Center manifolds for partially hyperbolic set without strong unstable connections - Université de Bourgogne
Article Dans Une Revue Journal of the Institute of Mathematics of Jussieu Année : 2016

Center manifolds for partially hyperbolic set without strong unstable connections

Résumé

We consider compact sets which are invariant and partially hyperbolic under the dynamics of a diffeomorphism of a manifold. We prove that such a set $K$ is contained in a locally invariant center submanifold if and only if each strong stable and strong unstable leaf intersects $K$ at exactly one point.

Dates et versions

hal-01414891 , version 1 (12-12-2016)

Identifiants

Citer

Christian Bonatti, Sylvain Crovisier. Center manifolds for partially hyperbolic set without strong unstable connections. Journal of the Institute of Mathematics of Jussieu, 2016, 15 (04), pp.785 - 828. ⟨10.1017/S1474748015000055⟩. ⟨hal-01414891⟩
107 Consultations
0 Téléchargements

Altmetric

Partager

More