Subdivisions of Ring Dupin Cyclides Using Bézier Curves with Mass Points - Université de Bourgogne
Article Dans Une Revue WSEAS Transactions on Mathematics Année : 2021

Subdivisions of Ring Dupin Cyclides Using Bézier Curves with Mass Points

Résumé

The paper deals in the Computer-Aided Design or Computer-Aided Manufacturing domain with the Dupin cyclides as well as the Bézier curves. It shows that the same algorithms can be used either for subdivisions of ring Dupin cyclides or Bézier curves. The Bézier curves are described with mass points here. The Dupin cyclides are considered in the Minkowski-Lorentz space. This makes a Dupin cyclide as the union of two conics on the unit pseudo-hypersphere, called the space of spheres. And the conics are quadratic Bézier curves modelled by mass points. The subdivision of any Dupin cyclide, is equivalent to subdivide two curves of degree 2, independently, whereas in the 3D Euclidean space, the same work implies the subdivision of a rational quadratic Bézier surface and resolutions of systems of three linear equations. The first part of this work is to consider ring Dupin cyclides because the conics are bounded circles which look like ellipses.
Fichier principal
Vignette du fichier
GARNIER_Lionel_WSEAS_2021-2.pdf (4.79 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-03521704 , version 1 (20-11-2024)

Licence

Identifiants

Citer

Lionel Garnier, Lucie Druoton, Jean-Paul Becar, Laurent Fuchs, Géraldine Morin. Subdivisions of Ring Dupin Cyclides Using Bézier Curves with Mass Points. WSEAS Transactions on Mathematics, 2021, 20, pp.581-597. ⟨10.37394/23206.2021.20.62⟩. ⟨hal-03521704⟩
70 Consultations
4 Téléchargements

Altmetric

Partager

More