Affine surfaces with isomorphic $\mathbb{A}^2$-cylinders - Université de Bourgogne
Article Dans Une Revue Kyoto Journal of Mathematics Année : 2019

Affine surfaces with isomorphic $\mathbb{A}^2$-cylinders

Résumé

We show that all complements of cuspidal hyperplane sections of smooth projective cubic surfaces have isomorphic A(2)-cylinders. As a consequence, we derive that the A(2)-cancellation problem fails in every dimension greater than or equal to 2.
Fichier non déposé

Dates et versions

hal-02166793 , version 1 (27-06-2019)

Identifiants

Citer

Adrien Dubouloz. Affine surfaces with isomorphic $\mathbb{A}^2$-cylinders. Kyoto Journal of Mathematics, 2019, 59 (1), pp.181-193. ⟨10.1215/21562261-2018-0005⟩. ⟨hal-02166793⟩
48 Consultations
0 Téléchargements

Altmetric

Partager

More