Infinite orbit depth and length of Melnikov functions - Université de Bourgogne
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2019

Infinite orbit depth and length of Melnikov functions

Résumé

In this paper we study polynomial Hamiltonian systems dF=0 in the plane and their small perturbations: dF+ω=0. The first nonzero Melnikov function Mμ=Mμ(F, γ, ω) of the Poincaré map along a loop γof dF=0 is given by an iterated integral [3]. In [7], we bounded the length of the iterated integral Mμby a geometric number k=k(F, γ) which we call orbit depth. We conjectured that the bound is optimal.Here, we give a simple example of a Hamiltonian system Fand its orbit γhaving infinite orbit depth. If our conjecture is true, for this example there should exist deformations dF+ω with arbitrary high length first nonzero Melnikov function Mμalong γ. We construct deformations dF+ω=0 whose first nonzero Melnikov function Mμis of length three and explain the difficulties in constructing deformations having high length first nonzero Melnikov functions Mμ.
Fichier principal
Vignette du fichier
S0294144919300770.pdf (597.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02288935 , version 1 (20-07-2022)

Licence

Identifiants

Citer

Pavao Mardešić, Dmitry Novikov, Laura Ortiz-Bobadilla, Jessie Pontigo-Herrera. Infinite orbit depth and length of Melnikov functions. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2019, 36 (7), pp.1941-1957. ⟨10.1016/j.anihpc.2019.07.003⟩. ⟨hal-02288935⟩
66 Consultations
33 Téléchargements

Altmetric

Partager

More