Gated Recurrent Unit-Based RNN for Remote Photoplethysmography Signal Segmentation - Université de Bourgogne
Communication Dans Un Congrès Année : 2022

Gated Recurrent Unit-Based RNN for Remote Photoplethysmography Signal Segmentation

Résumé

Remote Photoplethysmography (rPPG) enables quantifying blood volume variations in the skin tissues from an input video recording, using a regular RGB camera. Obtained pulse signals often contain noisy portions due to motion, leading researchers to put aside a great number of rPPG signals in their studies. In this paper, an approach using a Gated Recurrent Unit-based neural network model in order to identify reliable portions in rPPG signals is proposed. This is done by classifying rPPG signal samples into reliable and unreliable samples. For this purpose, rPPG and electrocardiography signals (ECG) were collected from 11 participants, rPPG signal samples were labeled (ECG was used as ground truth), and data were augmented to reach a total number of 11000 1-minute-long rPPG signals. We developed a model composed of a unidimensional CNN and a Bidirectional GRU (1D-CNN+B-GRU) for this study, and obtained an accuracy rate of 85.88%.
Fichier principal
Vignette du fichier
CVPM_2022_Meziati.pdf (3.46 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03783389 , version 1 (22-09-2022)

Identifiants

Citer

Rita Meziati Sabour, Yannick Benezeth. Gated Recurrent Unit-Based RNN for Remote Photoplethysmography Signal Segmentation. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun 2022, New Orleans, United States. pp.2201-2209, ⟨10.1109/CVPRW56347.2022.00239⟩. ⟨hal-03783389⟩
42 Consultations
81 Téléchargements

Altmetric

Partager

More