dirac comb and the Bernoulli polynomials - Université de Bourgogne
Article Dans Une Revue Bulletin des Sciences Mathématiques Année : 2016

Integration of a Dirac comb and the Bernoulli polynomials

Résumé

For any positive integer $n$, we consider the ordinary differential equations of the form $y^{(n)} = 1 - Ш + F$ where $Ш$ denotes the Dirac comb distribution and $F$ is a piecewise-$\mathcal{C}^\infty$ periodic function with null average integral. We prove the existence and uniqueness of periodic solutions of maximal regularity. Above all, these solutions are given by means of finite explicit formulae involving a minimal number of Bernoulli polynomials. We generalize this approach to a larger class of differential equations for which the computation of periodic solutions is also sharp, finite and effective.

Dates et versions

hal-01413233 , version 1 (09-12-2016)

Identifiants

Citer

Maria Alice Bertolim, Alain Jacquemard, Gioia Vago. Integration of a Dirac comb and the Bernoulli polynomials. Bulletin des Sciences Mathématiques, 2016, 140 (2), pp.119-139. ⟨10.1016/j.bulsci.2015.11.001⟩. ⟨hal-01413233⟩
166 Consultations
0 Téléchargements

Altmetric

Partager

More