Linking the rotation of a rigid body to the Schrödinger equation: The quantum tennis racket effect and beyond - Université de Bourgogne Accéder directement au contenu
Article Dans Une Revue Scientific Reports Année : 2017

Linking the rotation of a rigid body to the Schrödinger equation: The quantum tennis racket effect and beyond

Résumé

The design of efficient and robust pulse sequences is a fundamental requirement in quantum control. Numerical methods can be used for this purpose, but with relatively little insight into the control mechanism. Here, we show that the free rotation of a classical rigid body plays a fundamental role in the control of two-level quantum systems by means of external electromagnetic pulses. For a state to state transfer, we derive a family of control fields depending upon two free parameters, which allow us to adjust the efficiency, the time and the robustness of the control process. As an illustrative example, we consider the quantum analog of the tennis racket effect, which is a geometric property of any classical rigid body. This effect is demonstrated experimentally for the control of a spin 1/2 particle by using techniques of Nuclear Magnetic Resonance. We also show that the dynamics of a rigid body can be used to implement one-qubit quantum gates. In particular, non-adiabatic geometric quantum phase gates can be realized based on the Montgomery phase of a rigid body. The robustness issue of the gates is discussed.

Dates et versions

hal-01582562 , version 1 (06-09-2017)

Identifiants

Citer

Léo van Damme, David Leiner, Pavao Mardešić, Steffen Glaser, Dominique Sugny. Linking the rotation of a rigid body to the Schrödinger equation: The quantum tennis racket effect and beyond. Scientific Reports, 2017, 7, pp.3998. ⟨10.1038/s41598-017-04174-x⟩. ⟨hal-01582562⟩
313 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More