Classifying DME vs Normal SD-OCT volumes: A review - Université de Bourgogne Accéder directement au contenu
Communication Dans Un Congrès Année : 2016

Classifying DME vs Normal SD-OCT volumes: A review


This article reviews the current state of automatic classification methodologies to identify Diabetic Macular Edema (DME) versus normal subjects based on Spectral Domain OCT (SD-OCT) data. Addressing this classification problem has valuable interest since early detection and treatment of DME play a major role to prevent eye adverse effects such as blindness. The main contribution of this article is to cover the lack of a public dataset and benchmark suited for classifying DME and normal SD-OCT volumes, providing our own implementation of the most relevant methodologies in the literature. Subsequently, 6 different methods were implemented and evaluated using this common benchmark and dataset to produce reliable comparison.
Fichier principal
Vignette du fichier
main(11).pdf (4.3 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01376469 , version 1 (04-10-2016)


  • HAL Id : hal-01376469 , version 1


Joan Massich, Mojdeh Rastgoo, Guillaume Lemaître, Carol y Cheung, Tien y Wong, et al.. Classifying DME vs Normal SD-OCT volumes: A review. 23rd International Conference on Pattern Recognition, Dec 2016, Cancun, Mexico. ⟨hal-01376469⟩
149 Consultations
599 Téléchargements


Gmail Facebook X LinkedIn More